summaryrefslogtreecommitdiffstats
path: root/ordinal-zoo.tex
blob: 9a25dc37b41c9a05f415c104c3ee768cbb8ba48a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
\documentclass[12pt,a4paper]{article}  % -*- coding: utf-8 -*-
\usepackage[a4paper]{geometry}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{times}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{bm}
\usepackage{stmaryrd}
\usepackage{wasysym}
\usepackage{amsthm}
\usepackage{url}
\usepackage{graphicx}
\usepackage[usenames,dvipsnames]{xcolor}
%\usepackage{tikz}
%\usetikzlibrary{matrix,arrows}
%
%
%
\mathchardef\emdash="07C\relax
\DeclareUnicodeCharacter{00A0}{~}
%
%
\newcommand{\TODO}{\textcolor{red}{TODO}}
\newcommand{\REFTHIS}{\textcolor{brown}{REF THIS}}
\newcommand{\CHECKTHIS}{\textcolor{orange}{CHECK THIS}}
\newcommand{\FIXTHIS}{\textcolor{orange}{FIX THIS}}
%
\newtheorem{ordinalcnt}{Anything}[section]
%\newcounter{ordinalcnt}[section]
\newcommand\ordinal{%
\refstepcounter{ordinalcnt}\medbreak\noindent•\textbf{\theordinalcnt.} }
%
%
%
\begin{document}

\section{Recursive ordinals}

\setcounter{ordinalcnt}{-1}

\ordinal $0$ (zero).  This is the smallest ordinal, and the only one that is
neither successor nor limit.

\ordinal $1$ (one).  This is the smallest successor ordinal.

\ordinal $2$.

\ordinal $42$.

\ordinal $\omega$.  This is the smallest limit ordinal, and the
smallest infinite ordinal.

\ordinal $\omega+1$.  This is the smallest infinite successor ordinal.

\ordinal $\omega2$.

\ordinal $\omega^2$.

\ordinal $\omega^\omega$.

\ordinal $\omega^{\omega^\omega}$.

\ordinal $\varepsilon_0 = \varphi(1,0)$.  This is the limit of
$\omega, \omega^\omega, \omega^{\omega^\omega}, \ldots$, smallest
fixed point of $\xi \mapsto \omega^\xi$; in general, $\alpha \mapsto
\varepsilon_\alpha = \varphi(1,\alpha)$ is defined as the function
enumerating the fixed points of $\xi \mapsto \omega^\xi$.  This is the
proof-theoretic ordinal of Peano arithmetic.

\ordinal $\varepsilon_1 = \varphi(1,1)$.

\ordinal $\varepsilon_\omega$.

\ordinal $\varepsilon_{\varepsilon_0}$.

\ordinal $\varphi(2,0)$.  This is the limit of $\varepsilon_0,
\varepsilon_{\varepsilon_0}, \ldots$, smallest fixed point of $\xi
\mapsto \varepsilon_\xi$; in general, $\alpha \mapsto
\varphi(\gamma+1,\alpha)$ is defined as the function enumerating the
fixed points of $\xi \mapsto \varphi(\gamma,\xi)$.

\ordinal $\varphi(\omega,0)$.  This is the smallest ordinal closed
under primitive recursive ordinal functions.

\ordinal The Feferman-Schütte ordinal $\Gamma_0 = \varphi(1,0,0)$
(also $\psi(\Omega^{\Omega})$ for an appropriate collapsing
function $\psi$).  This is the limit of $\varepsilon_0, \penalty0
\varphi(\varepsilon_0,0), \penalty0 \varphi(\varphi(\varepsilon_0)),
\ldots$, smallest fixed point of $\xi \mapsto \varphi(\xi, 0)$.  This
is the proof-theoretic ordinal of $\mathsf{ATR}_0$.

\ordinal The Ackermann ordinal $\varphi(1,0,0,0)$ (also
$\psi(\Omega^{\Omega^2})$ for an appropriate collapsing
function $\psi$).

\ordinal The “small” Veblen ordinal ($\psi(\Omega^{\Omega^\omega})$ for
an appropriate collapsing function $\psi$).  This is the limit of
$\varphi(1,0), \penalty0 \varphi(1,0,0), \penalty0 \varphi(1,0,0,0),
\ldots$, the range of the Veblen functions with finitely many
variables.

