%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}[subsection]
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newtheorem{defn}[comcnt]{Définition}
\newtheorem{prop}[comcnt]{Proposition}
\newtheorem{lem}[comcnt]{Lemme}
\newtheorem{thm}[comcnt]{Théorème}
\newtheorem{cor}[comcnt]{Corollaire}
\newtheorem{scho}[comcnt]{Scholie}
\renewcommand{\qedsymbol}{\smiley}
%
\newcommand{\id}{\operatorname{id}}
\newcommand{\Frac}{\operatorname{Frac}}
\newcommand{\degtrans}{\operatorname{deg.tr}}
\newcommand{\Frob}{\operatorname{Frob}}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
%
%
\begin{document}
\title{Courbes algébriques\\(notes provisoires)}
\author{David A. Madore}
\maketitle

\centerline{\textbf{ACCQ205}}

{\footnotesize
\immediate\write18{sh ./vc > vcline.tex}
\begin{center}
Git: \input{vcline.tex}
\end{center}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}

\pretolerance=8000
\tolerance=50000


%
%
%

\section{Corps et extensions de corps}

\subsection{Anneaux, algèbres, corps, idéaux premiers et maximaux et corps des fractions}

\thingy Sauf précision expresse du contraire, tous les anneaux
considérés sont commutatifs et ont un élément unité (noté $1$).  Il
existe un unique anneau dans lequel $0=1$, c'est l'anneau réduit à un
seul élément, appelé l'\textbf{anneau nul}.  (Pour tout anneau $A$, il
existe un unique morphisme de $A$ vers l'anneau nul ; en revanche, il
n'existe un morphisme de l'anneau nul vers $A$ que si $A$ est lui-même
l'anneau nul.)

\thingy Si $k$ est un anneau, une \textbf{$k$-algèbre} (là aussi :
implicitement commutative) est la donnée d'un morphisme d'anneaux $k
\buildrel\varphi_A\over\to A$ appelé \textbf{morphisme structural} de
l'algèbre.  On peut multiplier un élément de $A$ par un élément de $k$
avec : $c\cdot x = \varphi_A(c)\,x \in A$ (pour $c\in k$ et $x\in A$).
Un morphisme de $k$-algèbres est un morphisme d'anneaux
$A\buildrel\psi\over\to B$ tel que le morphisme structural $k
\buildrel\varphi_B\over\to B$ de $B$ soit la composée $k
\buildrel\varphi_A\over\to A\buildrel\psi\over\to B$ de celui de $A$
avec le morphisme considéré.

De façon équivalente, une $k$-algèbre est un $k$-module qui est muni
d'une multiplication $k$-bilinéaire qui en fait un anneau, et les
morphismes de $k$-algèbres sont les applications $k$-linéaires qui
préservent la multiplication ; le morphisme structural peut alors se
retrouver par $c \mapsto c\cdot 1$.  Notons qu'une
$\mathbb{Z}$-algèbre est exactement la même chose qu'un anneau (raison
pour laquelle il est souvent préférable d'énoncer les résultats en
parlant de $k$-algèbres pour plus de généralité).

Dans la pratique, cependant $k$ sera généralement un corps : une
$k$-algèbre est donc un $k$-espace vectoriel muni d'une multiplication
$k$-bilinéaire qui en fait un anneau, et le morphisme structural est
automatiquement injectif si l'algèbre n'est pas l'algèbre nulle.

\thingy Un élément $a$ d'un anneau $A$ (sous-entendu : commutatif) est
dit \textbf{régulier}, resp. \textbf{inversible}, lorsque $x \mapsto
ax$ est injectif, resp. bijectif, autrement dit lorsque $ax = 0$
implique $x = 0$ (la réciproque est toujours vraie), resp. lorsqu'il
existe $x$ (appelé inverse de $a$) tel que $ax = 1$.

Un anneau dans $A$ dans lequel l'ensemble des éléments régulier est
égal à l'ensemble $A \setminus \{0\}$ des éléments non-nuls est appelé
anneau \textbf{intègre} : autrement dit, un anneau intègre est un
anneau dans lequel ($0\neq 1$ et) $ab = 0$ implique $a=0$ ou $b=0$ (la
réciproque est toujours vraie).  Par convention, l'anneau nul n'est
pas intègre.

Un idéal $\mathfrak{p}$ d'un anneau $A$ est dit \textbf{premier}
lorsque l'anneau quotient $A/\mathfrak{p}$ est un anneau intègre,
autrement dit lorsque $\mathfrak{p}\neq A$ et que $ab \in
\mathfrak{p}$ implique $a \in \mathfrak{p}$ ou $b \in \mathfrak{p}$
(la réciproque est toujours vraie).

\thingy Dans un anneau (toujours sous-entendu commutatif...),
l'ensemble noté $A^\times$ des éléments inversibles est un groupe,
aussi appelé groupe des \textbf{unités} de $A$.

Un \textbf{corps} est un anneau $k$ dans lequel l'ensemble $k^\times$
des éléments inversibles est égal à l'ensemble $k\setminus\{0\}$ des
éléments non-nuls : autrement dit, un corps est un anneau dans lequel
($0\neq 1$ et) tout élément non-nul est inversible.  De façon
équivalente, un corps est un anneau ayant exactement deux idéaux (qui
sont alors $0$ et lui-même).  Par convention, l'anneau nul n'est pas
un corps.

Un corps est, en particulier, un anneau intègre.

Un idéal $\mathfrak{m}$ d'un anneau $A$ est dit \textbf{maximal}
lorsque l'anneau quotient $A/\mathfrak{m}$ est un corps : de façon
équivalente, lorsque $\mathfrak{m}\neq A$ et que $\mathfrak{m}$ est
maximal pour l'inclusion parmi les idéaux $\neq A$.  Un idéal maximal
est, en particulier, premier.

\thingy À titre d'exemple, l'idéal $n\mathbb{Z}$ de $\mathbb{Z}$ (on
rappelle que tous les idéaux de $\mathbb{Z}$ sont de cette forme, pour
un $n \in \mathbb{N}$ défini de façon unique) est premier si et
seulement si $n = 0$ (le quotient étant $\mathbb{Z}$ lui-même) ou bien
$n$ est un nombre premier ; il est intègre exactement si $n$ est un
nombre premier (le quotient étant alors le corps
$\mathbb{Z}/n\mathbb{Z}$).

Pour donner un exemple moins évident, dans l'anneau $k[x,y]$ des
polynômes à deux indéterminées $x,y$ sur un corps $k$, l'idéal $(y)$
(des polynômes s'annulant identiquement sur l'axe des abscisses) est
premier mais non maximal puisque $k[x,y]/(y) \cong k[x]$, tandis que
l'idéal $(x,y)$ (des polynômes s'annulant à l'origine) est maximal
puisque $k[x,y]/(x,y) \cong k$.

\bigbreak

Le résultat ensembliste suivant sera admis :
\begin{lem}[principe maximal de Hausdorff]\label{hausdorff-maximal-principle}
Soit $\mathscr{F}$ un ensemble de parties d'un ensemble $A$.  On
suppose que $\mathscr{F}$ est non vide et que pour toute partie non
vide $\mathscr{T}$ de $\mathscr{F}$ totalement ordonnée par
l'inclusion (c'est-à-dire telle que pour $I,I' \in \mathscr{T}$ on a
soit $I \subseteq I'$ soit $I \supseteq I'$) la réunion $\bigcup_{I
  \in \mathscr{T}} I$ soit contenue dans un élément de $\mathscr{F}$.
Alors il existe dans $\mathscr{F}$ un élément $M$ maximal pour
l'inclusion (c'est-à-dire que si $I \supseteq M$ avec $I \in
\mathscr{F}$ alors $I=M$).
\end{lem}

\begin{prop}\label{existence-maximal-ideals}
Dans un anneau $A$, tout idéal strict (=autre que $A$) est inclus dans
un idéal maximal.
\end{prop}
\begin{proof}
Si $I$ est un idéal strict de $A$, on applique le principe maximal de
Hausdorff à $\mathscr{F}$ l'ensemble des idéaux stricts de $A$
contenant $I$.  Si $\mathscr{T}$ est une chaîne (=partie totalement
ordonnée pour l'inclusion) de tels idéaux, la réunion $\bigcup_{I \in
  \mathscr{T}} I$ en est encore un\footnote{La réunion de deux idéaux
  n'est généralement pas un idéal, car si $x\in I$ et $x' \in I'$, la
  somme $x+x'$ n'a pas de raison d'appartenir à $I\cup I'$.  En
  revanche, si $\mathscr{T}$ est une famille d'idéaux totalement
  ordonnée par l'inclusion, alors $\bigcup_{I \in \mathscr{T}} I$ est
  un idéal : si $x\in I$ et $x' \in I'$, où $I,I'\in \mathscr{T}$, on
  peut écrire soit $I \subseteq I'$ soit $I'\subseteq I$, et dans un
  cas comme dans l'autre on a $x+x' \in \bigcup_{I \in \mathscr{T}}
  I$.} (pour voir que la réunion est encore un idéal strict, remarquer
que $1$ n'y appartient pas).  Le principe maximal de Hausdorff permet
de conclure.
\end{proof}

\thingy Un élément $x$ d'un anneau $A$ est dit \textbf{nilpotent}
lorsqu'il existe $n\geq 0$ tel que $x^n = 0$ (un anneau dans lequel le
seul élément nilpotent est $0$ est dit \textbf{réduit}).

\begin{prop}
Dans un anneau, l'ensemble des éléments nilpotents est un idéal :
cet idéal est aussi l'intersection des idéaux premiers de l'anneau.
(On l'appelle le \textbf{nilradical} de l'anneau.)
\end{prop}
\begin{proof}
L'ensemble des nilpotents est un idéal car si $x^n=0$ et $y^n=0$ alors
$(x+y)^{2n}=0$ en développant.  Il est inclus dans tout idéal
premier $\mathfrak{p}$, car $x^n \in \mathfrak{p}$ (et à plus forte
raison $x^n = 0$) implique $x \in \mathfrak{p}$ par récurrence
sur $n$.  Reste à montrer que si $z$ est inclus dans tout idéal
premier, alors $z$ est nilpotent.

