\documentclass[12pt,a4paper]{article} % -*- coding: utf-8 -*- \usepackage[a4paper]{geometry} \usepackage[english]{babel} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{times} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{bm} \usepackage{stmaryrd} \usepackage{wasysym} \usepackage{amsthm} \usepackage{url} \usepackage{graphicx} \usepackage[usenames,dvipsnames]{xcolor} %\usepackage{tikz} %\usetikzlibrary{matrix,arrows} % % % \mathchardef\emdash="07C\relax \mathchardef\hyphen="02D\relax \DeclareUnicodeCharacter{00A0}{~} \newcommand{\trans}{\mathop{\mathrm{trans}}\nolimits} % % \newcommand{\TODO}{\textcolor{red}{TODO}} \newcommand{\REFTHIS}{\textcolor{brown}{REF THIS}} \newcommand{\CHECKTHIS}{\textcolor{orange}{CHECK THIS}} \newcommand{\FIXTHIS}{\textcolor{orange}{FIX THIS}} \newcommand{\FINDTHIS}{\textcolor{orange}{FIND THIS}} % \newtheorem{comcnt}{Anything}[section] %\newcounter{comcnt}[section] \newcommand\ordinal{% \refstepcounter{comcnt}\medbreak\noindent•\textbf{\thecomcnt.} } \newtheorem{prop}[comcnt]{Proposition} % % % \begin{document} \title{A zoo of ordinals} \author{David A. Madore} \maketitle {\footnotesize \immediate\write18{sh ./vc > vcline.tex} Git: \input{vcline.tex} \immediate\write18{echo ' (stale)' >> vcline.tex} \par} \textbf{\textcolor{red}{Preliminary version:}} the labels in this document are subject to change. \section{Recursive ordinals} \setcounter{comcnt}{-1} \ordinal $0$ (zero). This is the smallest ordinal, and the only one that is neither successor nor limit. \ordinal $1$ (one). This is the smallest successor ordinal. \ordinal $2$. \ordinal $42$ (cf. \cite[chapter 27]{Adams1981}). \ordinal $\omega$. This is the smallest limit ordinal, and the smallest infinite ordinal. \ordinal $\omega+1$. This is the smallest infinite successor ordinal. \ordinal $\omega2$. \ordinal $\omega^2$. \ordinal $\omega^\omega$. \ordinal $\omega^{\omega^\omega}$. \ordinal $\varepsilon_0 = \varphi(1,0)$. This is the limit of $\omega, \omega^\omega, \omega^{\omega^\omega}, \ldots$, smallest fixed point of $\xi \mapsto \omega^\xi$; in general, $\alpha \mapsto \varepsilon_\alpha = \varphi(1,\alpha)$ is defined as the function enumerating the fixed points of $\xi \mapsto \omega^\xi$. This is the proof-theoretic ordinal of Peano arithmetic. \ordinal $\varepsilon_1 = \varphi(1,1)$. \ordinal $\varepsilon_\omega$. \ordinal $\varepsilon_{\varepsilon_0}$. \ordinal $\varphi(2,0)$. This is the limit of $\varepsilon_0, \varepsilon_{\varepsilon_0}, \ldots$, smallest fixed point of $\xi \mapsto \varepsilon_\xi$; in general, $\alpha \mapsto \varphi(\gamma+1,\alpha)$ is defined as the function enumerating the fixed points of $\xi \mapsto \varphi(\gamma,\xi)$. \ordinal $\varphi(\omega,0)$. This is the smallest ordinal closed under primitive recursive ordinal functions. \ordinal The Feferman-Schütte ordinal $\Gamma_0 = \varphi(1,0,0)$ (also $\psi(\Omega^{\Omega})$ for an appropriate collapsing function $\psi$). This is the limit of $\varepsilon_0, \penalty0 \varphi(\varepsilon_0,0), \penalty0 \varphi(\varphi(\varepsilon_0)), \ldots$, smallest fixed point of $\xi \mapsto \varphi(\xi, 0)$. This is the proof-theoretic ordinal of $\mathsf{ATR}_0$. \ordinal The Ackermann ordinal $\varphi(1,0,0,0)$ (also $\psi(\Omega^{\Omega^2})$ for an appropriate collapsing function $\psi$). \ordinal The “small” Veblen ordinal ($\psi(\Omega^{\Omega^\omega})$ for an appropriate collapsing function $\psi$). This is the limit of $\varphi(1,0), \penalty0 \varphi(1,0,0), \penalty0 \varphi(1,0,0,0), \ldots$, the range of the Veblen functions with finitely many variables. \ordinal The “large” Veblen ordinal ($\psi(\Omega^{\Omega^\Omega})$ for an appropriate collapsing function $\psi$). This is the range of the Veblen functions with up to that many variables. \ordinal The Bachmann-Howard ordinal ($\psi(\varepsilon_{\Omega+1}) = \psi(\Omega_2)$ for an appropriate collapsing function $\psi$). This is the proof-theoretic ordinal of Kripke-Platek set theory ($\mathsf{KP}$). \ordinal The collapse of $\Omega_\omega$ (“Takeuti-Feferman-Buchholz ordinal”), which is the proof-theoretic ordinal of $\Pi^1_1$-comprehension. [\CHECKTHIS: there may be a confusion between $\Omega_\omega$ and $\Omega_{\omega+1}$ in the collapse.] \ordinal\label{CollapseInaccessible} The collapse of an inaccessible (= $\Pi^1_0$-indescribable) cardinal. This is the proof-theoretic ordinal of Kripke-Platek set theory augmented by the recursive inaccessibility of the class of ordinals ($\mathsf{KPi}$), or, on the arithmetical side, of $\Delta^1_2$-comprehension. See \cite{JaegerPohlers1983}. (Compare •\ref{RecursivelyInaccessible}.) \ordinal\label{CollapseMahlo} The collapse of a Mahlo cardinal. This is the proof-theoretic ordinal of $\mathsf{KPM}$. See \cite{Rathjen1990}. (Compare •\ref{RecursivelyMahlo}.) \ordinal\label{CollapseWeaklyCompact} The collapse of a weakly compact (= $\Pi^1_1$-indescribable) cardinal. This is the proof-theoretic ordinal of $\mathsf{KP} + \Pi_3\hyphen\mathsf{Ref}$. See \cite{Rathjen1994}. (Compare •\ref{RecursivelyWeaklyCompact}.) \ordinal\label{CollapsePiTwoZeroIndescribable} The collapse of a $\Pi^2_0$-indescribable cardinal. This is the proof-theoretic ordinal of $\mathsf{KP} + \Pi_\omega\hyphen\mathsf{Ref}$. See \cite[part I]{Stegert2010}. (Compare •\ref{WeaklyStable}.) \ordinal The proof-theoretic ordinal of $\mathsf{Stability}$: see \cite[part II]{Stegert2010}. % \section{Recursively large countable ordinals} \ordinal\label{ChurchKleene} The Church-Kleene ordinal $\omega_1^{\mathrm{CK}}$: the smallest admissible ordinal $>\omega$. This is the smallest ordinal which is not the order type of a recursive (equivalently: hyperarithmetic) well-ordering on $\omega$. The $\omega_1^{\mathrm{CK}}$-recursive (resp. $\omega_1^{\mathrm{CK}}$-semi-recursive) subsets of $\omega$ are exactly the $\Delta^1_1$ (=hyperarithmetic) (resp. $\Pi^1_1$) subsets of $\omega$, and they are also exactly the subsets recursive (resp. semi-recursive) in $\mathsf{E}$ (or $\mathsf{E}^\#$, \CHECKTHIS). \ordinal $\omega_\omega^{\mathrm{CK}}$: the smallest limit of admissibles. This ordinal is not admissible. This is the smallest $\alpha$ such that $L_\alpha \cap \mathscr{P}(\omega)$ is a model of $\Pi^1_1$-comprehension. \ordinal\label{RecursivelyInaccessible} The smallest recursively inaccessible ordinal: this is the smallest ordinal which is admissible and limit of admissibles. This is the smallest ordinal $\alpha$ such that $L_\alpha \models \mathsf{KPi}$, or, on the arithmetical side, such that $L_\alpha \cap \mathscr{P}(\omega)$ is a model of $\Delta^1_2$-comprehension. (Compare •\ref{CollapseInaccessible}.) This is the smallest ordinal $\omega_1^{\mathsf{E}_1}$ not the order type of a well-ordering recursive in the Tugué functional $\mathsf{E}_1$ (\cite[chapter VIII, theorem 6.6 on p. 421]{Hinman1978}), or equivalently, recursive in the hyperjump; and for this $\alpha$ the $\alpha$-recursive (resp. $\alpha$-semi-recursive) subsets of $\omega$ are exactly the subsets recursive (resp. semi-recursive) in $\mathsf{E}_1$ (\cite[chapter VIII, corollary 4.16 on p. 412]{Hinman1978}). This is the smallest $\alpha$ such that $L_\alpha \models \mathsf{KP}+\mathit{Beta}$, where $\mathit{Beta}$ asserts the existence of a transitive collapse for any well-founded