summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--chapitres/calculs-galois.tex15
1 files changed, 13 insertions, 2 deletions
diff --git a/chapitres/calculs-galois.tex b/chapitres/calculs-galois.tex
index 44e4723..9cf0575 100644
--- a/chapitres/calculs-galois.tex
+++ b/chapitres/calculs-galois.tex
@@ -3096,7 +3096,7 @@ correspond pas à un sous-groupe transitif de $\mathfrak{S}_6$.)
\end{proof}
\begin{exemple2}
-Considérons le polynôme $f = X^6 + 3 X^4 - 2 X^2 + 1 \in \QQ[Z]$, qui
+Considérons le polynôme $f = X^6 + 3 X^4 - 2 X^2 + 1 \in \QQ[X]$, qui
est irréductible. Telle quelle, sa résolvante $R_P(f)$ définie
ci-dessus vaut $X^6 - 6 X^5 - 935 X^4 + 7480 X^3 + 208840 X^2 - 233856
X - 8319024 = (X + 9)^2 (X^4 - 24 X^3 - 584 X^2 + 19936 X - 102704)$
@@ -3229,7 +3229,7 @@ permettant de calculer le groupe de Galois des polynômes de degré $6$.
\begin{exemple2}
Considérons le polynôme $f = X^6 - X^5 + X^4 - 2 X^3 + X^2 + 3 X + 1
-\in \QQ[Z]$, qui est irréductible. Sa résolvante $R_P(f)$ telle que
+\in \QQ[X]$, qui est irréductible. Sa résolvante $R_P(f)$ telle que
définie en \ref{corollaire-galois-degre-6-resolvante-pentades} vaut
$X^6 - 44 X^5 - 316 X^4 + 27712 X^3 - 62464 X^2 - 3332864 X +
9900544$, qui est irréductible ; sa résolvante $R_{Q_2}(f)$ telle que
@@ -3502,6 +3502,17 @@ $2$-distinguant) permet de trancher entre les cas $G \cong
\mathfrak{S}_7$ et $G \cong \mathfrak{A}_7$, cette proposition fournit
un algorithme pour calculer le groupe de Galois en degré $7$.
+\begin{exemple2}
+Considérons le polynôme $f = X^7 - 2 \in \QQ[X]$, qui est
+irréductible. Sa résolvante $R_P(f)$ telle que définie en
+\ref{galois-degre-7-resolvante-trios} vaut $X^{35} - 604 X^{28} +
+15312 X^{21} - 290000 X^{14} - 116944 X^{7} + 4096$ dont la
+factorisation en irréductibles est $(X^{14} - 26 X^{7} + 512) (X^{21}
+- 578 X^{14} - 228 X^{7} + 8)$. On en déduit que son groupe de Galois
+sur $\QQ$ est $C_7 \rtimes C_6$, ce qui n'est évidemment pas une
+surprise.
+\end{exemple2}
+
\ifx\danslelivre\undefined
\bibliography{../configuration/bibliographie-livre}