Supposons que $z$ n'est pas nilpotent.  Considérons $\mathfrak{p}$ un
idéal maximal pour l'inclusion parmi les idéaux ne contenant aucun
$z^n$ : un tel idéal existe d'après le principe maximal de Hausdorff
(il existe un idéal ne contenant aucun $z^n$, à savoir $\{0\}$).
Montrons qu'il est premier : si $x,y \not \in \mathfrak{p}$, on veut
voir que $xy \not\in \mathfrak{p}$.  Par maximalité de $\mathfrak{p}$,
chacun des idéaux\footnote{On rappelle que si $I,J$ sont deux idéaux
  d'un anneau, l'ensemble $I + J = \{u+v : u\in I, v\in J\}$ est un
  idéal, c'est l'idéal engendré par $I\cup J$, c'est-à-dire, le plus
  petit idéal contenant $I$ et $J$ ; on l'appelle idéal somme de $I$
  et $J$.  Dans le cas particulier où $J = (x)$ est engendré par un
  élément, c'est donc l'idéal engendré par $I\cup\{x\}$.}
$\mathfrak{p}+(x)$ et $\mathfrak{p}+(y)$ doit rencontrer $\{z^n\}$,
c'est-à-dire qu'on doit pouvoir trouver deux éléments de la forme
$f+ax$ et $g+by$ avec $f,g\in\mathfrak{p}$ et $a,b\in A$, qui soient
des puissances de $z$ ; leur produit est alors aussi une puissance
de $z$, donc n'est pas dans $\mathfrak{p}$, donc $abxy
\not\in\mathfrak{p}$ (car les trois autres termes sont
dans $\mathfrak{p}$), et a plus forte raison $xy \not\in
\mathfrak{p}$.
\end{proof}

\thingy Si $A$ est un anneau intègre, on définit un corps $\Frac(A)$,
dit \textbf{corps des fractions} de $A$, dont les éléments sont les
symboles formels $\frac{a}{q}$ avec $a \in A$ et $q \in A
\setminus\{0\}$, en convenant d'identifier $\frac{a}{q}$ avec
$\frac{a'}{q'}$ lorsque $aq' = a'q$ (i.e., formellement, $\Frac(A)$
est le quotient de $A \times (A\setminus\{0\})$ par la relation
d'équivalence qu'on vient de dire) ; la structure d'anneau est définie
par $\frac{a}{q} + \frac{a'}{q'} = \frac{aq'+a'q}{qq'}$ et
$\frac{a}{q} \cdot \frac{a'}{q'} = \frac{aa'}{qq'}$.  On a aussi un
morphisme injectif $A \to \Frac(A)$ envoyant $a$ sur $\frac{a}{1}$, et
on identifiera $A$ à son image par ce morphisme.

À titre d'exemple, $\Frac(\mathbb{Z})$ est $\mathbb{Q}$ (c'est même la
définition de ce dernier).

\thingy\label{universal-property-of-fraction-field} Le corps des
fractions d'un anneau intègre $A$ vérifie la propriété « universelle »
suivante : si $K$ est un corps quelconque, et $\varphi\colon A \to K$
un morphisme d'anneaux injectif, il existe un unique morphisme de
corps $\hat\varphi\colon \Frac(A) \to K$ (i.e., extension de corps,
cf. ci-dessous) qui prolonge $\varphi$ (i.e., $\hat\varphi(a) =
\varphi(a)$ si $a\in A$).  En effet, il suffit de définir
$\hat\varphi(\frac{a}{q})$ par $\varphi(a)/\varphi(q)$.

\thingy Le corps des fractions de l'anneau $k[t_1,\ldots,t_n]$ des
polynômes en $n$ indéterminées $t_1,\ldots,t_n$ sur un corps $k$ est
appelé corps des \textbf{fractions rationnelles} (ou parfois
« fonctions rationnelles ») en $n$ indéterminées $t_1,\ldots,t_n$
sur $k$, et noté $k(t_1,\ldots,t_n)$.

\thingy\label{finite-integral-algebra-is-a-field} Le fait suivant sera
important : si $k$ est un corps et $K$ une $k$-algèbre \emph{de
  dimension finie} intègre, alors $K$ est, en fait, un corps.  En
effet, une application $k$-linéaire $K \to K$ injective est
automatiquement bijective, et en appliquant ce fait à la
multiplication par un $a\in K$, on voit que tout élément régulier est
inversible.

\subsection{Algèbre engendrée, extensions de corps}

\thingy Si $A$ est une $k$-algèbre (où $k$ est un anneau), et
$(x_i)_{i\in I}$ est une famille d'éléments de $A$, l'intersection de
toutes les sous-$k$-algèbres de $A$ contenant les $x_i$ est encore une
sous-$k$-algèbre de $A$ contenant les $x_i$, c'est-à-dire que c'est la
plus petite sous-$k$-algèbre de $A$ contenant les $x_i$.  On l'appelle
$k$-algèbre \textbf{engendrée} (dans $A$) par les $x_i$ et on la note
$k[x_i]_{i\in I}$.  Lorsque les $x_i$ sont en nombre fini (le cas qui
nous intéressera le plus), disons indicés par $1,\ldots,n$, on note
$k[x_1,\ldots,x_n]$, et on dit que $k[x_1,\ldots,x_n]$ est une
$k$-algèbre \textbf{de type fini} (comme $k$-algèbre).

\danger On prendra garde au fait que la même notation
$k[x_1,\ldots,x_n]$ peut désigner soit la $k$-algèbre engendrée
par $x_1,\ldots,x_n$ dans une $k$-algèbre $A$ plus grande, soit
l'anneau des polynômes à $n$ indéterminées $x_1,\ldots,x_n$ sur $k$.
Ces conventions sont cependant cohérentes en ce sens que l'anneau des
polynômes à $n$ indéterminées sur $k$ est bien la $k$-algèbre
engendrée par les indéterminées (cf. le point suivant).  Il faut donc
prendre garde à ce que sont $x_1,\ldots,x_n$ quand cette notation
apparaît : si aucune remarque n'est faite et que les $x_i$ n'ont pas
été introduits auparavant, il est généralement sous-entendu que ce
sont des indéterminées.

\thingy\label{subalgebra-generated-is-polynomials} La $k$-algèbre
engendrée par les $x_i$ dans $A$ peut encore se décrire concrètement
comme l'ensemble de tous les éléments de $A$ qui peuvent être obtenus
à partir de $1$ et des $x_i$ par sommes, produits par éléments de $k$
et produits binaires.  Autrement dit, ce sont les valeurs des
polynômes à coefficients dans $k$ évalués en des $x_i$.  Pour dire les
choses de façon plus sophistiquée, en supposant les $x_i$ en nombre
fini pour simplifier (et indicés par $1,\ldots,n$), il existe un
unique morphisme $k[t_1,\ldots,t_n] \to A$ envoyant $t_i$ sur $x_i$, à
savoir le morphisme « d'évaluation » qui à un $P \in
k[t_1,\ldots,t_n]$ associe $P(x_1,\ldots,x_n)$, et $k[x_1,\ldots,x_n]$
est l'\emph{image} de ce morphisme.  On peut donc dire qu'une
$k$-algèbre de type fini $k[x_1,\ldots,x_n]$ est la même chose qu'un
\emph{quotient} de l'algèbre de polynômes $k[t_1,\ldots,t_n]$ (par le
noyau du morphisme d'évaluation).

Pour ce qui est du cas infini : la $k$-algèbre $k[x_i]_{i\in I}$
engendrée par une famille quelconque $(x_i)_{i\in I}$ d'éléments de
$A$ est la \emph{réunion} des algèbres $k[x_i]_{i\in J}$ engendrées
par toutes les sous-familles finies (i.e., $J\subseteq I$ fini) de la
famille donnée.  (Autrement dit, $y \in A$ appartient à $k[x_i]_{i\in
  I}$ si et selement si il existe $J\subseteq I$ fini tel que $y$
appartienne à $k[x_i]_{i\in J}$.)

