diff options
author | David A. Madore <david@procyon.(none)> | 2011-06-22 18:23:12 +0200 |
---|---|---|
committer | David A. Madore <david@procyon.(none)> | 2011-06-22 18:23:12 +0200 |
commit | befb691798a765506066c0f589056d6b0b5b5a31 (patch) | |
tree | f4fd46c808f85dbc6bdb3e3dadad3321a93ccba7 /chapitres/calculs-galois.tex | |
parent | 60b9d8e60bbc32319871bcf41eb4629cc6396d46 (diff) | |
download | galois-befb691798a765506066c0f589056d6b0b5b5a31.tar.gz galois-befb691798a765506066c0f589056d6b0b5b5a31.tar.bz2 galois-befb691798a765506066c0f589056d6b0b5b5a31.zip |
[calculs] Résolvante sextique d'un polynôme de degré 5 (pour tester si le groupe de Galois est inclus dans M_20).
Bon, il va falloir arrêter le concours de gros polynômes explicites, à
la fin, quand même.
Diffstat (limited to 'chapitres/calculs-galois.tex')
-rw-r--r-- | chapitres/calculs-galois.tex | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/chapitres/calculs-galois.tex b/chapitres/calculs-galois.tex index bd1c70c..6cf0470 100644 --- a/chapitres/calculs-galois.tex +++ b/chapitres/calculs-galois.tex @@ -2351,6 +2351,118 @@ existe cependant deux extensions non-isomorphes de $C_4$ par $C_5$ : celle dont nous parlons est la seule qui soit incluse dans $\mathfrak{S}_5$.) +Un polynôme dont le stabilisateur dans $\mathfrak{S}_5$ est $M_{20}$ +est donné par : $P = Z_1^2(Z_2 Z_5 + Z_3 Z_4) + Z_2^2(Z_1 Z_3 + Z_4 +Z_5) + Z_3^2(Z_1 Z_5 + Z_2 Z_4) + Z_4^2(Z_1 Z_2 + Z_3 Z_5) + Z_5^2(Z_1 +Z_4 + Z_2 Z_3)$. La résolvante générale correspondante est : $R_P = +X^6 + (- 2 a_1 a_3 + 8 a_4) X^5 + (- 8 a_1^3 a_5 + 2 a_1^2 a_2 a_4 + +a_1^2 a_3^2 + 30 a_1 a_2 a_5 - 14 a_1 a_3 a_4 - 6 a_2^2 a_4 + 2 a_2 +a_3^2 - 50 a_3 a_5 + 40 a_4^2) X^4 + (16 a_1^4 a_3 a_5 - 2 a_1^4 a_4^2 +- 2 a_1^3 a_2^2 a_5 - 2 a_1^3 a_2 a_3 a_4 - 44 a_1^3 a_4 a_5 - 66 +a_1^2 a_2 a_3 a_5 + 21 a_1^2 a_2 a_4^2 + 6 a_1^2 a_3^2 a_4 + 9 a_1 +a_2^3 a_5 + 5 a_1 a_2^2 a_3 a_4 - 2 a_1 a_2 a_3^3 - 50 a_1^2 a_5^2 + +190 a_1 a_2 a_4 a_5 + 120 a_1 a_3^2 a_5 - 80 a_1 a_3 a_4^2 - 15 a_2^2 +a_3 a_5 - 40 a_2^2 a_4^2 + 21 a_2 a_3^2 a_4 - 2 a_3^4 + 125 a_2 a_5^2 +- 400 a_3 a_4 a_5 + 160 a_4^3) X^3 + (16 a_1^6 a_5^2 - 8 a_1^5 a_2 a_4 +a_5 - 8 a_1^5 a_3^2 a_5 + 2 a_1^5 a_3 a_4^2 + 2 a_1^4 a_2^2 a_3 