%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it? \documentclass[12pt,a4paper]{article} \usepackage[a4paper,margin=2.5cm]{geometry} \usepackage[english]{babel} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} %\usepackage{ucs} \usepackage{times} % A tribute to the worthy AMS: \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} % \usepackage{mathrsfs} \usepackage{wasysym} \usepackage{url} % \usepackage{graphics} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{tikz} \usetikzlibrary{matrix,calc} \usepackage{hyperref} % %\externaldocument{notes-accq205}[notes-accq205.pdf] % \theoremstyle{definition} \newtheorem{comcnt}{Whatever} \newcommand\thingy{% \refstepcounter{comcnt}\smallskip\noindent\textbf{\thecomcnt.} } \newcommand\exercise{% \refstepcounter{comcnt}\bigskip\noindent\textbf{Exercise~\thecomcnt.}\par\nobreak} \renewcommand{\qedsymbol}{\smiley} % \newcommand{\id}{\operatorname{id}} \newcommand{\alg}{\operatorname{alg}} \newcommand{\ord}{\operatorname{ord}} \newcommand{\val}{\operatorname{val}} % \DeclareUnicodeCharacter{00A0}{~} \DeclareUnicodeCharacter{A76B}{z} % \DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C} \DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D} % \DeclareFontFamily{U}{manual}{} \DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{} \newcommand{\manfntsymbol}[1]{% {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}} \newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped \newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2% \hbox to0pt{\hskip-\hangindent\dbend\hfill}} % \newcommand{\spaceout}{\hskip1emplus2emminus.5em} \newif\ifcorrige \corrigetrue \newenvironment{answer}% {\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi% \smallbreak\noindent{\underbar{\textit{Answer.}}\quad}} {{\hbox{}\nobreak\hfill\checkmark}% \ifcorrige\par\smallbreak\else\egroup\par\fi} % % % \begin{document} \ifcorrige \title{ACCQ205\\Final exam — answer key\\{\normalsize Algebraic curves}} \else \title{ACCQ205\\Final exam\\{\normalsize Algebraic curves}} \fi \author{} \date{2023-04-12} \maketitle \pretolerance=8000 \tolerance=50000 \vskip1truein\relax \noindent\textbf{Instructions.} The different exercises below are completely independent. They can be answered in any order, but candidates are asked to label very clearly on their papers where each exercise starts. \medbreak Answers can be written in English or French. \medbreak Use of written documents of any kind (such as handwritten or printed notes, exercise sheets or books) is authorized. Use of electronic devices of any kind is prohibited. \medbreak Duration: 2 hours \ifcorrige This answer key has \textcolor{red}{XXX} pages (cover page included). \else This exam has \textcolor{red}{XXX} pages (cover page included). \fi \vfill {\noindent\tiny \immediate\write18{sh ./vc > vcline.tex} Git: \input{vcline.tex} \immediate\write18{echo ' (stale)' >> vcline.tex} \par} \pagebreak % % % \exercise \textit{The goal of this exercise is to study a representation of lines in $\mathbb{P}^3$.} We fix a field $k$. Recall that \emph{points} in $\mathbb{P}^3(k)$ are given by quadruplets $(x_0{:}x_1{:}x_2{:}x_3)$ of “homogeneous coordinates” in $k$, not all zero, defined up to a common multiplicative constant, and that \emph{planes} in $\mathbb{P}^3(k)$ are of the form $\{(x_0{:}x_1{:}x_2{:}x_3) \in \mathbb{P}^3(k) : u_0 x_0 + \cdots + u_3 x_3 = 0\}$ (for some $u_0,\ldots,u_3$, not all zero, defined up to a common multiplicative constant) which we can denote as $[u_0{:}u_1{:}u_2{:}u_3]$ (a point of the “dual” $\mathbb{P}^3$). Our goal is to