\danger Attention : une sous-algèbre d'une algèbre de type fini n'est
pas, en général, de type fini.  Un contre-exemple est fourni par
l'anneau des polynômes $f \in k[x,y]$ à deux indéterminées sur un
corps $k$ qui prennent une valeur constante sur l'axe des ordonnées :
cette $k$-algèbre est engendrée par $1, x, xy, xy^2, xy^3,\ldots$ et
on peut montrer qu'aucun nombre fini de ses éléments ne suffit à
l'engendrer.

\thingy Une \textbf{extension de corps} est un morphisme d'anneaux $k
\to K$ entre corps (c'est-à-dire que $K$ est une $k$-algèbre qui est
un corps).  Un tel morphisme est automatiquement injectif (car son
noyau est un idéal d'un corps qui ne contient pas $1$), et qui peut
donc être considéré comme une inclusion : on notera soit $k \subseteq
K$ soit $K/k$ une telle extension ; lorsque l'inclusion a été fixée,
on dit aussi que $k$ est un \textbf{sous-corps} de $K$.  Un
\textbf{corps intermédiaire} à une extension $k \subseteq K$, ou
encore \textbf{sous-extension}, est, naturellement, une extension de
corps $k \subseteq E$ contenue dans $K$ ; on dit aussi que $k
\subseteq E \subseteq K$ est une \textbf{tour} d'extensions (et de
même pour n'importe quel nombre de corps intermédiaires).

\thingy\label{subfield-generated} Si $k \subseteq K$ est une extension
de corps, et $(x_i)_{i\in I}$ est une famille d'éléments de $K$,
l'intersection de tous les sous-corps de $K$ contenant $k$ et
les $x_i$ est encore un sous-corps de $K$ contenant $k$ et les $x_i$,
c'est-à-dire que c'est le plus petit corps intermédiaire contenant
les $x_i$.  On l'appelle sous-extension \textbf{engendrée} (dans $K$)
par les $x_i$ et on la note $k(x_i)_{i\in I}$.  Lorsque les $x_i$ sont
en nombre fini (le cas qui nous intéressera le plus), disons indicés
par $1,\ldots,n$, on note $k(x_1,\ldots,x_n)$, et on dit que
$k(x_1,\ldots,x_n)$ est une extension de $k$ \textbf{de type fini}
(comme extension de corps).

\danger On prendra garde au fait que la même notation
$k(x_1,\ldots,x_n)$ peut désigner soit la sous-extension engendrée
par $x_1,\ldots,x_n$ dans une extension $K$ plus grande, soit le corps
des fractions rationnelles à $n$ indéterminées $x_1,\ldots,x_n$
sur $k$.  Ces conventions sont cependant cohérentes en ce sens que le
corps des fractions rationnelles à $n$ indéterminées sur $k$ est bien
la sous-extension engendrée par les indéterminées (cf. le point
suivant).  Comme dans le cas de la $k$-algèbre engendrée, il faut donc
prendre garde à ce que sont $x_1,\ldots,x_n$ quand cette notation
apparaît : si aucune remarque n'est faite et que les $x_i$ n'ont pas
été introduits auparavant, il est généralement sous-entendu que ce
sont des indéterminées.

\thingy\label{subfield-generated-is-quotients} La sous-extension
engendrée (au-dessus de $k$) par les $x_i$ dans $K$ peut encore se
décrire concrètement comme l'ensemble de tous les éléments de $A$ qui
peuvent être obtenus à partir des éléments de $k$ et des $x_i$ par
sommes, produits et inverses (d'éléments non nuls).  Autrement dit, ce
sont les valeurs des fractions rationnelles à coefficients dans $k$
évalués en des $x_i$ (à condition d'être bien définies).

Pour ce qui est du cas infini : la sous-extension $k(x_i)_{i\in I}$
engendrée par une famille quelconque $(x_i)_{i\in I}$ d'éléments de
$K$ est la \emph{réunion} des sous-extensions $k(x_i)_{i\in J}$
engendrées par toutes les sous-familles finies (i.e., $J\subseteq I$
fini) de la famille donnée.  (Autrement dit, $y \in K$ appartient à
$k(x_i)_{i\in I}$ si et selement si il existe $J\subseteq I$ fini tel
que $y$ appartienne à $k(x_i)_{i\in J}$.)

Contrairement au cas des algèbres
(cf. \ref{subalgebra-generated-is-polynomials}), il \emph{est} bien
vrai qu'une sous-extension d'une extension de corps de type fini est
de type fini.  Mais ce n'est pas évident !  (Cela sera démontré en
\ref{subextension-of-finite-type-is-of-finite-type} ci-dessous.)


\subsection{Extensions algébriques et degré}

\thingy\label{monogeneous-extensions-dichotomy} Si $k \subseteq K$ est
une extension de corps et $x\in K$, on a noté
(cf. \ref{subfield-generated}) $k(x)$ l'extension de $k$ engendrée
par $x$.  On dira aussi que $k \subseteq k(x)$ est une extension
\textbf{monogène} (certains auteurs utilisent « simple », notamment en
anglais).

On se pose la question de mieux comprendre cette extension.  Pour
cela, on introduit l'unique morphisme $\varphi\colon k[t] \to K$, où
$k[t]$ est l'anneau des polynômes en une indéterminée $t$ sur $k$, qui
envoie $t$ sur $x$, c'est-à-dire, le morphisme « d'évaluation »
envoyant $P$ sur $P(x)$ pour chaque $P \in k[t]$.  Le noyau de
$\varphi$ est un idéal de $k[t]$.  Exactement l'un des deux cas
suivants se produit :
\begin{itemize}
\item Soit $\varphi$ est injectif (=son noyau est nul), auquel cas on
  dit que $x$ est \textbf{transcendant} sur $k$.  Dans ce cas, d'après
  la propriété universelle du corps des fractions
  (cf. \ref{universal-property-of-fraction-field}), $\varphi$ se
  prolonge de manière unique en une extension de corps $k(t) \to K$
  (où $k(t)$ est le corps des fractions rationnelles en l'indéterminée
  $t$ sur $k$), envoyant $P/Q \in k(t)$ sur $P(x)/Q(x) \in K$, et
  l'image de $k(t)$ dans $K$ est précisément $k(x)$
  (cf. \ref{subfield-generated-is-quotients}).  Ceci permet
  d'identifier $k(x)$ avec le corps des fractions rationnelles en une
  indéterminée (i.e., de considérer $x$ comme une indéterminée).
\item Soit le noyau de $\varphi$ est engendré par un unique polynôme
  unitaire $\mu_x\in k[t]$, qu'on appelle le \textbf{polynôme minimal}
  de $x$, et alors $x$ est dit \textbf{algébrique} (ou
  \textbf{entier}) sur $k$.  Alors l'image $k[x]$ de $\varphi$
  (cf. \ref{subalgebra-generated-is-polynomials}) s'identifie à
  $k[t]/(\mu_x)$, une $k$-algèbre de dimension $\deg\mu_x$ finie
  sur $k$, qu'on appelle le \textbf{degré} de $x$ ; mais comme $k[x]$
  est intègre (puisque c'est une sous-algèbre d'un corps), et de
  dimension finie, c'est un corps
  (cf. \ref{finite-integral-algebra-is-a-field}) : on a donc $k(x) =
  k[x] = k[t]/(\mu_x)$ dans cette situation.  De plus, le polynôme
  $\mu_x$ est irréductible dans $k[t]$ (sans quoi on aurait deux
  éléments dont le produit est nul dans $K$).
\end{itemize}
On remarquera que les éléments de $k$ eux-mêmes sont exactement les
algébriques de degré $1$ sur $k$.  On remarquera aussi que si $k
\subseteq k' \subseteq K$, alors le polynôme minimal d'un $x\in K$
sur $k'$ divise celui sur $k$ (car ce dernier annule $x$ et est à
coefficients dans $k$ donc dans $k'$).

\thingy\label{monogeneous-extensions-dichotomy-bis} La dichotomie
décrite ci-dessus admet une sorte de réciproque : d'une part, si $t$
est une indéterminée, alors dans $k(t)$ (le corps des fractions
rationnelles) l'élément $t$ est bien transcendant sur $k$ (en fait,
toute fraction rationnelle non constante est transcendante sur $k$) ;
d'autre part, si $\mu$ est un polynôme unitaire irréductible sur $k$,
alors $k[t]/(\mu)$ est une $k$-algèbre de dimension finie intègre donc
(cf. \ref{finite-integral-algebra-is-a-field}) une extension de corps
de $k$ dans laquelle la classe $x := \bar t$ de l'indéterminée $t$ est
algébrique de polynôme minimal $\mu$ : ce corps $k(x) = k[t]/(\mu)$
est appelé \textbf{corps de rupture} du polynôme irréductible $\mu$
sur $k$ (lorsque $\mu$ n'est pas unitaire, on peut encore parler de
corps de rupture quitte à diviser par le coefficient dominant ; en
revanche, l'irréductibilité est essentielle), et il va de soi que le
corps de rupture coïncide avec $k$ si et seulement si $\mu$ est de
degré $1$ (précisément, si $\mu = t-a$ alors l'élément $x := \bar t$
de $k(x) = k[t]/(\mu)$ s'identifie avec $a \in k$).