a_5 + +a_1^4 a_2^2 a_4^2 - 120 a_1^4 a_2 a_5^2 + 68 a_1^4 a_3 a_4 a_5 - 8 +a_1^4 a_4^3 + 46 a_1^3 a_2^2 a_4 a_5 + 28 a_1^3 a_2 a_3^2 a_5 - 19 +a_1^3 a_2 a_3 a_4^2 - 9 a_1^2 a_2^3 a_3 a_5 - 6 a_1^2 a_2^3 a_4^2 + 3 +a_1^2 a_2^2 a_3^2 a_4 + 250 a_1^3 a_3 a_5^2 - 144 a_1^3 a_4^2 a_5 + +225 a_1^2 a_2^2 a_5^2 - 354 a_1^2 a_2 a_3 a_4 a_5 + 76 a_1^2 a_2 a_4^3 +- 70 a_1^2 a_3^3 a_5 + 41 a_1^2 a_3^2 a_4^2 - 54 a_1 a_2^3 a_4 a_5 + +45 a_1 a_2^2 a_3^2 a_5 + 30 a_1 a_2^2 a_3 a_4^2 - 19 a_1 a_2 a_3^3 a_4 ++ 2 a_1 a_3^5 + 9 a_2^4 a_4^2 - 6 a_2^3 a_3^2 a_4 + a_2^2 a_3^4 - 200 +a_1^2 a_4 a_5^2 - 875 a_1 a_2 a_3 a_5^2 + 640 a_1 a_2 a_4^2 a_5 + 630 +a_1 a_3^2 a_4 a_5 - 264 a_1 a_3 a_4^3 + 90 a_2^2 a_3 a_4 a_5 - 136 +a_2^2 a_4^3 - 50 a_2 a_3^3 a_5 + 76 a_2 a_3^2 a_4^2 - 8 a_3^4 a_4 + +500 a_2 a_4 a_5^2 + 625 a_3^2 a_5^2 - 1400 a_3 a_4^2 a_5 + 400 a_4^4) +X^2 + (- 32 a_1^7 a_3 a_5^2 + 8 a_1^7 a_4^2 a_5 + 8 a_1^6 a_2^2 a_5^2 ++ 8 a_1^6 a_2 a_3 a_4 a_5 - 2 a_1^6 a_2 a_4^3 - 2 a_1^5 a_2^3 a_4 a_5 ++ 48 a_1^6 a_4 a_5^2 + 264 a_1^5 a_2 a_3 a_5^2 - 94 a_1^5 a_2 a_4^2 +a_5 - 24 a_1^5 a_3^2 a_4 a_5 + 6 a_1^5 a_3 a_4^3 - 66 a_1^4 a_2^3 +a_5^2 - 50 a_1^4 a_2^2 a_3 a_4 a_5 + 19 a_1^4 a_2^2 a_4^3 + 8 a_1^4 +a_2 a_3^3 a_5 - 2 a_1^4 a_2 a_3^2 a_4^2 + 15 a_1^3 a_2^4 a_4 a_5 - 2 +a_1^3 a_2^3 a_3^2 a_5 - a_1^3 a_2^3 a_3 a_4^2 - 56 a_1^5 a_5^3 - 318 +a_1^4 a_2 a_4 a_5^2 - 352 a_1^4 a_3^2 a_5^2 + 166 a_1^4 a_3 a_4^2 a_5 ++ 3 a_1^4 a_4^4 - 574 a_1^3 a_2^2 a_3 a_5^2 + 347 a_1^3 a_2^2 a_4^2 +a_5 + 194 a_1^3 a_2 a_3^2 a_4 a_5 - 89 a_1^3 a_2 a_3 a_4^3 - 8 a_1^3 +a_3^4 a_5 + 4 a_1^3 a_3^3 a_4^2 + 162 a_1^2 a_2^4 a_5^2 + 33 a_1^2 +a_2^3 a_3 a_4 a_5 - 51 a_1^2 a_2^3 a_4^3 - 32 a_1^2 a_2^2 a_3^3 a_5 + +28 a_1^2 a_2^2 a_3^2 a_4^2 - 2 a_1^2 a_2 a_3^4 a_4 - 27 a_1 a_2^5 a_4 +a_5 + 9 a_1 a_2^4 a_3^2 a_5 + 3 a_1 a_2^4 a_3 a_4^2 - a_1 a_2^3 a_3^3 +a_4 + 350 a_1^3 a_2 a_5^3 + 1090 a_1^3 a_3 a_4 a_5^2 - 364 a_1^3 a_4^3 +a_5 + 305 a_1^2 a_2^2 a_4 a_5^2 + 1340 a_1^2 a_2 a_3^2 a_5^2 - 901 +a_1^2 a_2 a_3 a_4^2 a_5 + 76 a_1^2 a_2 a_4^4 - 234 a_1^2 a_3^3 a_4 a_5 ++ 102 a_1^2 a_3^2 a_4^3 + 180 a_1 a_2^3 a_3 a_5^2 - 366 a_1 a_2^3 +a_4^2 a_5 - 231 a_1 a_2^2 a_3^2 a_4 a_5 + 212 a_1 a_2^2 a_3 a_4^3 + +112 a_1 a_2 a_3^4 a_5 - 89 a_1 a_2 a_3^3 a_4^2 + 6 a_1 