\ordinal The “large” Veblen ordinal ($\psi(\Omega^{\Omega^\Omega})$
for an appropriate collapsing function $\psi$).  This is the range of
the Veblen functions with up to that many variables.

\ordinal The Bachmann-Howard ordinal ($\psi(\varepsilon_{\Omega+1}) =
\psi(\Omega_2)$ for an appropriate collapsing function $\psi$).  This
is the proof-theoretic ordinal of Kripke-Platek set
theory ($\mathsf{KP}$).

\ordinal The collapse of $\Omega_\omega$ (“Takeuti-Feferman-Buchholz
ordinal”), which is the proof-theoretic ordinal of
$\Pi^1_1$-comprehension.  [\CHECKTHIS: there may be a confusion
  between $\Omega_\omega$ and $\Omega_{\omega+1}$ in the collapse.]

\ordinal\label{CollapseInaccessible} The collapse of an inaccessible
(= $\Pi^1_0$-indescribable) cardinal.  This is the proof-theoretic
ordinal of Kripke-Platek set theory augmented by the recursive
inaccessibility of the class of ordinals ($\mathsf{KPi}$), or, on the
arithmetical side, of $\Delta^1_2$-comprehension.
See \cite{JaegerPohlers1983}.

\ordinal\label{CollapseMahlo} The collapse of a Mahlo cardinal.  This
is the proof-theoretic ordinal of $\mathsf{KPM}$.
See \cite{Rathjen1990}.

\ordinal\label{CollapseWeaklyCompact} The collapse of a weakly compact
(= $\Pi^1_1$-indescribable) cardinal.  This is the proof-theoretic
ordinal of $\mathsf{KP} + \Pi_3-\mathsf{Ref}$.
See \cite{Rathjen1994}.

\ordinal\label{CollapsePiTwoZeroIndescribable} The collapse of a
$\Pi^2_0$-indescribable cardinal.  This is the proof-theoretic ordinal
of $\mathsf{KP} + \Pi_\omega-\mathsf{Ref}$.
See \cite[part I]{Stegert2010}.

\ordinal The proof-theoretic ordinal of $\mathsf{Stability}$:
see \cite[part II]{Stegert2010}.

%
\section{Recursively large countable ordinals}

\ordinal The Church-Kleene ordinal $\omega_1^{\mathrm{CK}}$: the
smallest admissible ordinal $>\omega$.  This is the smallest ordinal
which is not the order type of a recursive (equivalently:
hyperarithmetic) well-ordering on $\omega$.  The
$\omega_1^{\mathrm{CK}}$-recursive
(resp. $\omega_1^{\mathrm{CK}}$-semi-recursive) subsets of $\omega$
are exactly the $\Delta^1_1$ (=hyperarithmetic) (resp. $\Pi^1_1$)
subsets of $\omega$, and they are also exactly the subsets recursive
(resp. semi-recursive) in $\mathsf{E}$ (or $\mathsf{E}^\#$,
\CHECKTHIS).

\ordinal $\omega_\omega^{\mathrm{CK}}$: the smallest limit of
admissibles.  This ordinal is not admissible.  This is the smallest
$\alpha$ such that $L_\alpha \cap \mathscr{P}(\omega)$ is a model of
$\Pi^1_1$-comprehension.

\ordinal The smallest recursively inaccessible ordinal: this is the
smallest ordinal which is admissible and limit of admissibles.  This
is the smallest ordinal $\alpha$ such that $L_\alpha \models
\mathsf{KPi}$, or, on the arithmetical side, such that $L_\alpha \cap
\mathscr{P}(\omega)$ is a model of $\Delta^1_2$-comprehension.
(Compare •\ref{CollapseInaccessible}.)

This is the
smallest ordinal $\omega_1^{\mathsf{E}_1}$ not the order type of a
well-ordering recursive in the Tugué functional $\mathsf{E}_1$
(\cite[chapter VIII, theorem 6.6 on p. 421]{Hinman1978}), or
equivalently, recursive in the hyperjump; and for this $\alpha$ the
$\alpha$-recursive (resp. $\alpha$-semi-recursive) subsets of $\omega$
are exactly the the subsets recursive (resp. semi-recursive) in
$\mathsf{E}_1$ (\cite[chapter VIII, corollary 4.16 on
  p. 412]{Hinman1978}).