\thingy Une extension de corps $k\subseteq K$ est dite
\textbf{algébrique} lorsque chaque élément de $K$ est algébrique
sur $k$.  On dit aussi que $K$ est algébrique « au-dessus de » $k$ ou
« sur » $k$.

Un corps $k$ est dit \textbf{algébriquement clos} lorsque la seule
extension algébrique de $k$ est $k$ lui-même : d'après les remarques
précédentes, cela revient à dire que les seuls polynômes unitaires
irréductibles dans $k[t]$ sont les $t-a$.

\thingy Si $k\subseteq K$ est une extension de corps, on peut
considérer $K$ comme un $k$-espace vectoriel, et sa dimension (finie
ou infinie) est notée $[K:k]$ et appelée \textbf{degré} de
l'extension.  Une extension de degré fini est aussi dite
\textbf{finie} (ainsi, on pourra dire simplement que $K$ est « fini
sur $k$ » pour dire que son degré est fini).  Il va de soi qu'une
sous-extension d'une extension finie est encore finie.

Il résulte de l'identification de $k(x)$ à $k[t]/(\mu_x)$ que, si $x$
est un élément algébrique sur $k$, alors $[k(x):k]$ est fini et égal
au degré $\deg\mu_x =: \deg(x)$ de $x$.  \textit{A contrio}, si $x$
est transcendant, alors $[k(x):k]$ est infini.  En particulier, on a
montré que : \emph{l'extension monogène $k\subseteq k(x)$ est finie si
  et seulement si $x$ est algébrique sur $k$}.

\thingy\label{remark-multiplicativity-of-degree} On aura également
besoin du fait que si $k \subseteq K \subseteq L$ sont deux extensions
imbriquées alors $[L:k] = [K:k] \, [L:K]$ (au sens où le membre de
gauche est fini si et seulement si les deux facteurs du membre de
droite le sont, et dans ce cas leur produit lui est égal).  Cela
résulte du fait plus précis que si $(x_i)_{i\in I}$ est une $k$-base
de $K$ et $(y_j)_{j\in J}$ une $K$-base de $L$, alors $(x_i
y_j)_{(i,j)\in I\times J}$ est une $k$-base de $L$ (vérification
aisée).

\thingy\label{basic-facts-algebraic-extensions} Les faits suivants sont à noter :

(1) Une extension de corps engendrée par un nombre fini d'éléments
algébriques est finie (en effet, si $x_1,\ldots,x_n$ sont algébriques
sur $k$, alors chaque extension $k(x_1,\ldots,x_{i-1}) \subseteq
k(x_1,\ldots,x_i)$ est monogène algébrique, donc finie, donc leur
composée est fini).

(1bis) En fait, sous ces conditions, on peut être un peu plus précis :
$k(x_1,\ldots,x_n)$ a une base comme $k$-espace vectoriel formée de
monômes en les $x_1,\ldots,x_n$ (c'est-à-dire d'expressions de la
forme $x_1^{r_1}\cdots x_n^{r_n}$).  Ceci découle de la description de
la base donnée en \ref{remark-multiplicativity-of-degree} appliquée au
fait que chaque $k(x_1,\ldots,x_i)$ a une base sur
$k(x_1,\ldots,x_{i-1})$ formée des puissances de $x_i$ (jusqu'au degré
de celui-ci exclu).

(2) Une extension $k\subseteq K$ est finie si et seulement si elle est
à la fois algébrique et de type fini.  (Le sens « si » résulte de
l'affirmation (1) ; pour le sens « seulement si », remarquer que pour
tout $x\in K$, l'extension $k\subseteq k(x)$ est finie donc
algébrique, et qu'une base de $K$ comme $k$-espace vectoriel engendre
certainement $K$ comme extension de corps de $k$.)

(3) Une extension de corps engendrée par une famille quelconque
d'éléments algébriques est algébrique (en effet, si $K = k(x_i)_{i\in
  I}$ et $y \in K$, alors, cf. \ref{subfield-generated-is-quotients},
$y$ appartient à $k(x_i)_{i\in J}$ pour une sous-famille finie des
$x_i$, et d'après le (1), cette extension est finie sur $k$ donc
$k(y)$ l'est, c'est-à-dire que $y$ est algébrique sur $k$).
Concrètement, donc, les sommes, différences, produits et inverses de
quantités algébriques sur $k$ sont algébriques sur $k$.

(4) Si $k\subseteq K$ et $K\subseteq L$ sont algébriques alors
$k\subseteq L$ l'est (en effet, si $y \in L$, et si $x_1,\ldots,x_n
\in K$ sont les coefficients du polynôme minimal de $y$ sur $K$, alors
$y$ est algébrique sur $k(x_1,\ldots,x_n)$, qui est une extension
finie de $k$ d'après (1), donc $k(x_1,\ldots,x_n,y)$ est une extension
finie de $k(x_1,\ldots,x_n)$ donc de $k$, donc $k(y)$ est une
extension finie de $k$, donc $y$ est algébrique sur $k$).

\thingy\label{relative-algebraic-closure} L'observation (3) ci-dessus
entraîne que si $k\subseteq K$ est une extension de corps, l'extension
de $k$ engendrée par tous les éléments de $K$ algébriques sur $k$ est
tout simplement l'\emph{ensemble} de tous les éléments de $K$
algébriques sur $k$, c'est-à-dire que cet ensemble est un corps, qui
est manifestement la plus grande extension intermédiaire algébrique
sur $k$ : on l'appelle la \textbf{fermeture algébrique} de $k$
dans $K$ (la précision « dans $K$ » est importante).

Si c'est précisément $k$, on dit que $k$ est \textbf{algébriquement
  fermé} dans $K$ : autrement dit, cela signifie que tout élément
de $K$ est soit transcendant sur $k$ soit élément de $k$ (=algébrique
de degré $1$).  Un corps algébriquement clos est algébriquement fermé
dans toute extension, mais un corps peut être algébriquement fermé
dans une extension sans pour autant être algébriquement clos (par
exemple $\mathbb{Q}$ dans le corps $\mathbb{Q}(t)$ des fractions
rationnelles).

D'après (4) ci-dessus, la fermeture algébrique de $k$ dans $K$ est
algébriquement fermée dans $K$.

\thingy\label{upgrade-algebraic-with-indeterminates} On peut aussi
remarquer le fait suivant : si $K$ est algébrique au-dessus de $k$,
alors $K(t_1,\ldots,t_n)$ où les $t_i$ sont des indéterminées (ou, de
façon équivalente, des éléments algébriquement indépendants sur $K$
d'un corps plus gros,
cf. \ref{remark-indeterminates-versus-transcendentals}) est algébrique
sur $k(t_1,\ldots,t_n)$.  (En effet, $K(t_1,\ldots,t_n)$ est engendré
sur $k(t_1,\ldots,t_n)$ par tous les éléments de $K$, qui sont
algébriques sur $k$, donc certainement aussi sur $k(t_1,\ldots,t_n)$,
et on applique \ref{basic-facts-algebraic-extensions}(3).)


\subsection{Extensions linéairement disjointes}

\begin{defn}\label{definition-linear-disjointness}
Si $k \subseteq K$ et $k \subseteq L$ sont deux extensions contenues
dans une même troisième $M$, on dit qu'elles sont \textbf{linéairement
  disjointes} lorsque toute famille d'éléments de $K$ linéairement
indépendante sur $k$ est encore linéairement indépendante sur $L$
quand on la voit comme une famille d'éléments de $M$.  (Il suffit,
bien sûr, de le tester pour des familles \emph{finies}.)
\end{defn}