a_3^5 a_4 - 108 +a_2^5 a_5^2 + 117 a_2^4 a_3 a_4 a_5 + 32 a_2^4 a_4^3 - 31 a_2^3 a_3^3 +a_5 - 51 a_2^3 a_3^2 a_4^2 + 19 a_2^2 a_3^4 a_4 - 2 a_2 a_3^6 - 750 +a_1^2 a_3 a_5^3 - 550 a_1^2 a_4^2 a_5^2 - 375 a_1 a_2^2 a_5^3 - 3075 +a_1 a_2 a_3 a_4 a_5^2 + 1640 a_1 a_2 a_4^3 a_5 - 850 a_1 a_3^3 a_5^2 + +1220 a_1 a_3^2 a_4^2 a_5 - 384 a_1 a_3 a_4^4 + 525 a_2^3 a_4 a_5^2 - +325 a_2^2 a_3^2 a_5^2 + 260 a_2^2 a_3 a_4^2 a_5 - 256 a_2^2 a_4^4 + +105 a_2 a_3^3 a_4 a_5 + 76 a_2 a_3^2 a_4^3 - 58 a_3^5 a_5 + 3 a_3^4 +a_4^2 + 2500 a_1 a_4 a_5^3 + 625 a_2 a_3 a_5^3 - 500 a_2 a_4^2 a_5^2 + +2750 a_3^2 a_4 a_5^2 - 2400 a_3 a_4^3 a_5 + 512 a_4^5 - 3125 a_5^4) X ++ 16 a_1^8 a_3^2 a_5^2 - 8 a_1^8 a_3 a_4^2 a_5 + a_1^8 a_4^4 - 8 a_1^7 +a_2^2 a_3 a_5^2 + 2 a_1^7 a_2^2 a_4^2 a_5 + a_1^6 a_2^4 a_5^2 - 48 +a_1^7 a_3 a_4 a_5^2 + 12 a_1^7 a_4^3 a_5 + 12 a_1^6 a_2^2 a_4 a_5^2 - +144 a_1^6 a_2 a_3^2 a_5^2 + 88 a_1^6 a_2 a_3 a_4^2 a_5 - 13 a_1^6 a_2 +a_4^4 + 72 a_1^5 a_2^3 a_3 a_5^2 - 22 a_1^5 a_2^3 a_4^2 a_5 - 4 a_1^5 +a_2^2 a_3^2 a_4 a_5 + a_1^5 a_2^2 a_3 a_4^3 - 9 a_1^4 a_2^5 a_5^2 + +a_1^4 a_2^4 a_3 a_4 a_5 + 56 a_1^6 a_3 a_5^3 + 86 a_1^6 a_4^2 a_5^2 - +14 a_1^5 a_2^2 a_5^3 + 304 a_1^5 a_2 a_3 a_4 a_5^2 - 148 a_1^5 a_2 +a_4^3 a_5 + 152 a_1^5 a_3^3 a_5^2 - 54 a_1^5 a_3^2 a_4^2 a_5 + 5 a_1^5 +a_3 a_4^4 - 76 a_1^4 a_2^3 a_4 a_5^2 + 370 a_1^4 a_2^2 a_3^2 a_5^2 - +287 a_1^4 a_2^2 a_3 a_4^2 a_5 + 65 a_1^4 a_2^2 a_4^4 - 28 a_1^4 a_2 +a_3^3 a_4 a_5 + 5 a_1^4 a_2 a_3^2 a_4^3 + 8 a_1^4 a_3^5 a_5 - 2 a_1^4 +a_3^4 a_4^2 - 210 a_1^3 a_2^4 a_3 a_5^2 + 76 a_1^3 a_2^4 a_4^2 a_5 + +43 a_1^3 a_2^3 a_3^2 a_4 a_5 - 15 a_1^3 a_2^3 a_3 a_4^3 - 6 a_1^3 +a_2^2 a_3^4 a_5 + 2 a_1^3 a_2^2 a_3^3 a_4^2 + 27 a_1^2 a_2^6 a_5^2 - 9 +a_1^2 a_2^5 a_3 a_4 a_5 + a_1^2 a_2^5 a_4^3 + a_1^2 a_2^4 a_3^3 a_5 - +468 a_1^5 a_4 a_5^3 - 200 a_1^4 a_2 a_3 a_5^3 - 294 a_1^4 a_2 a_4^2 +a_5^2 - 676 a_1^4 a_3^2 a_4 a_5^2 + 180 a_1^4 a_3 a_4^3 a_5 + 17 a_1^4 +a_4^5 + 50 a_1^3 a_2^3 a_5^3 - 397 a_1^3 a_2^2 a_3 a_4 a_5^2 + 514 +a_1^3 a_2^2 a_4^3 a_5 - 700 a_1^3 a_2 a_3^3 a_5^2 + 447 a_1^3 a_2 +a_3^2 a_4^2 a_5 - 118 a_1^3 a_2 a_3 a_4^4 - 12 a_1^3 a_3^4 a_4 a_5 + 6 +a_1^3 a_3^3 a_4^3 + 141 a_1^2 a_2^4 a_4 a_5^2 - 185 a_1^2 a_2^3 a_3^2 +a_5^2 + 168 a_1^2 a_2^3 a_3 a_4^2 