relation, or equivalently, the smallest admissible $\alpha$ such that any ordering which $L_\alpha$ thinks is a well-ordering is, indeed, a well-ordering: see \cite[theorem 6.1 on p. 291]{Nadel1973} (compare \cite{Harrison1968} for the negative result concerning the ordinal $\omega_1^{\mathrm{CK}}$ of •\ref{ChurchKleene}). \ordinal The smallest recursively hyperinaccessible ordinal: i.e., the smallest recursively inaccessible which is a limit of recursively inaccessibles. \ordinal\label{RecursivelyMahlo} The smallest recursively Mahlo ordinal: i.e., the smallest admissible ordinal $\alpha$ such that for any $\alpha$-recursive function $f \colon \alpha \to \alpha$ there is an admissible $\beta<\alpha$ which is closed under $f$. This is the smallest ordinal $\alpha$ such that $L_\alpha \models \mathsf{KPM}$. (Compare •\ref{CollapseMahlo}.) This is the smallest ordinal not the order type of a well-ordering recursive in the superjump (\cite{AczelHinman1974} and \cite{Harrington1974}); and for this $\alpha$ the $\alpha$-recursive (resp. $\alpha$-semi-recursive) subsets of $\omega$ are exactly the subsets recursive in the superjump (resp. semirecursive in the partial normalization of the superjump, \cite[theorem 5 on p. 50]{Harrington1974}). Also note concerning this ordinal: \cite[corollary 9.4(ii) on p. 348]{RichterAczel1974}. \ordinal\label{RecursivelyWeaklyCompact} The smallest $\Pi_3$-reflecting (``recursively weakly compact'') ordinal. This can also be described as the smallest ``$2$-admissible'' ordinal: see \cite[theorem 1.16 on p. 312]{RichterAczel1974}. (Compare •\ref{CollapseWeaklyCompact}.) Also the sup of the closure ordinals for $\Sigma_3$ inductive operators: \cite[theorem A on p. 303]{RichterAczel1974}. For this $\alpha$ the $\alpha$-semi-recursive subsets of $\omega$ are exactly the $\Sigma_3$-inductively definable subsets of $\omega$ (\cite[theorem A on p. 303 and theorem D on p. 304]{RichterAczel1974}; see also \cite[example 4.12 on p. 370]{Simpson1978}). \ordinal\label{WeaklyStable} The smallest $(+1)$-stable ordinal, i.e., the smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_{\alpha+1}$. This is the smallest $\Pi^1_0$-reflecting (i.e., $\Pi_n$-reflecting for every $n\in\omega$) ordinal: \cite[theorem 1.18 on p. 313 and 333]{RichterAczel1974}. (Compare •\ref{CollapsePiTwoZeroIndescribable}.) \ordinal\label{PiOneOne} The smallest $(^+)$-stable ordinal, i.e., the smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_{\alpha^+}$ where $\alpha^+$ is the smallest admissible ordinal $>\alpha$. This is the smallest $\Pi^1_1$-reflecting ordinal: \cite[theorem 1.19 on p. 313 and 336]{RichterAczel1974}. Also the sup of the closure ordinals for $\Pi^1_1$ inductive operators: \cite[theorem B on p. 303 or 10.7 on p. 355]{RichterAczel1974} and \cite[theorem A on p. 222]{Cenzer1974}. For this $\alpha$ the $\alpha$-semi-recursive subsets of $\omega$ are exactly the $\Pi^1_1$-inductively definable subsets of $\omega$ (\cite[theorem D on p. 304]{RichterAczel1974}; see also \cite[example 4.13 on p. 370]{Simpson1978}). This is the smallest ordinal $\omega_1^{\mathsf{G}_1^\#}$ not the order type of a well-ordering recursive in the nondeterministic functional $\mathsf{G}_1^\#$ defined by $\mathsf{G}_1^\#(f) \approx \{f(0)\}_{(\omega_1^f)^+}(f(1))$; and for this $\alpha$ the $\alpha$-recursive (resp. $\alpha$-semi-recursive) subsets of $\omega$ are exactly the subsets recursive (resp. semi-recursive) in $\mathsf{G}_1^\#$ (\cite[theorem 7.4 on p. 238]{Cenzer1974}). \ordinal\label{SigmaOneOne} The smallest $\Sigma^1_1$-reflecting ordinal. Also the sup of the closure ordinals for $\Sigma^1_1$ inductive operators: \cite[theorem B on p. 303 or 10.7 on p. 355]{RichterAczel1974}. For this $\alpha$ the $\alpha$-semi-recursive subsets of $\omega$ are exactly the $\Sigma^1_1$-inductively definable subsets of $\omega$ (\cite[theorem D on p. 304]{RichterAczel1974}; see also \cite[example 4.14 on p. 370]{Simpson1978}). That this ordinal is gerater than that of •\ref{PiOneOne}: \cite[corollary 1 to theorem 6 on p.213]{Anderaa1974}; also see: \cite[theorem 6.5]{Simpson1978}. This is the smallest ordinal $\omega_1^{\mathsf{E}_1^\#}$ not the order type of a well-ordering recursive in the nondeterministic version $\mathsf{E}_1^\#$ of the Tugué functional $\mathsf{E}_1$; and for this $\alpha$ the $\alpha$-recursive (resp. $\alpha$-semi-recursive) subsets of $\omega$ are exactly the subsets recursive (resp. semi-recursive) in $\mathsf{E}_1^\#$ (combine \cite[theorem 1 on p. 313, theorem 2 on p. 318]{Aczel1970} and \cite[theorem D on p. 304]{RichterAczel1974}). This is the smallest admissible $\alpha$ which is not Gandy, i.e., such that every $\alpha$-recursive linear ordering of $\alpha$ of which $L_{\alpha^+}$ thinks that it is a well-ordering (with $\alpha^+$ being the next admissible) is, indeed, a well-ordering: see \cite[theorem 6.6 on p. 377]{Simpson1978} and \cite[\FINDTHIS: where ?]{AbramsonSacks1976}. [\FINDTHIS: how stable is this ordinal?] \ordinal The smallest $(^{++})$-stable ordinal, i.e., the smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_{\alpha^{++}}$ where $\alpha^+,\alpha^{++}$ are the two smallest admissible ordinals $>\alpha$. This is $\Sigma^1_1$-reflecting and greater than the ordinal of •\ref{SigmaOneOne} (\cite[theorem 6.4 on p. 376]{Simpson1978} and proposition \ref{PlusPlusStableOrdinalIsSigmaOneOneReflecting} below). \ordinal The smallest inaccessibly-stable ordinal, i.e., the smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_\beta$ where $\beta$ is the smallest recursively inaccessible (cf. •\ref{RecursivelyInaccessible}) ordinal $>\alpha$. \ordinal The smallest Mahlo-stable ordinal, i.e., the smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_\beta$ where $\beta$ is the smallest recursively Mahlo (cf. •\ref{RecursivelyMahlo}) ordinal $>\alpha$. \ordinal The smallest doubly $(+1)$-stable ordinal, i.e., the smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_\beta \mathrel{\preceq_1} L_{\beta+1}$ (cf. •\ref{WeaklyStable}). \ordinal\label{NonprojectibleStable} The smallest stable ordinal under a nonprojectible ordinal, i.e., the smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_\beta$ where $\beta$ is the smallest nonprojectible (the ordinal of •\ref{Nonprojectible}). This is the smallest ordinal $\omega_1^{\mathbf{R}}$ not the order type of a well-ordering recursive in a certain type $3$ functional $\mathbf{R}$ defined in \cite{Harrington1975}; and for this $\alpha$ the $\alpha$-recursive subsets of $\omega$ are exactly the subsets recursive in $\mathbf{R}$. (See also \cite{John1986} and \cite[example 4.10 on p. 369]{Simpson1978}.) \ordinal\label{Nonprojectible} The smallest nonprojectible ordinal, i.e., the smallest $\beta$ such that $\beta$ is a limit of $\beta$-stable ordinals (ordinals $\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_\beta$ (cf. •\ref{NonprojectibleStable}); in other words, the smallest $\beta$ such that $L_\beta \models \mathsf{KPi}+$“the stable ordinals are unbounded”. This is the smallest ordinal $\beta$ such that $L_\beta \models \mathsf{KP}\omega+\Sigma_1\hyphen\textsf{Sep}$ (cf. \cite[chapter V, theorem 6.3 on p. 175]{Barwise1975}), or such that $L_\beta \cap \mathscr{P}(\omega)$ is a model of $\Pi^1_2$-comprehension (cf. \cite[theorem VII.3.24 on p. 267 and theorem VII.5.17 on p. 292]{Simpson2009}). In Jensen's terminology (\cite{Jensen1972}), this is the smallest ordinal $\beta$ such that $\rho_1^\beta > \omega$, and in fact the smallest $\beta>\omega$ such that $\rho_1^\beta = \beta$: that is, the smallest ordinal $\beta$ such that every $\Sigma_1(L_\beta)$ subset of $\omega$ is $\beta$-finite. Sometimes also called the smallest “strongly admissible” (or “strongly $\Sigma_1$-admissible”) ordinal. \ordinal The smallest (weakly) $\Sigma_2$-admissible ordinal. This is the smallest ordinal $\beta$ such that $L_\beta \models \mathsf{KP}\omega+\Delta_2\hyphen\textsf{Sep}$, or such that $L_\beta \cap \mathscr{P}(\omega)$ is a model of $\Delta^1_3$-comprehension (cf. \cite[theorem VII.3.24 on p. 267 and theorem VII.5.17 on p. 292]{Simpson2009}). In Jensen's terminology (\cite{Jensen1972}), this is the smallest ordinal $\beta$ such that $\eta_2^\beta > \omega$, and in fact the smallest $\beta>\omega$ such that $\eta_2^\beta = \beta$: that is, the smallest ordinal $\beta$ such that every $\Delta_2(L_\beta)$ subset of $\omega$ is $\beta$-finite. In the terminology of \cite[appendix]{MarekSrebrny1973}, this is the first $\Delta_2$-gap ordinal. \ordinal The ordinal of ramified analysis (often written $\beta_0$). This is the smallest $\beta$ such that $L_\beta \models \bigwedge_n \Sigma_n\hyphen\textsf{Sep}$ (the full separation scheme), or such that $L_\beta \cap \mathscr{P}(\omega)$ is a model of full second-order analysis (second-order comprehension), and in fact $L_\beta \models \mathsf{ZFC}^-$ (that is, $\mathsf{ZFC}$ minus the powerset axiom). This starts the first gap in the constructible universe, and this gap is of length $1$: see \cite{Putnam1963} and \cite[corollary 4.5 on p. 374]{MarekSrebrny1973}. Note that this ordinal is $(+1)$-stable (cf. •\ref{WeaklyStable}) but not $(+2)$-stable: \cite[corollary to theorem 6.14 on p. 384]{MarekSrebrny1973}. \ordinal The start of the first gap of length $2$ in the constructible universe. If $\beta$ is this ordinal then $\beta$ is the $\beta$-th gap ordinal (\cite[theorem 4.17 on p. 377]{MarekSrebrny1973}). \ordinal The first ordinal $\beta$ which starts a gap of length $\beta$ in the constructible universe. \ordinal\label{OmegaOneSmallestModelKPWithOmegaOne} The ordinal $\beta = \omega_1^{L_\alpha}$ where $\alpha$ is ordinal of •\ref{SmallestModelKPWithOmegaOne}. Then by construction $\beta$ starts a gap of length $\alpha = \beta^+$ (the next admissible ordinal). \ordinal\label{SmallestModelKPWithOmegaOne} The smallest ordinal $\alpha$ such that $L_\alpha \models \mathsf{KP}+$“$\omega_1$ exists”, i.e., the smallest admissible $\alpha$ which is not locally countable, or equivalently, the smallest $\alpha$ such that $L_\alpha \models \mathsf{KP}+$“$\mathscr{P}(\omega)$ exists” (cf. proposition \ref{KPExistenceOfOmegaOneImpliesExistenceOfPOmega}). \ordinal The smallest ordinal $\alpha$ such that $L_\alpha \models \mathsf{ZFC}^-+$“$\omega_1$ exists”, or equivalently such that $L_\alpha \models \mathsf{KP}+$“$\mathscr{P}(\omega)$ exists” (cf. proposition \ref{KPExistenceOfOmegaOneImpliesExistenceOfPOmega}). This is the start of the first third-order gap (\cite[theorem 3.7 on p. 372]{MarekSrebrny1973}) in the constructible universe. % % % \ordinal\label{OmegaOneSmallestModelZFC} The smallest uncountable ordinal $\omega_1^{L_\alpha}$ in the smallest model $L_{\alpha}$ of $\mathsf{ZFC}$, assuming it exists (see •\ref{SmallestModelZFC}). This ordinal is $\alpha$-stable. \ordinal\label{SmallestModelZFC} The smallest ordinal $\alpha$ such that $L_\alpha \models \mathsf{ZFC}$ (assuming it exists), i.e., the height of the minimal model of $\mathsf{ZFC}$. \ordinal\label{Stable} The smallest stable ordinal $\sigma$, i.e., the smallest $\sigma$ such that $L_\sigma \mathrel{\preceq_1} L$, or equivalently $L_\sigma \mathrel{\preceq_1} L_{\omega_1}$. The set $L_\sigma$ is the set of all $x$ which are $\Sigma_1$-definable in $L$ without parameters (\cite[chapter V, corollary 7.9(i) on p. 182]{Barwise1975}). This ordinal is projectible to $\omega$ (i.e., in Jensen's terminology), $\rho_1^\sigma = \omega$ (\cite[chapter V, theorem 7.10(i) on p. 183]{Barwise1975}). This is the smallest ordinal $\delta^1_2$ which not the order type of a well-ordering $\Delta^1_2$ on $\omega$; and in fact, for this $\sigma = \delta^1_2$, the $\sigma$-recursive (resp. $\sigma$-semi-recursive) subsets of $\omega$ are exactly the $\Delta^1_2$ (resp. $\Sigma^1_2$) subsets of $\omega$ (\cite[chapter V, theorem 8.2 on p. 189 and corollary 8.3 on p. 191]{Barwise1975}). This is also the smallest $\Sigma^1_2$-reflecting ordinal (\cite{Richter1975}). \bigbreak \textbf{\textcolor{orange}{Note:}} This document should probably not start listing large cardinals, because \textbf{(0)} the fact that one implies the other nonwithstanding, this is about “ordinals”, not “cardinals”, \textbf{(1)} they are already well covered elsewhere (see, e.g., \cite{Kanamori1997}) and \textbf{(2)} we don't want to start making assumptions, e.g., about whether $\omega_1^L$ is or is not equal to $\omega_1$, but without making such assumptions it is no longer possible to correctly order definitions. Perhaps a median way would be to assume $V=L$ for ordering, forget about measurable cardinals and whatnot, and still include inaccessibles, Mahlo, weakly compact, etc. % % % \section{Various statements} \begin{prop}\label{PlusPlusStableOrdinalIsSigmaOneOneReflecting} If $\alpha$ is such that $L_\alpha \mathrel{\preceq_1} L_{\alpha^{++}}$ (where $\alpha^+,\alpha^{++}$ are the two smallest admissible ordinals $>\alpha$) then $\alpha$ is $\Sigma^1_1$-reflecting. (Stated in \cite[theorem 6.4 on p. 376]{Simpson1978}.) \end{prop} \begin{proof} Assume $L_\alpha \models \exists U(\varphi(U))$ where $\varphi$ is a $\Pi^1_0$ (=first-order) formula with constants in $L_\alpha$ and the extra relation symbol $U$. We want to show that there exists $\beta<\alpha$ such that $L_\beta \models \exists U(\varphi(U))$. Now by \cite[theorem 6.2 on p. 334]{RichterAczel1974} (applied to the negation of $\exists U(\varphi(U))$) we can find a $\Pi_1$ formula $\forall z(\psi(S,z))$ (with the same constants as $\varphi$) such that for any countable transitive set $A$ containing these constants and any admissible $B\ni A$ we have $B \models \forall z(\theta(A,z))$ iff $A \models \exists U(\varphi(U))$. In particular, $L_{\alpha^+} \models \forall z(\theta(L_\alpha,z))$. So $L_{\alpha^+} \models \exists A(\trans(A) \land \penalty0 (A\models\Theta+V{=}L) \land \penalty0 \forall z(\theta(A,z)))$, were $\Theta$ is a statement which translates the adequacy of $A$ (see \cite{Jech1978} (13.9) and lemmas 13.2 and 13.3 p. 110–112, or \cite{Jech2003}, (13.12) and (13.13) p. 188). So in turn $L_{\alpha^{++}} \models \exists C(\trans(C) \land \penalty0 (C\models\mathsf{KP}+V{=}L) \land \penalty0 (C \models \exists A(\trans(A) \land \penalty100 (A\models\Theta+V{=}L) \land \penalty100 \forall z(\theta(A,z)))))$. But this is a $\Sigma_1$ formula with constants in $L_\alpha$, so by the assumption we have $L_\alpha \models$ the same thing. So there is $C \in L_\alpha$ transitive and containing the constants of $\varphi$, and which is necessarily an $L_\gamma$ (for $\gamma<\alpha$) because $C \models \mathsf{KP}+V{=}L$, such that $L_\gamma \models \exists A(\trans(A) \land \penalty0 (A\models\Theta+V{=}L) \land \penalty0 \forall z(\theta(A,z)))$. So in turn there exists $A \in L_\gamma$ transitive, which is necessarily an $L_\beta$ (for $\beta<\gamma$) because $A \models \Theta+V{=}L$, such that $L_\gamma \models \forall z(\theta(L_\beta,z))$. So $L_\beta \models \exists U(\varphi(U))$. \end{proof} \begin{prop}\label{KPExistenceOfOmegaOneImpliesExistenceOfPOmega} The following holds in $\mathsf{KP}$: if $A\subseteq \omega$ is constructible, then $A \in L_\gamma$ for some countable ordinal $\gamma$. In particular, in $\mathsf{KP} + V=L$, if there exists an uncountable ordinal $\delta$, then $\mathscr{P}(\omega)$ exists and can be defined as $\{A \in L_\delta : A\subseteq\omega\}$. \end{prop} \begin{proof} We have to verify that the usual proof (cf. \cite[chapter II, lemma 5.5 on p. 84]{Devlin1984} or \cite[lemma 13.1 on p. 110]{Jech1978} or \cite[theorem 13.20 on p. 190]{Jech2003}) works in $\mathsf{KP}$. Working in $L$, we can assume that $V=L$ holds. Also, we can assume that $\omega$ exists because if every set is finite the result is trivial. Since $A$ is constructible there is $\delta$ limit such that $A \in L_\delta$. We can define $\Delta_1$-Skolem functions for $L_\delta$ inside $\mathsf{KP}$, and because $\omega$ exists we can use induction (cf. \cite[remarks following definition 9.1 on p. 38]{Barwise1975}) to construct the Skolem hull $M$ of $L_\omega \cup \{A\}$ inside $L_\delta$ (or use \cite[chapter II, lemma 5.3 on p. 83]{Devlin1984}). Since $M$ is extensional, we can now use the Mostowski collapse $\pi \colon M \buildrel\sim\over\to N$ (cf. \cite[theorem 7.4 on p. 32]{Barwise1975}) to collapse $M$ to a transitive set $N$, which is necessarily an $L_\gamma$. Now $M$ is countable by construction, so $N = L_\gamma$ is also, so $\gamma$ is. And we have $\pi(A) = A$ so $A \in L_\gamma$ with $\gamma$ countable, as asserted. \end{proof} % % % \begin{thebibliography}{} \bibitem[AbramsonSacks1976]{AbramsonSacks1976} Fred G. Abramson \& Gerald E. Sacks, “Uncountable Gandy Ordinals”, \textit{J. London Math. Soc. (2)} \textbf{14} (1976), 387–392. \bibitem[Aczel1970]{Aczel1970} Peter Aczel, “Representability in Some Systems of Second Order Arithmetic”, \textit{Israel J. Math} \textbf{8} (1970), 308–328. \bibitem[AczelHinman1974]{AczelHinman1974} Peter Aczel \& Peter G. Hinman, “Recursion in the Superjump”, \textit{in}: Jens Erik Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, 5–41. \bibitem[Adams1981]{Adams1981} Douglas Adams, \textit{The Hitchiker's Guide to the Galaxy}, Pocket Books (1981), ISBN 0-671-46149-4. \bibitem[Anderaa1974]{Anderaa1974} Stål Anderaa, “Inductive Definitions and their Closure Ordinals”, \textit{in}: Jens Erik Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, 207–220. \bibitem[Barwise1975]{Barwise1975} Jon Barwise, \textit{Admissible sets and structures, An approach to definability theory}, Perspectives in Mathematical Logic \textbf{7}, Springer-Verlag (1975), ISBN 3-540-07451-1. \bibitem[Cenzer1974]{Cenzer1974} Douglas Cenzer, “Ordinal Recursion and Inductive Definitions”, \textit{in}: Jens Erik Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, 221–264. \bibitem[Devlin1984]{Devlin1984} Keith Devlin, \textit{Constructibility}, Perspectives in Mathematical Logic \textbf{6}, Springer-Verlag (1984), ISBN 3-540-13258-9. \bibitem[Harrington1974]{Harrington1974} Leo Harrington, “The Superjump and the first Recursively Mahlo Ordinal”, \textit{in}: Jens Erik Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, 43–52. \bibitem[Harrington1975]{Harrington1975} Leo Harrington, “Kolmogorov's $R$-operator and the first nonprojectible ordinal”, unpublished notes (1975). \bibitem[Harrison1968]{Harrison1968} Joseph Harrison, “Recursive pseudo-well-orderings”, \textit{Trans. Amer. Math. Soc.