La définition de cette relation n'est pas symétrique.  Elle l'est
cependant :
\begin{prop}
La propriété pour deux extensions contenues dans une même troisième
d'être linéairement disjointes est symétrique.
\end{prop}
\begin{proof}
Supposons $k \subseteq K$ et $k \subseteq L$ linéairement disjointes
comme on vient de le définir : on veut inverser le rôle de $L$ et $K$.
Soient $y_1,\ldots,y_n$ des éléments de $L$ linéairement indépendants
sur $k$.  Supposons que pour certains $x_1,\ldots,x_n$ de $K$ non tous
nuls, on ait $x_1 y_1 + \cdots + x_n y_n = 0$ dans $M$.  Quitte à
réordonner les $x_i$, on peut supposer que $x_1,\ldots,x_r$ sont
linéairement indépendants sur $k$ (avec $r\geq 1$) et que
$x_{r+1},\ldots,x_n$ en sont des combinaisons $k$-linéaires, disons
$x_i = \sum_{j=1}^r c_{i,j} x_j$ pour $i>r$ avec $c_{i,j} \in k$.  La
relation $\sum_{i=1}^n x_i y_i = 0$ devient donc $\sum_{i=1}^r x_i y_i
+ \sum_{i=r+1}^n \sum_{j=1}^r c_{i,j} x_j y_i = 0$, soit, en
regroupant : $\sum_{j=1}^r \big(y_j + \sum_{i=r+1}^n c_{i,j} y_i\big)
x_j = 0$.  Par indépendance linéaire des $x_i$ sur $k$ donc sur $L$,
on a $y_j + \sum_{i=r+1}^n c_{i,j} y_i = 0$ pour chaque $j\leq r$, ce
qui contredit l'indépendance linéaire des $y_i$ sur $L$.
\end{proof}

\begin{prop}\label{linear-disjointness-with-basis}
Soient $k \subseteq K$ et $k \subseteq L$ deux extensions contenues
dans une même troisième $M$, et soit $(v_j)$ une base de $K$ comme
$k$-espace vectoriel.  Alors $K$ et $L$ sont linéairement disjointes
si et seulement si $(v_i)$ est encore linéairement indépendante sur
$L$ quand on la voit comme une famille d'éléments de $M$.
\end{prop}
\begin{proof}
La nécessité (« seulement si ») fait partie de la définition des
extensions linéairement disjointes appliquée à la base $(v_i)$.
Montrons la suffisance.  Pour cela, soit $x_1,\ldots,x_n$ des éléments
de $K$ linéairement indépendants sur $k$, et soient $v_1,\ldots,v_m$
les éléments de la base qui interviennent dans l'écriture des $x_j$.
On peut écrire $x_j = \sum_{i=1}^m c_{i,j} v_j$ avec $c_{i,j} \in k$.
Le fait que les $x_j$ soient linéairement indépendants signifie
exactement que la matrice des $c_{i,j}$ a rang $n$.  Mais \emph{le
  rang d'une matrice ne dépend pas du corps sur lequel on la
  considère}, si bien qu'elle a aussi rang $n$ quand on la voit comme
une matrice à coefficients dans $L$ : comme par hypothèse les
$v_1,\ldots,v_m$ vus comme des éléments de $M$ sont linéairement
indépendants sur $L$, ceci implique que les $x_j = \sum_{i=1}^m
c_{i,j} v_j$ vus comme des éléments de $M$ sont eux aussi linéairement
indépendants sur $L$.  On a donc bien prouvé que $K$ et $L$ sont
linéairement disjointes.
\end{proof}

\thingy\label{definition-compositum} Lorsque $k \subseteq K$ et $k
\subseteq L$ sont deux extensions contenues dans une même
troisième $M$, on appelle \textbf{composé} des corps $K$ et $L$ le
sous-corps de $M$ engendré par $K$ et $L$, autrement dit $k(K \cup L)
= K(L) = L(K)$, et on le note $K.L$.

\danger Il faut prendre garde au fait que l'extension composée n'a de
sens que si les deux extensions sont contenues dans une même troisième
(en changeant les plongements de $K$ et $L$ dans $M$ on peut changer
$K.L$ en un corps non isomorphe).

\begin{prop}\label{compositum-generated-by-products}
Si $k \subseteq K$ est une extension algébrique et $k \subseteq L$ une
extension quelconque, toutes les deux contenues dans une même
extension $M$, alors l'extension composée $K.L$ est le sous-$k$-espace
vectoriel de $M$ engendré par les produits $xy$ avec $x\in K$ et $y\in
L$.
\end{prop}
\begin{proof}
Soit $V$ le sous-$k$-espace vectoriel de $M$ engendré par les produits
$xy$ avec $x\in K$ et $y\in L$, autrement dit l'ensemble des $\sum_i
x_i y_i$ (sommes finies) avec $x_i \in K$ et $y_i \in L$ (les
coefficients dans $k$ peuvent s'absorber dans les $x_i$ ou les $y_i$).
Il est trivial que $V \subseteq K.L$, et pour prouver l'inclusion
contraire il suffit de montrer que $V$ est bien un corps.  En
développant les produits $(\sum_i x_i y_i)(\sum x'_j y'_j) =
\sum_{i,j} (x_i x'_j)(y_i y'_j)$ on voit que $V$ est stable par
produit : c'est donc une algèbre sur $k$ ou $K$ ou $L$ comme on
préfère.  Comme $V$ est un sous-anneau de $M$, qui est un corps, il
s'agit d'un anneau intègre.

Dans le cas où $[K:k] < \infty$, le $L$-espace vectoriel $V$ est
également de dimension finie, car une famille
génératrice $(v_j)$ de $K$ comme $k$-espace vectoriel est encore
génératrice de $V$ comme $L$-espace vectoriel (en effet, si tout
élément de $K$ peut s'écrire $\sum_j c_j v_j$ pour certains $c_i \in
k$, alors tout élément de $V$ peut s'écrire $\sum_i (\sum_j c_{i,j}
v_j) y_i = \sum_j (\sum_i c_{i,j} y_i) v_j$), et
d'après \ref{finite-integral-algebra-is-a-field} on en déduit que $V$
est un corps.  On a donc obtenu le résultat annoncé pour le cas
où $[K:k] < \infty$.

En général, si $z \in V$ n'est pas nul, on peut écrire $z = \sum_i x_i
y_i$ pour certains $x_i \in K$ et $y_i \in L$.  Soit $K_0$ l'extension
de $k$ engendrée par les $x_i$ : l'hypothèse selon laquelle $K$ est
algébrique entraîne que $[K_0:k] < \infty$
(cf. \ref{basic-facts-algebraic-extensions}(1)), et on a $z \in
K_0.L$.  D'après le cas précédemment traité, tout élément de $K_0.L$,
et en particulier $z^{-1}$, appartient au sous-$k$-espace vectoriel
$V_0$ de $M$ engendré par les produits $xy$ avec $x\in K_0$ et $y\in
L$, et on a bien sûr $V_0 \subseteq V$.  Donc $z^{-1} \in V$ et $V$
est bien un corps.
\end{proof}

\begin{prop}\label{base-of-compositum}
Si $k \subseteq K$ et $k \subseteq L$ sont deux extensions
linéairement disjointes contenues dans une même troisième, et si l'une
des deux est algébrique, alors toute base de $K$ sur $k$ est encore
une base de $K.L$ sur $L$.
\end{prop}
\begin{proof}
Soit $(v_j)$ une base de $K$ comme $k$-espace vectoriel.  D'après la
définition de la relation d'être linéairement disjointes, les $(v_j)$
vus dans $K.L$ sont linéairement indépendants sur $L$.  Mais d'après
la proposition \ref{compositum-generated-by-products}, tout élément de
$K.L$ peut s'écrire sous la forme d'une somme finie $\sum_i x_i y_i$
pour des $x_i \in K$ et $y_i \in L$, et on peut réécrire $x_i = \sum
c_{i,j} v_j$ donc $\sum_i x_i y_i = \sum_i (\sum_j c_{i,j} v_j) y_i =
\sum_j (\sum_i c_{i,j} y_i) v_j$ appartient au $L$-espace vectoriel
engendré dans $K.L$ par les $(v_j)$, c'est-à-dire que ceux-ci sont
générateurs, et finalement sont une base de $K.L$.
\end{proof}

\thingy\label{linear-disjointness-and-degrees} En particulier, dans
les conditions de la proposition ci-dessus, on a $[K.L : L] = [K :
  k]$, et d'après \ref{remark-multiplicativity-of-degree} on a aussi
$[K.L : k] = [K : k] \cdot [L : k]$.

Réciproquement, si pour pour deux extensions $k \subseteq K$ et $k
\subseteq L$ contenues dans une même troisième on a l'égalité $[K.L :
  L] = [K : k]$ \emph{finie} (notons que si à la fois $k \subseteq K$
et $k \subseteq L$ sont finines, il revient au même de supposer $[K.L
  : k] = [K : k] \cdot [L : k]$), on peut considérer une base
(finie !)  de $K$ comme $k$-espace vectoriel, qui,
d'après \ref{compositum-generated-by-products}, engendre $K.L$ comme
$L$-espace vectoriel, donc en est une base puisqu'elle a la bonne
taille : d'après \ref{linear-disjointness-with-basis}, ceci assure que
$K$ et $L$ sont linéairement disjointes.