a_5 - 128 a_1^2 a_2^3 a_4^4 + 93 +a_1^2 a_2^2 a_3^3 a_4 a_5 + 19 a_1^2 a_2^2 a_3^2 a_4^3 - 36 a_1^2 a_2 +a_3^5 a_5 + 5 a_1^2 a_2 a_3^4 a_4^2 + 198 a_1 a_2^5 a_3 a_5^2 - 78 a_1 +a_2^5 a_4^2 a_5 - 95 a_1 a_2^4 a_3^2 a_4 a_5 + 44 a_1 a_2^4 a_3 a_4^3 ++ 25 a_1 a_2^3 a_3^4 a_5 - 15 a_1 a_2^3 a_3^3 a_4^2 + a_1 a_2^2 a_3^5 +a_4 - 27 a_2^7 a_5^2 + 18 a_2^6 a_3 a_4 a_5 - 4 a_2^6 a_4^3 - 4 a_2^5 +a_3^3 a_5 + a_2^5 a_3^2 a_4^2 + 625 a_1^4 a_5^4 + 2300 a_1^3 a_2 a_4 +a_5^3 + 250 a_1^3 a_3^2 a_5^3 + 1470 a_1^3 a_3 a_4^2 a_5^2 - 276 a_1^3 +a_4^4 a_5 - 125 a_1^2 a_2^2 a_3 a_5^3 - 610 a_1^2 a_2^2 a_4^2 a_5^2 + +1995 a_1^2 a_2 a_3^2 a_4 a_5^2 - 1174 a_1^2 a_2 a_3 a_4^3 a_5 - 16 +a_1^2 a_2 a_4^5 + 375 a_1^2 a_3^4 a_5^2 - 172 a_1^2 a_3^3 a_4^2 a_5 + +82 a_1^2 a_3^2 a_4^4 + 15 a_1 a_2^3 a_3 a_4 a_5^2 - 384 a_1 a_2^3 +a_4^3 a_5 + 525 a_1 a_2^2 a_3^3 a_5^2 - 528 a_1 a_2^2 a_3^2 a_4^2 a_5 ++ 384 a_1 a_2^2 a_3 a_4^4 - 29 a_1 a_2 a_3^4 a_4 a_5 - 118 a_1 a_2 +a_3^3 a_4^3 + 38 a_1 a_3^6 a_5 + 5 a_1 a_3^5 a_4^2 - 99 a_2^5 a_4 +a_5^2 - 150 a_2^4 a_3^2 a_5^2 + 196 a_2^4 a_3 a_4^2 a_5 + 48 a_2^4 +a_4^4 + 12 a_2^3 a_3^3 a_4 a_5 - 128 a_2^3 a_3^2 a_4^3 - 12 a_2^2 +a_3^5 a_5 + 65 a_2^2 a_3^4 a_4^2 - 13 a_2 a_3^6 a_4 + a_3^8 - 3125 +a_1^2 a_2 a_5^4 - 3500 a_1^2 a_3 a_4 a_5^3 - 1450 a_1^2 a_4^3 a_5^2 - +1750 a_1 a_2^2 a_4 a_5^3 + 625 a_1 a_2 a_3^2 a_5^3 - 850 a_1 a_2 a_3 +a_4^2 a_5^2 + 1760 a_1 a_2 a_4^4 a_5 - 2050 a_1 a_3^3 a_4 a_5^2 + 780 +a_1 a_3^2 a_4^3 a_5 - 192 a_1 a_3 a_4^5 + 1200 a_2^3 a_4^2 a_5^2 - 725 +a_2^2 a_3^2 a_4 a_5^2 - 160 a_2^2 a_3 a_4^3 a_5 - 192 a_2^2 a_4^5 - +125 a_2 a_3^4 a_5^2 + 590 a_2 a_3^3 a_4^2 a_5 - 16 a_2 a_3^2 a_4^4 - +124 a_3^5 a_4 a_5 + 17 a_3^4 a_4^3 + 3125 a_1 a_3 a_5^4 + 7500 a_1 +a_4^2 a_5^3 + 3125 a_2^2 a_5^4 - 1250 a_2 a_3 a_4 a_5^3 - 2000 a_2 +a_4^3 a_5^2 + 3250 a_3^2 a_4^2 a_5^2 - 1600 a_3 a_4^4 a_5 + 256 a_4^6 +- 9375 a_4 a_5^4$. Cette résolvante sextique admet donc une racine +si, et lorsqu'elle est séparable seulement si, le polynôme $f = X^5 + +a_1 X^4 + a_2 X^3 + a_3 X^2 + a_4 X + a_5$ (supposé irréductible et +séparable) a un groupe de Galois inclus dans $M_{20}$. + +\XXX En fait, $R_P$ ne peut pas être réductible autrement qu'en ayant +une racine. + \ifx\danslelivre\undefined |