\ifx\danslelivre\undefined \documentclass[9pt]{../configuration/smfart} \input{../configuration/commun} \input{../configuration/smf} \input{../configuration/adresse} \input{../configuration/gadgets} \input{../configuration/francais} \input{../configuration/numerotation} \input{../configuration/formules} \input{../configuration/encoredesmacros} \synctex=1 \usepackage{stmaryrd} \usepackage{graphics} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{srcltx} \usepackage{tikz} \usetikzlibrary{matrix} \usetikzlibrary{calc} \title{Différentielles} \externaldocument{extensions-algebriques} \externaldocument{correspondance-galois} \externaldocument{formes-tordues} \externaldocument{spectre} \externaldocument{verselles} \externaldocument{corps-finis} \externaldocument{entiers} \externaldocument{categories} %\textwidth16cm %\hoffset-1.5cm \usepackage[a4paper,left=2cm,right=2cm,marginpar=0.2cm,marginparsep=0.6cm,vmargin=2.4cm]{geometry} \begin{document} \begin{center} Différentielles \end{center} \tableofcontents \else \chapter{Différentielles} \fi \section{} \section{} \begin{théorème2} \XXX Une extension $K\bo k$ est algébrique séparable si et seulement si $Ω¹_{K\bo k}=0$. \end{théorème2} \ifx\danslelivre\undefined \bibliography{../configuration/bibliographie-livre} \bibliographystyle{../configuration/style-bib-livre} \end{document} \fi