\begin{prop}\label{linear-disjointness-of-algebraic-and-transcendental}
Soit $k \subseteq K$ une extension de corps, et $t_1,\ldots,t_n$ des
indéterminées.  Alors les extension $k\subseteq K$ et $k\subseteq
k(t_1,\ldots,t_n)$ sont linéairement disjointes dans
$K(t_1,\ldots,t_n)$, i.e., toute famille $k$-linéairement
indépendante de $K$ est encore linéairement indépendante sur
$k(t_1,\ldots,t_n)$ (dans $K(t_1,\ldots,t_n)$).  Si de plus $K$ est
algébrique sur $k$, alors toute base de $K$ comme $k$-espace
vecotriel est une base de $K(t_1,\ldots,t_n)$ comme
$k(t_1,\ldots,t_n)$-espace vectoriel.
\end{prop}
\begin{proof}
Soit $(u_j)_{j\in J}$ une famille $k$-linéairement indépendante de
$K$ : montrons qu'ils sont linéairement indépendants sur
$k(t_1,\ldots,t_n)$.  Si on a une relation de dépendance linéaire non
triviale $\sum_{j\in J} c_j u_j = 0$ dans $K(t_1,\ldots,t_n)$ avec
les $c_j$ dans $k(t_1,\ldots,t_n)$ tous nuls sauf un nombre fini, les
$c_j$ sont des fractions rationnelles ; cette même relation est
valable si on multiplie les $c_j$ par un dénominateur commun, si bien
qu'on peut supposer que les $c_j$ sont des polynômes en
$t_1,\ldots,t_n$ ; quitte à diviser autant de fois que nécessaire par
chaque $t_i$ qui divise tous les $c_j$, on peut supposer que le $c_j$
ne s'annulent pas tous à l'origine (i.e., quand on remplace tous les
$t_i$ par $0$) : mais alors, en les évaluant à l'origine (i.e., en
remplaçant tous les $t_i$ par $0$), on obtient une relation de
dépendance linéaire non-triviale sur $k$, qui est censée ne pas
exister.  Ceci montre la première affirmation.  La seconde découle
de \ref{base-of-compositum}.
\end{proof}


\subsection{Bases et degré de transcendance}

\begin{defn}
Si $k\subseteq K$ est une extension de corps, une famille finie
$x_1,\ldots,x_n$ d'éléments de $K$ est dite \textbf{algébriquement
  indépendante} (il serait plus logique de dire « collectivement
  transcendante ») sur $k$ lorsque le seul polynôme $P \in
k[t_1,\ldots,t_n]$ à coefficients dans $k$ et tel que
$P(x_1,\ldots,x_n) = 0$ (relation de « dépendance algébrique » sur $k$
entre les $x_i$) est le polynôme nul ; autrement dit, lorsque le
morphisme « d'évaluation » $k[t_1,\ldots,t_n] \to K$ (avec
$k[t_1,\ldots,t_n]$ l'anneau des polynômes en $n$ indéterminées)
envoyant $P$ sur $P(x_1,\ldots,x_n)$ est injectif.  En particulier,
chacun des $x_i$ est transcendant sur $k$ ; et un unique élément $x$
de $K$ est algébriquement indépendant sur $k$ si et seulement si il
est transcendant sur $k$.

On dit d'une famille infinie $(x_i)_{i\in I}$ d'éléments de $K$
qu'elle est algébriquement indépendante sur $k$ lorsque toute
sous-famille finie d'entre eux l'est (i.e., il n'existe pas de
relation de dépendance algébrique entre les $x_i$, c'est-à-dire entre
un nombre fini d'entre eux).

Une famille $(x_i)_{i\in I}$ d'éléments de $K$ est appelée
\textbf{base de transcendance} de $K$ sur $k$ lorsqu'elle est
algébriquement indépendante sur $k$ et que $K$ est algébrique
au-dessus de l'extension $k(x_i)_{i\in I}$ de $k$ engendrée par
les $x_i$.
\end{defn}

\thingy\label{remark-indeterminates-versus-transcendentals} Il est trivialement le cas que $t_1,\ldots,t_n$ sont
algébriquement indépendants si $t_1,\ldots,t_n$ sont des
indéterminées, c'est-à-dire, si $k(t_1,\ldots,t_n)$ est le corps des
fractions rationnelles en $n$ indéterminées.  Réciproquement, si
$x_1,\ldots,x_n$ sont algébriquement indépendants, alors
$k(x_1,\ldots,x_n)$ s'identifie au corps des fractions rationnelles en
$n$ indéterminées comme dans le cas $n=1$ déjà vu
en \ref{monogeneous-extensions-dichotomy} ci-dessus (en envoyant
$P/Q$, avec $P,Q\in k[t_1,\ldots,t_n]$ et $Q\neq 0$, sur
$P(x_1,\ldots,x_n)/Q(x_1,\ldots,x_n)$).

(On peut encore dire la même chose pour un nombre infini de $x_i$, à
condition de définir le corps des fractions rationnelles en un nombre
infini d'indéterminées, comme « réunion », techniquement la limite
inductive, des corps de fractions rationnelles sur une sous-famille
finie quelconque d'entre elles.)

\thingy Lorsque les $(x_i)_{i\in I}$ sont algébriquement indépendants,
on dit aussi que l'extension $k \subseteq k(x_i)_{i\in I}$ est
\textbf{transcendante pure} : autrement dit, une extension
transcendante pure est un corps de fractions rationnelles en un nombre
quelconque (peut-être infini, cf. ci-dessus) de variables.

La question de déterminer si une extension de corps est transcendante
pure peut être extrêmement difficile ; à titre d'exemple, le corps
$\mathbb{R}(x,y : x^2+y^2-1)$ des fractions de
$\mathbb{R}[x,y]/(x^2+y^2-1)$ est une extension transcendante pure de
$\mathbb{R}$, car il est en fait isomorphe à $\mathbb{R}(t)$ où $t =
\frac{y}{x+1}$ (de réciproque $x = \frac{1-t^2}{1+t^2}$ et $y =
\frac{2t}{1+t^2}$) : on reviendra sur cet exemple.

Certains auteurs disent parfois par abus de langage (ces notes
tâcheront de l'éviter) que $k \subseteq k(x_1,\ldots,x_n)$ est
transcendante pure pour dire en fait que les $x_1,\ldots,x_n$ sont
algébriquement indépendants.  L'exemple ci-dessus montre que c'est
abusif ; cependant, on verra que ce ne l'est plus si on sait que le
degré de transcendance est bien $n$.

Si $(x_i)_{i\in I}$ est une base de transcendance de $K$ sur $k$,
celle-ci « décompose » l'extension $k \subseteq K$ en deux :
l'extension $k \subseteq k(x_i)_{i\in I}$ est transcendante pure, et
l'extension $k(x_i)_{i\in I} \subseteq K$ est algébrique.

\begin{prop}\label{transcendence-basis-facts}
Soit $k \subseteq K$ une extension de corps.

(1a) Toute famille algébriquement indépendante sur $k$ d'éléments
de $K$ se complète en une base de transcendance de $K$ sur $k$.  (Ceci
s'applique notamment à la famille vide, donc il existe toujours une
base de transcendance de $K$ sur $k$.)  (1b) De toute famille qui
engendre $K$ en tant qu'extension de corps de $k$, ou même qui
engendre un corps intermédiaire $E$ au-dessus duquel $K$ est
algébrique, on peut extraire une base de transcendance.

(2) \textit{Lemme d'échange :} Si $z_1,\ldots,z_n$ est une base de
transcendance finie de $K$ sur $k$ et $t$ un élément de $K$ tel que
$z_1,\ldots,z_\ell,t$ soient algébriquement indépendants sur $k$ (pour
un certain $\ell$, qui peut être $0$), alors il existe $j$ entre
$\ell+1$ et $n$ tel qu'en remplaçant $z_j$ par $t$ dans la base de
transcendance $z_1,\ldots,z_n$ on obtienne encore une base de
transcendance.

(3) Deux bases de transcendance de $K$ sur $k$ ont toujours le même
cardinal.
\end{prop}
\begin{proof}
(1a) Le principe de maximalité de
  Hausdorff (\ref{hausdorff-maximal-principle}, appliqué à l'ensemble
  $\mathscr{F}$ des familles algébriquement indépendantes sur $k$)
  montre que toute famille algébriquement indépendante est contenue
  dans une famille algébriquement indépendante maximale.  Montrons
  qu'une telle famille est une base de transcendance : si $(x_i)_{i\in
    I}$ est une famille algébriquement indépendante maximale, on veut
  donc prouver que $K$ est algébrique sur $k(x_i)_{i\in I}$ ; pour
  cela, soit $t \in K$, on veut montrer qu'il n'est pas transcendant
  sur $k(x_i)_{i\in I}$.  Mais s'il l'est, on observe que la famille
  obtenue en rajoutant $t$ à la famille $(x_i)_{i \in I}$ est encore
  algébriquement indépendante : en effet, si on avait un polynôme
  $P(t,x_{i_1},\ldots,x_{i_n})$ qui l'annulât, en considérant $P$
  comme polynôme de la seule variable $t$ (dont il dépend
  effectivement, sinon il donnerait une relation de dépendance
  algébrique sur $k$ entre les $x_i$, chose qui n'existe pas) on
  contredirait la transcendance de $t$ sur $k(x_i)_{i\in I}$.  Par
  maximalité de $(x_i)_{i\in I}$, ceci ne peut pas se produire : donc
  $K$ est bien algébrique sur $k(x_i)_{i\in I}$ et $(x_i)_{i\in I}$
  est une base de transcendance.

