K. = CyclotomicField(156) omega = a^12 zeta = a^13 alpha = [sum([zeta^(i*j)*omega^(2^i) for i in range(12)]) for j in range(12)] powtab = [NN(12/gcd(i,12)) for i in range(12)] atab = [alpha[i]^powtab[i] for i in range(12)] atab_on_zeta_basis = [(QQ^4)((zeta.coordinates_in_terms_of_powers())(x)) for x in atab] sqrtm3 = 2*zeta^2-1 sqrtm1 = zeta^3 sqrt3 = -sqrtm3*sqrtm1 nice_basis = [1, sqrtm3, sqrtm1, sqrt3] m = Matrix(QQ, 4, 4, [(QQ^4)((zeta.coordinates_in_terms_of_powers())(x)) for x in nice_basis]) atab_on_nice_basis = [v * m.inverse() for v in atab_on_zeta_basis] zetab = [ZZ(floor(arg(CC(N(alpha[i])/N(atab[i]^(1/powtab[i]))))/arg(zeta)+0.5)) for i in range(12)] btab = [zeta^zetab[i] for i in range(12)] btab_on_zeta_basis = [(QQ^4)((zeta.coordinates_in_terms_of_powers())(x)) for x in btab] btab_on_nice_basis = [v * m.inverse() for v in btab_on_zeta_basis] symbolic_basis = [1, sqrt(-3), sqrt(-1), sqrt(3)] symbolic_omega = sum([sum([btab_on_nice_basis[i][j]*symbolic_basis[j] for j in range(4)])*(sum([atab_on_nice_basis[i][j]*symbolic_basis[j] for j in range(4)]))^(1/powtab[i]) for i in range(12)])/12 symbolic_cos = sum([sum([btab_on_nice_basis[i][j]*symbolic_basis[j] for j in range(4)])*(sum([atab_on_nice_basis[i][j]*symbolic_basis[j] for j in range(4)]))^(1/powtab[i]) for i in range(0,12,2)])/12