\ordinal The smallest recursively hyperinaccessible ordinal: i.e., the
smallest recursively inaccessible which is a limit of recursively
inaccessibles.

\ordinal The smallest recursively Mahlo ordinal: i.e., the smallest
admissible ordinal $\alpha$ such that for any $\alpha$-recursive
function $f \colon \alpha \to \alpha$ there is an admissible
$\beta<\alpha$ which is closed under $f$.  This is the smallest
ordinal $\alpha$ such that $L_\alpha \models \mathsf{KPM}$.
(Compare •\ref{CollapseMahlo}.)

This is the smallest ordinal not the order type of a well-ordering
recursive in the superjump (\cite{AczelHinman1974} and
\cite{Harrington1974}); and for this $\alpha$ the $\alpha$-recursive
(resp. $\alpha$-semi-recursive) subsets of $\omega$ are exactly the
the subsets recursive in the superjump (resp. semirecursive in the
partial normalization of the superjump, \cite[theorem 5 on
  p. 50]{Harrington1974}).

Also note concerning this ordinal: \cite[corollary 9.4(ii) on
  p. 348]{RichterAczel1974}.

\ordinal The smallest $\Pi_3$-reflecting (``recursively weakly
compact'') ordinal.  This can also be described as the smallest
``$2$-admissible'' ordinal: see \cite[theorem 1.16 on
  p. 312]{RichterAczel1974}.  (Compare •\ref{CollapseWeaklyCompact}.)

\ordinal The smallest $(+1)$-stable ordinal, i.e., the smallest
$\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_{\alpha+1}$.  This
is the smallest $\Pi^1_0$-reflecting (i.e., $\Pi_n$-reflecting for
every $n\in\omega$) ordinal: \cite[theorem 1.18 on p. 313 and
  333]{RichterAczel1974}.

(Compare •\ref{CollapsePiTwoZeroIndescribable}.)

\ordinal\label{PiOneOne} The smallest $(^+)$-stable ordinal, i.e., the
smallest $\alpha$ such that $L_\alpha \mathrel{\preceq_1}
L_{\alpha^+}$ where $\alpha^+$ is the smallest admissible
ordinal $>\alpha$.  This is the smallest $\Pi^1_1$-reflecting ordinal:
\cite[theorem 1.19 on p. 313 and 336]{RichterAczel1974}.  Also the sup
of the closure ordinals for $\Pi^1_1$ inductive operators:
\cite[theorem B on p. 303 or 10.7 on p. 355]{RichterAczel1974} and
\cite[theorem A on p. 222]{Cenzer1974}.

This is the smallest ordinal $\omega_1^{\mathsf{G}_1^\#}$ not the
order type of a well-ordering recursive in the nondeterministic
functional $\mathsf{G}_1^\#$ defined by $\mathsf{G}_1^\#(f) \approx
\{f(0)\}_{(\omega_1^f)^+}(f(1))$; and for this $\alpha$ the
$\alpha$-recursive (resp. $\alpha$-semi-recursive) subsets of $\omega$
are exactly the the subsets recursive (resp. semi-recursive) in
$\mathsf{G}_1^\#$ (\cite[theorem 7.4 on p. 238]{Cenzer1974}).

\ordinal\label{SigmaOneOne} The smallest $\Sigma^1_1$-reflecting
ordinal.  Also the sup of the closure ordinals for $\Sigma^1_1$
inductive operators: \cite[theorem B on p. 303 or 10.7 on
  p. 355]{RichterAczel1974}.  That this ordinal is smaller than that
of •\ref{PiOneOne}: \cite[corollary 1 to theorem 6 on
  p.213]{Anderaa1974}; also see: \cite[theorem 6.5]{Simpson1978}.

This is the smallest ordinal $\omega_1^{\mathsf{E}_1^\#}$ not the
order type of a well-ordering recursive in the nondeterministic
version $\mathsf{E}_1^\#$ of the Tugué functional $\mathsf{E}_1$; and
for this $\alpha$ the $\alpha$-recursive
(resp. $\alpha$-semi-recursive) subsets of $\omega$ are exactly the
the subsets recursive (resp. semi-recursive) in $\mathsf{E}_1^\#$
(combine \cite[theorem 1 on p. 313, theorem 2 on p. 318]{Aczel1970}
and \cite[theorem D on p. 304]{RichterAczel1974}).