(1b) Soit maintenant $(x_i)_{i\in J}$ une famille génératrice (i.e.,
  $K = k(x_i)_{i \in J}$) ou telle que $K$ soit algébrique sur $E =
  k(x_i)_{i \in J}$ : soit $I$ une partie maximale de $J$ telle que
  $(x_i)_{i\in I}$ soit algébriquement indépendante (de nouveau on
  utilise le principe de maximalité), et on va montrer qu'il s'agit
  d'une base de transcendance.  Si ce n'est pas le cas, l'extension
  $K$ de $k(x_i)_{i\in I}$ n'est pas algébrique, donc
  (cf. \ref{basic-facts-algebraic-extensions}(3)) elle ne peut pas
  être engendrée uniquement par des éléments algébriques, autrement
  dit il existe $j\in J$ (et évidemment $j\not\in I$) tel que $x_j$
  soit transcendant sur $k(x_i)_{i\in I}$, et par ce qu'on vient
  d'expliquer la famille obtenue en rajoutant $j$ à $I$ contredit la
  maximalité de $I$.

(2) Soit $z_1,\ldots,z_n$ une base de transcendance (finie) et $t \in
  K$ tel que $z_1,\ldots,z_\ell,t$ soient algébriquement indépendants.
  Puisque $t \in K$ est algébrique sur $k(z_1,\ldots,z_n)$, on peut
  trouver une relation de dépendance algébrique $P(t,z_1,\ldots,z_n) =
  0$ ; comme $z_1,\ldots,z_\ell,t$ sont algébriquement indépendants
  par hypothèse, le polynôme $P$ ne peut pas dépendre que de ces
  variables, donc il doit faire intervenir $z_j$ pour un certain $j$
  entre $\ell+1$ et $n$.  Soit $z'_i$ défini par $z'_i = z_i$ si
  $i\neq j$ et $z'_j = t$.  La relation $P(t,z_1,\ldots,z_n) = 0$, ou,
  quitte à échanger deux variables, $\hat P(z_j,z'_1,\ldots,z'_n) =
  0$, se lit aussi comme affirmant que $z_j$ est algébrique sur
  $k(z'_1,\ldots,z'_n)$ : il s'ensuit que $K$ est algébrique sur
  $k(z'_1,\ldots,z'_n)$ (puisqu'il est algébrique sur
  $k(z_1,\ldots,z_n)$ et qu'on vient de voir que ce dernier est
  algébrique sur $k(z'_1,\ldots,z'_n)$,
  cf. \ref{basic-facts-algebraic-extensions} (3) et (4)).  D'autre
  part, les $z'_i$ sont algébriquement indépendants : car s'ils ne
  l'étaient pas, comme les $z_1,\ldots,z_n$ le sont, une relation
  $Q(z'_1,\ldots,z'_n)=0$ ferait intervenir $z'_j = t$, c'est-à-dire
  que $t$ serait algébrique sur les autres $z'_i$, donc $z_j$ serait
  algébrique sur les $z'_i = z_i$ pour $i \neq j$ (vu qu'on sait déjà
  qu'il est algébrique sur tous les $z'_i$), or par hypothèse ce n'est
  pas le cas.  On a bien prouvé que les $z'_i$ forment une base de
  transcendance de $K$ sur $k$.

(3) Tout d'abord, s'il existe une base de transcendance finie
  $z_1,\ldots,z_n$, alors toute famille algébriquement indépendante
  $x_1,\ldots,x_{n'}$ vérifie $n' \leq n$.  En effet, si $n'>n$, le
  lemme d'échange permet de remplacer un des $z_i$, mettons $z_1$, par
  $x_1$, puis un des $z_i$ autre que $z_1$, mettons $z_2$, par $x_2$,
  et ainsi de suite, toujours en obtenant des bases de transcendance.
  Finalement, on voit que $x_1,\ldots,x_n$ est une base de
  transcendance, contredisant le fait supposé que les $x_i$ pour
  $n<i\leq n'$ sont encore transcendants dessus.  (Ici, on a supposé
  la famille $x_1,\ldots,x_{n'}$ finie, mais de façon générale on voit
  que toute sous-famille finie d'une famille algébriquement
  indépendante doit avoir au plus $n$ éléments donc toute famille
  algébriquement indépendante est finie.)

Enfin, si on a une base de transcendance infinie $(x_i)_{i\in I}$,
d'après ce qu'on vient de voir, toute autre base de transcendance
$(y_j)_{j\in J}$ est également infinie ; par ailleurs, tout élément
$y_j$ de $K$ est algébrique sur le sous-corps engendré par une
sous-famille \emph{finie} des $x_i$, donc on a une application de $J$
vers les parties finies de $I$ telle que l'image réciproque d'une
partie finie donnée de $I$ soit finie, et ceci prouve bien que $I$ et
$J$ ont même cardinal (en utilisant le fait que, pour $I$ infini, $I$
est équipotent à l'ensemble de ses parties finies).
\end{proof}

\begin{defn}
Si $k \subseteq K$ est une extension de corps, le cardinal d'une base
de transcendance de $K$ sur $k$ (dont on vient de montrer qu'il ne
dépend pas du choix de celle-ci) s'appelle \textbf{degré de
  transcendance} de $K$ sur $k$ et se note $\degtrans_k(K)$.
\end{defn}

On remarquera que le degré de transcendance vaut $0$ si et seulement
si l'extension est algébrique.

\begin{prop}\label{additivity-transcendence-degree}
Si $k \subseteq K \subseteq L$ est une tour d'extensions, alors
$\degtrans_k(L) = \degtrans_k(K) + \degtrans_K(L)$.
\end{prop}
\begin{proof}
Si $(x_i)_{i\in I}$ est une base de transcendance de $K$ sur $k$ et
$(y_j)_{j\in J}$ de $L$ sur $K$, alors leur réunion (évidemment
disjointe !) est une base de transcendance de $L$ sur $k$ : en effet,
d'une part, une relation de dépendance algébrique sur $k$ entre les
$x_i$ et les $y_j$ est \textit{a fortiori} une relation de dépendance
algébrique sur $K$ entre les $y_j$, qui n'existe pas, c'est-à-dire
plus exactement qui ne peut pas faire intervenir les $y_j$, donc est
une relation de dépendance algébrique sur $k$ entre les $x_i$, qui
n'existe pas non plus, c'est-à-dire plus exactement qu'elle est nulle,
et ceci montre que la réunion considérée est algébriquement
indépendante ; d'autre part, $L$ est algébrique sur $K(y_j)$, qui est
lui-même algébrique sur $k(x_i)_{i\in I}(y_j)_{j\in J}$ car $K$ l'est
sur $k(x_i)_{i\in I}$
(cf. \ref{upgrade-algebraic-with-indeterminates}), donc $L$ est
algébrique sur $k(x_i,y_j)$
(cf. \ref{basic-facts-algebraic-extensions}(4)).
\end{proof}

\begin{prop}\label{push-of-transcendentals}
Soit $k \subseteq k' \subseteq K$ est une tour d'extensions avec $k'$
algébrique sur $k$ : alors si $(x_i)_{i\in I}$ est une famille
d'éléments de $K$ algébriquement indépendants sur $k$, ils le sont
encore sur $k'$.  De plus, dans ces conditions, toute base de $k'$
comme $k$-espace vectoriel est encore une base de $k'(x_i)_{i\in I}$
sur $k(x_i)_{i\in I}$, et notamment, $[k'(x_i)_{i\in I} : k(x_i)_{i\in
    I}] = [k':k]$.
\end{prop}
\begin{proof}
Montrons la première affirmation.  D'après la définition de
l'indépendance algébrique d'une famille infinie, il suffit de la
prouver pour un nombre fini $x_1,\ldots,x_n$ d'éléments.

D'après \ref{transcendence-basis-facts}(1b), on peut extraire
de $x_1,\ldots,x_n$ une base de transcendance de $k'(x_1,\ldots,x_n)$
sur $k'$, disons $x_1,\ldots,x_r$.  Ainsi, $k'(x_1,\ldots,x_n)$ est
algébrique sur $k'(x_1,\ldots,x_r)$ ; or $k'(x_1,\ldots,x_r)$ est
algébrique sur $k(x_1,\ldots,x_r)$
(cf. \ref{upgrade-algebraic-with-indeterminates}) ; donc
$k'(x_1,\ldots,x_n)$, et en particulier $k(x_1,\ldots,x_n)$, est
algébrique sur $k(x_1,\ldots,x_r)$, ce qui n'est possible que
pour $n=r$ d'après \ref{transcendence-basis-facts}(3).  Donc
$x_1,\ldots,x_n$ sont algébriquement indépendants sur $k'$.

