summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--ordinal-zoo.tex10
1 files changed, 8 insertions, 2 deletions
diff --git a/ordinal-zoo.tex b/ordinal-zoo.tex
index 54b4f82..86cde74 100644
--- a/ordinal-zoo.tex
+++ b/ordinal-zoo.tex
@@ -189,14 +189,20 @@ subsets of $\omega$, and they are also exactly the subsets recursive
\ordinal $\omega_\omega^{\mathrm{CK}}$: the smallest limit of
admissibles. This ordinal is not admissible. This is the smallest
$\alpha$ such that $L_\alpha \cap \mathscr{P}(\omega)$ is a model of
-$\Pi^1_1$-comprehension.
+$\Pi^1_1$-comprehension (cf. \cite[theorem VII.1.8 on p. 246 and
+ theorem VII.5.17 on p. 292 and notes to §VII.5 on
+ p. 293]{Simpson2009}).
\ordinal\label{RecursivelyInaccessible} The smallest recursively
inaccessible ordinal: this is the smallest ordinal which is admissible
and limit of admissibles. This is the smallest ordinal $\alpha$ such
that $L_\alpha \models \mathsf{KPi}$, or, on the arithmetical side,
such that $L_\alpha \cap \mathscr{P}(\omega)$ is a model of
-$\Delta^1_2$-comprehension. (Compare •\ref{CollapseInaccessible}.)
+$\Delta^1_2$-comprehension (cf. \cite[theorem VII.3.24 on p. 267 and
+ theorem VII.5.17 on p. 292 and
+ errata\footnote{\url{http://www.personal.psu.edu/t20/sosoa/typos.pdf}}
+ to notes to §VII.5 on p. 293]{Simpson2009}).
+(Compare •\ref{CollapseInaccessible}.)
This is the smallest ordinal $\omega_1^{\mathsf{E}_1}$ not the order
type of a well-ordering recursive in the Tugué