find a representation for lines. It may be convenient, if so desired, to call $\langle w\rangle$ the point in projective space $\mathbb{P}^{m-1}(k)$ defined by a vector $w\neq 0$ in $k^m$ (i.e., if $w = (w_0,\ldots,w_m)$ then $\langle w \rangle = (w_0{:}\cdots{:}w_m)$), that is, the class of $w$ under collinearity. \textbf{(1)} Given $x := (x_0,\ldots,x_3) \in k^4$ and $y := (y_0,\ldots,y_3) \in k^4$, let us call $x\wedge y := (w_{0,1}, w_{0,2}, w_{0,3}, w_{1,2}, w_{1,3}, w_{2,3}) \in k^6$ where $w_{i,j} := x_i y_j - x_j y_i$. What is $(\lambda x)\wedge(\mu y)$ in relation to $x\wedge y$? Under what necessary and sufficient condition do we have $x\wedge y = 0$? What is $x\wedge(\lambda x+\mu y)$ in relation to $x\wedge y$? \begin{answer} The $w_{i,j}$ are bilinear in $x,y$ (they are $2\times 2$ determinants) so $(\lambda x)\wedge(\mu y) = \lambda\mu(x\wedge y)$. Vanishing of $w_{i,j}$ means $(x_i,x_j)$ is proportional to $(y_i,y_j)$ so vanishing of all the $w_{i,j}$ means precisely that $x$ or $y$ is zero or that $x$ and $y$ are collinear. Again by bilinearity, we have $x\wedge(\lambda x+\mu y) = \lambda(x\wedge x) + \mu(x\wedge y)$ which is just $\mu(x\wedge y)$ since $x\wedge x$ is $0$. \end{answer} \textbf{(2)} Show that if $V \subseteq k^4$ is a $2$-dimensional vector subspace, then the set of $x\wedge y$ for $x,y\in V$ is a $1$-dimensional subspace of $k^6$. \begin{answer} Consider $u,v$ a basis of $V$: then $u\wedge v$ is nonzero, and any element of $V$ can be written $\lambda u + \mu v$, and then $(\lambda u + \mu v) \wedge (\lambda' u + \mu' v) = (\lambda \mu' - \lambda' \mu)(u \wedge v)$ by (1) (or by composition of determinants). In other words, any $x\wedge y$ with $x,y\in V$ is collinear to $u\wedge v$, and the latter is nonzero, and since $\lambda \mu' - \lambda' \mu$ can obviously take every value in $k$, we see that $\{x\wedge y : x,y\in V\}$ is the line spanned by $u\wedge v$. \end{answer} \textbf{(3)} Deduce from (2) that if $L \subseteq \mathbb{P}^3(k)$ is a line, then $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0 w_{1,2}{:}w_{1,3}{:}w_{2,3})$, where $w_{i,j} := x_i y_j - x_j y_i$ as above, and $(x_0{:}x_1{:}x_2{:}x_3)$ and $(y_0{:}y_1{:}y_2{:}y_3)$ are two distinct points on $L$, is a well-defined point in $\mathbb{P}^5(k)$, not depending on the chosen points on $L$ nor on the homogeneous coordinates representing them. \begin{answer} Calling $\langle w\rangle$ the point in projective space $\mathbb{P}^{m-1}(k)$ defined by a vector $w\neq 0$ in $k^m$, if $L$ is a line in $\mathbb{P}^3(k)$ we can see it as $\{\langle v\rangle : v\in V\}$ for a $2$-dimensional vector subspace $V \subseteq k^4$, and we have seen that $\langle x\wedge y\rangle \in \mathbb{P}^4(k)$ exists when $x$ and $y$ are not collinear (so that $x\wedge y \neq 0$), i.e., when $\langle x\rangle \neq \langle y\rangle$, and does not depend on the $x,y \in V$. \end{answer} The $w_{i,j}$ in question are known as the \textbf{Plücker coordinates} of $L$. \textbf{(4)} Show that any point $(z_0{:}z_1{:}z_2{:}z_3)$ on the line $L$ as above satisfies \[ w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0 = 0 \tag{$*$} \] — and analogously by replacing $0,1,2$ by three distinct coordinates in $\{0,1,2,3\}$. \begin{answer} Expanding the $3\times 3$ determinant \[ \left| \begin{matrix} x_0&y_0&z_0\\ x_1&y_1&z_1\\ x_2&y_2&z_2\\ \end{matrix} \right| \] gives $w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0$. If $\langle z\rangle$ is in the line through $\langle x\rangle$ and $\langle y\rangle$, meaning the three vectors $x,y,z$ are linearly