\ordinal The smallest $(^{++})$-stable ordinal, i.e., the smallest
$\alpha$ such that $L_\alpha \mathrel{\preceq_1} L_{\alpha^{++}}$
where $\alpha^+,\alpha^{++}$ are the two smallest admissible
ordinals $>\alpha$.  This is $\Sigma^1_1$-reflecting and greater than
the ordinal of •\ref{SigmaOneOne} \cite[theorem 6.4]{Simpson1978}
[\CHECKTHIS, probably buried in \cite[§6]{RichterAczel1974}].

%
%
%

\begin{thebibliography}{}

\bibitem[Aczel1970]{Aczel1970} Peter Aczel, “Representability in Some
  Systems of Second Order Arithmetic”, \textit{Israel J. Math}
  \textbf{8} (1970), 308–328.

\bibitem[AczelHinman1974]{AczelHinman1974} Peter Aczel \& Peter
  G. Hinman, “Recursion in the Superjump”, \textit{in}: Jens Erik
  Fenstad \& Peter G. Hinman, \textit{Generalized Recursion Theory}
  (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, 5–41.

\bibitem[Harrington1974]{Harrington1974} Leo Harrington, “The
  Superjump and the first Recursively Mahlo Ordinal”, \textit{in}:
  Jens Erik Fenstad \& Peter G. Hinman, \textit{Generalized Recursion
    Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0,
  43–52.

\bibitem[Anderaa1974]{Anderaa1974} Stål Anderaa, “Inductive
  Definitions and their Closure Ordinals”, \textit{in}: Jens Erik
  Fenstad \& Peter G. Hinman, \textit{Generalized Recursion Theory}
  (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, 207–220.

\bibitem[Cenzer1974]{Cenzer1974} Douglas Cenzer, “Ordinal Recursion
  and Inductive Definitions”, \textit{in}: Jens Erik Fenstad \& Peter
  G. Hinman, \textit{Generalized Recursion Theory} (Oslo, 1972),
  North-Holland (1974), ISBN 0-7204-2276-0, 221–264.

\bibitem[Hinman1978]{Hinman1978} Peter G. Hinman,
  \textit{Recursion-Theoretic Hierarchies}, Perspectives in
  Mathematical Logic \textbf{9}, Springer-Verlag (1978),
  ISBN 3-540-07904-1.

\bibitem[JaegerPohlers1983]{JaegerPohlers1983} Gerhard Jäger \&
  Wolfram Pohlers, “Eine beweistheoretische Untersuchung von
  ($\Delta^1_2$-$\mathsf{CA}$)+($\mathsf{BI}$) und verwandter
  Systeme”, \textit{Bayer. Akad. Wiss.,
    Math.-Natur. Kl. Sitzungsber. 1982} (1983), 1–28.

\bibitem[Rathjen1990]{Rathjen1990} Michael Rathjen, “Ordinal Notations
  Based on a Weakly Mahlo Cardinal”, \textit{Arch. Math. Logic}
  \textbf{29} (1990), 249–263.

\bibitem[Rathjen1994]{Rathjen1994} Michael Rathjen, “Proof theory of
  reflection”, \textit{Ann. Pure Appl. Logic} \textbf{68} (1994),
  181–224.

\bibitem[RichterAczel1974]{RichterAczel1974} Wayne Richter \& Peter
  Aczel, “Inductive Definitions and Reflecting Properties of
  Admissible Ordinals”, \textit{in}: Jens Erik Fenstad \& Peter
  G. Hinman, \textit{Generalized Recursion Theory} (Oslo, 1972),
  North-Holland (1974), ISBN 0-7204-2276-0, 301–381.

\bibitem[Simpson1978]{Simpson1978} Stephen G. Simpson, “Short Course
  on Admissible Recursion Theory”, \textit{in}: Jens Erik Fenstad,
  R. O. Gandy \& Gerald E. Sacks, \textit{Generalized Recursion
    Theory II} (Oslo, 1977), North-Holland (1978), ISBN 0-444-85163-1,
  355–390.

\bibitem[Stegert2010]{Stegert2010} Jan-Carl Stegert, \textit{Ordinal
  Proof Theory of Kripke-Platek Set Theory Augmented by Strong
  Reflection Principles}, PhD dissertation (Westfälischen
  Wilhelms-Universität Münster), 2010.

\end{thebibliography}

\end{document}