} \textbf{131} (1968), 526–543. \bibitem[Hinman1978]{Hinman1978} Peter G. Hinman, \textit{Recursion-Theoretic Hierarchies}, Perspectives in Mathematical Logic \textbf{9}, Springer-Verlag (1978), ISBN 3-540-07904-1. \bibitem[JaegerPohlers1983]{JaegerPohlers1983} Gerhard Jäger \& Wolfram Pohlers, “Eine beweistheoretische Untersuchung von ($\Delta^1_2$-$\mathsf{CA}$)+($\mathsf{BI}$) und verwandter Systeme”, \textit{Bayer. Akad. Wiss., Math.-Natur. Kl. Sitzungsber. 1982} (1983), 1–28. \bibitem[Jech1978]{Jech1978} Thomas Jech, \textit{Set theory}, Pure and Applied Mathematics \textbf{79}, Academic Press (1978), ISBN 0-12-381950-4. \bibitem[Jech2003]{Jech2003} Thomas Jech, \textit{Set theory, The third millennium edition, revised and expanded}, Springer Monographs in Mathematics, Springer-Verlag (2003), ISBN 3-540-44085-2. \bibitem[Jensen1972]{Jensen1972} Ronald Björn Jensen, “The fine structure of the constructible hierarchy”, \textit{Ann. Math. Logic} \textbf{4} (1972), 229–308. \bibitem[John1986]{John1986} Thomas John, “Recursion in Kolmogorov's $R$-operator and the ordinal $\sigma_3$”, \textit{J. Symbolic Logic} \textbf{51} (1986), 1–11. \bibitem[Kanamori1997]{Kanamori1997} Akihiro Kanamori, \textit{The Higher Infinite} (corrected first edition), Perspectives in Mathematical Logic, Springer-Verlag (1997), ISBN 3-540-57071-3. \bibitem[MarekSrebrny1973]{MarekSrebrny1973} Wiktor Marek \& Marian Srebrny, “Gaps in the Constructible Universe”, \textit{Ann. Math. Logic} \textbf{6} (1974), 359–394. \bibitem[Nadel1973]{Nadel1973} Mark Nadel, “Scott Sentences and Admissible Sets”, \textit{Ann. Math. Logic} \textbf{7} (1974), 267–294. \bibitem[Putnam1963]{Putnam1963} Hilary Putnam, “A Note on Constructible Sets of Integers”, \textit{Notre Dame J. Formal Logic} \textbf{4} (1963), 270–273. \bibitem[Rathjen1990]{Rathjen1990} Michael Rathjen, “Ordinal Notations Based on a Weakly Mahlo Cardinal”, \textit{Arch. Math. Logic} \textbf{29} (1990), 249–263. \bibitem[Rathjen1994]{Rathjen1994} Michael Rathjen, “Proof theory of reflection”, \textit{Ann. Pure Appl. Logic} \textbf{68} (1994), 181–224. \bibitem[Richter1975]{Richter1975} Wayne Richter, “The Least $\Sigma^1_2$ and $\Pi^1_2$ Reflecting Ordinals”, \textit{in}: Gert H. Müller, Arnold Oberschelp \& Klaus Potthoff, \textit{$\models$ISILC Logic Conference} (Kiel, 1974), Springer-Verlag \textit{Lecture Notes in Math.} \textbf{499} (1975), ISBN 3-540-07534-8, 568–578. \bibitem[RichterAczel1974]{RichterAczel1974} Wayne Richter \& Peter Aczel, “Inductive Definitions and Reflecting Properties of Admissible Ordinals”, \textit{in}: Jens Erik Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, 301–381. \bibitem[Simpson1978]{Simpson1978} Stephen G. Simpson, “Short Course on Admissible Recursion Theory”, \textit{in}: Jens Erik Fenstad, R. O. Gandy \& Gerald E. Sacks (eds.), \textit{Generalized Recursion Theory II} (Oslo, 1977), North-Holland (1978), ISBN 0-444-85163-1, 355–390. \bibitem[Simpson2009]{Simpson2009} Stephen G. Simpson, \textit{Subsystems of Second-Order Arithmetic} (second edition), Perspectives in Logic, ASL (2009), ISBN 978-0-521-88439-6. \bibitem[Stegert2010]{Stegert2010} Jan-Carl Stegert, \textit{Ordinal Proof Theory of Kripke-Platek Set Theory Augmented by Strong Reflection Principles}, PhD dissertation (Westfälischen Wilhelms-Universität Münster), 2010. \end{thebibliography} \end{document}