dependent, then this determinant is zero. The same holds, of course, for any other choice of coordinates instead of $0,1,2$. \end{answer} \textbf{(5)} Deduce from (4) that the $w_{i,j}$ satisfy the following relation: \[ w_{0,1} w_{2,3} - w_{0,2} w_{1,3} + w_{0,3} w_{1,2} = 0 \tag{$\dagger$} \] \begin{answer} By (4), we have $w_{0,1} x_2 - w_{0,2} x_1 + w_{1,2} x_0 = 0$ and $w_{0,1} y_2 - w_{0,2} y_1 + w_{1,2} y_0 = 0$. Adding $y_3$ times the first and $-x_3$ times the second gives the stated relation ($\dagger$). \end{answer} The projective algebraic variety defined by ($\dagger$) in $\mathbb{P}^5$ is known as the \textbf{Plücker quadric}. In other words, we have shown how to associate to any line $L$ in $\mathbb{P}^3(k)$ a $k$-point on the Plücker quadric. We now consider the converse. \textbf{(6)} Assuming $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0 w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $\mathbb{P}^5(k)$ satisfies ($\dagger$) (viꝫ. belongs to the Plücker quadric), and assuming also that $w_{0,3} \neq 0$, show that the two points $(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and $(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$ are meaningful and distinct, and that the line joining them has the Plücker coordinates $(w_{0,1}:\cdots:w_{2,3})$ that were given. (\emph{Hint:} \underline{first} compute $(w_{0,3},w_{1,3},w_{2,3},0) \wedge (0,w_{0,1},w_{0,2},w_{0,3})$ and use the result, with the Plücker relation and the fact that $w_{0,3} \neq 0$ to conclude.) \begin{answer} We straightforwardly compute $(w_{0,3},w_{1,3},w_{2,3},0) \wedge (0,w_{0,1},w_{0,2},w_{0,3}) = (w_{0,3} w_{0,1}, w_{0,3} w_{0,2}, w_{0,3}^2, \penalty0 w_{1,3} w_{0,2} - w_{2,3} w_{0,1}, w_{1,3} w_{0,3}, w_{2,3} w_{0,3})$. By Plücker's relation ($\dagger$), $w_{1,3} w_{0,2} - w_{2,3} w_{0,1} = w_{1,2} w_{0,3}$, so we get $w_{0,3}$ times $(w_{0,1}, w_{0,2}, w_{0,3}, \penalty0 w_{1,2}, w_{1,3}, w_{2,3})$. Assuming $w_{0,3} \neq 0$, this is a nonzero vector, which implies (by question (1)) that $(w_{0,3},w_{1,3},w_{2,3},0)$ and $(0,w_{0,1},w_{0,2},w_{0,3})$ are nonzero and non-collinear, so that the two points $(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and $(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$ are meaningful and distinct, and by the computation we have just done, the Plücker coordinates of the line joining them is the set of coordinates $(w_{0,1}:\cdots:w_{2,3})$ that were given. \end{answer} \textbf{(7)} Deduce from (6) that any $(w_{0,1}{:}w_{0,2}{:}w_{0,3}{:} \penalty0 w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $\mathbb{P}^5(k)$ satisfying ($\dagger$) (viꝫ. belonging to the Plücker quadric) is the set of Plücker coordinates of a (clearly unique) line in $\mathbb{P}^3(k)$. (\emph{Hint:} what needs to be proved is that the assumption $w_{0,3} \neq 0$ in (6) is harmless: explain how it can be arranged by a judicious permutation of coordinates.) \begin{answer} We have seen in (6) that when $w_{0,3} \neq 0$ then $(w_{0,1}{:}w_{0,2}{:}w_{0,3}{:} \penalty0 w_{1,2}{:}w_{1,3}{:}w_{2,3})$ are the Plücker coordinates of a line in $\mathbb{P}^3(k)$. But all $w_{i,j}$ cannot be zero (as they are given in $\mathbb{P}^5$), and we can always permute coordinates in such a way that any $w_{i,j} \neq 0$, which is sure to exist, becomes $w_{0,3}$, and the formula $w_{0,1} w_{2,3} - w_{0,2} w_{1,3} + w_{0,3} w_{1,2} = 0$ is invariant under any permutation of coordinates (for this is is enough to check a cyclic permutation and a transposition; keep in mind that $w_{j,i} = -w_{i,j}$ when rewriting so as $i