(Variante en utilisant \ref{additivity-transcendence-degree} : On a
$\degtrans_k k'(x_1,\ldots,x_n) = \degtrans_k k(x_1,\ldots,x_n) +
\degtrans_{k(x_1,\ldots,x_n)} k'(x_1,\ldots,x_n)$, où le premier terme
vaut $n$ par hypothèse et le second vaut $0$ de nouveau parce que
$k'(x_1,\ldots,x_n)$ est algébrique sur $k(x_1,\ldots,x_n)$
(cf. \ref{upgrade-algebraic-with-indeterminates}) : ceci montre
$\degtrans_k k'(x_1,\ldots,x_n) = n$.  Mais on a aussi $\degtrans_k
k'(x_1,\ldots,x_n) = \degtrans_k k' + \degtrans_{k'}
k'(x_1,\ldots,x_n)$, et de nouveau $\degtrans_k k' = 0$ : ceci montre
$\degtrans_{k'} k'(x_1,\ldots,x_n) = n$.  C'est donc que
$x_1,\ldots,x_n$ est une base de transcendance de $k'(x_1,\ldots,x_n)$
(d'après \ref{transcendence-basis-facts} (1b) et (3)).  En
particulier, $x_1,\ldots,x_n$ sont algébriquement indépendants
sur $k'$.)

Pour ce qui est de la dernière affirmation, elle découle
de \ref{linear-disjointness-of-algebraic-and-transcendental} (au moins
dans le cas d'un nombre fini de $x_i$ ; mais comme tout élément de
$k(x_i)_{i\in I}$ ou $k(x_i)_{i\in I}$ ne fait intervenir qu'un nombre
fini des $x_i$, le cas général se ramène au cas fini).
\end{proof}

\begin{prop}\label{subextension-of-finite-type-is-of-finite-type}
Si $k \subseteq E \subseteq L$ et si $L$ est de type fini sur $k$
(i.e., $L = k(x_1,\ldots,x_n)$ pour un nombre fini d'éléments
$x_1,\ldots,x_n$ de $L$), alors $E$ l'est aussi.
\end{prop}
\begin{proof}
On a vu $\degtrans_k(L) = \degtrans_k(E) + \degtrans_E(L)$ : cette
quantité étant finie, les deux termes de droite sont finis.  Si
$t_1,\ldots,t_r$ est une base de transcendance de $E$ sur $k$, quitte
à remplacer $k$ par $k(t_1,\ldots,t_r)$, on peut supposer $E$
algébrique sur $k$, et on veut montrer que $E$ est finie sur $k$.

Supposons maintenant $L = k(x_1,\ldots,x_n)$ avec $x_1,\ldots,x_r$ une
base de transcendance de $L$ sur $k$ (possible, quitte à renuméroter,
d'après \ref{transcendence-basis-facts}(1b)).  On a $[L :
  k(x_1,\ldots,x_r)] < \infty$ d'après
\ref{basic-facts-algebraic-extensions}(1), et en particulier
$[E(x_1,\ldots,x_r) : k(x_1,\ldots,x_r)] < \infty$.  Or
d'après \ref{push-of-transcendentals}, $[E(x_1,\ldots,x_r) :
  k(x_1,\ldots,x_r)] = [E:k]$ : on a bien $[E:k] < \infty$ comme
annoncé.
\end{proof}


\subsection{Corps de rupture, corps de décomposition, clôture algébrique}

\begin{defn}
Soit $K$ un corps et $\mu \in K[t]$ un polynôme irréductible.  On
appelle \textbf{corps de rupture} de $\mu$ sur $K$ une extension $K
\subseteq L$ telle que $\mu$ admette une racine $x$ dans $K$ pour
laquelle $L = K(x)$.  (Bien sûr, $\mu$ est alors le polynôme minimal
de $x$ sur $K$.)
\end{defn}

On a déjà introduit le terme « corps de rupture »
en \ref{monogeneous-extensions-dichotomy-bis}, mais il s'agit bien de
la même notion, plus précisément :
\begin{prop}\label{existence-uniqueness-rupture-field}
Soit $K$ un corps et $\mu \in K[t]$ un polynôme irréductible.  Alors :
(1) il existe un corps de rupture de $\mu$ sur $K$, à savoir
$K[t]/(\mu)$.  (2) Si $K \subseteq L$ est un corps de rupture de $\mu$
sur $K$ avec $L = K(x)$, et si $K \subseteq L'$ est une extension dans
laquelle $\mu$ a une racine $x'$, alors il existe un unique morphisme
de corps\footnote{On rappelle qu'un morphisme de corps est
  automatiquement injectif.} $L \to L'$ qui soit l'identité sur $K$ et
envoie $x$ sur $x'$.  (3) Si en outre $K \subseteq L'$ est aussi un
corps de rupture de $\mu$ sur $K$, le morphisme en question est un
isomorphisme ; autrement dit : si $K \subseteq L$ et $K \subseteq L'$
sont deux corps de rupture de $\mu$ sur $K$ avec $L = K(x)$ et $L' =
K(x')$, il existe un unique morphisme $L \to L'$ qui soit l'identité
sur $K$ et envoie $x$ sur $x'$, et c'est un isomorphisme ; notamment,
deux corps de rupture de $\mu$ sur $K$ sont isomorphes.
\end{prop}
\begin{proof}
L'affirmation (1) a déjà été démontrée
en \ref{monogeneous-extensions-dichotomy-bis}, en appelant $x$ la
classe de $t$ dans $K[t]/(\mu)$.  Pour ce qui est de (2), il suffit de
le prouver pour $L = K[t]/(\mu)$, or le morphisme $L \to L'$ recherché
doit provenir d'un morphisme $K[t] \to L'$ envoyant $t$ sur $x'$, ce
morphisme existe bien et est unique (il s'agit de l'évaluation
en $x'$), et il passe au quotient de façon unique (puisque $x'$ a pour
polynôme minimal $\mu$ sur $K$).  Enfin, pour ce qui est de (3), le
morphisme est un isomorphisme (i.e., est surjectif) puisque son image
est un corps contenant $K$ et $x'$ et qu'on a $L' = K(x')$.
\end{proof}

\begin{defn}
Soit $K$ un corps et $f \in K[t]$ un polynôme quelconque.  On appelle
\textbf{corps de décomposition} de $f$ sur $K$ une extension $K
\subseteq L$ telle que $f$ soit scindé (=complètement décomposé)
sur $L$, i.e., $f = c\prod_{i=1}^n (t-x_i)$ (avec $c$ le coefficient
dominant de $f$, et $x_1,\ldots,x_n$ ses racines avec multiplicité) et
que $L = K(x_1,\ldots,x_n)$.

On définit de même la notion de corps de décomposition sur $K$ d'une
famille $(f_i)$ quelconque de polynômes : il s'agit d'une extension
de $K$ dans laquelle tous les $f_i$ sont scindés, et qui est engendrée
(en tant que corps, cf. \ref{subfield-generated}) par l'ensemble de
toutes les racines de tous les $f_i$.
\end{defn}

\begin{prop}\label{existence-uniqueness-decomposition-field}
Soit $K$ un corps et $f \in K[t]$ un polynôme.  Alors : (1) Il existe
un corps de décomposition de $f$ sur $K$.  (2) Si $K \subseteq L$ est
un corps de décomposition de $f$ sur $K$, et si $K \subseteq L'$ est
une extension dans laquelle $f$ est scindé, il existe
un morphisme de corps $L \to L'$ qui soit l'identité sur $K$ ; de
plus, (2b) dans les conditions, si $f$ est irréductible, et si $x$ et
$x'$ sont une racine de $f$ dans $L$ et $L'$ respectivement, on peut
de plus choisir l'isomorphisme pour envoyer $x$ sur $x'$.  (3) Si en
outre $K \subseteq L'$ est aussi un corps de décomposition de $f$
sur $K$, tout morphisme comme en (2) est un isomorphisme ; autrement
dit : si $K \subseteq L$ et $K \subseteq L'$ sont deux corps de
décomposition de $f$ sur $K$, il existe un morphisme $L \to L'$ qui
soit l'identité sur $K$, et un tel morphisme est un isomorphisme ;
notamment, deux corps de décomposition de $f$ sur $K$ sont isomorphes.
\end{prop}
\begin{proof}
Pour montrer (1), (2) et (2b), on procède par récurrence sur le degré
de $f$.  Si $\deg f = 1$, toutes les affirmations sont triviales
($K$ lui-même est un corps de décomposition de $f$ sur $K$, et c'est
le seul).  Sinon, soit $f_1$ un facteur irréductible de $f$ sur $K$
(qui est $f$ lui-même si $f$ est irréductible) et soit $E$ le corps de
rupture de $f_1$, dans lequel $f_1$ admet une racine, disons $x_1$, et
si on cherche à prouver (2b) on prendra $x_1 = x$ : comme $x_1$ est
racine de $f$ dans $E$, on peut écrire $f = (t-x_1) f_2$ dans $E[t]$,
avec $\deg f_2 < \deg f =: n$, ce qui permet par récurrence
d'appliquer les conclusions à $f_2$.

Pour montrer (1), on utilise l'hypothèse de récurrence pour construire
un corps de décomposition $L$ de $f_2$ sur $E$ : disons $L =
E(x_2,\ldots,x_n)$ avec $x_2,\ldots,x_n$ les racines de $f_2$, et il
est clair que $f$ est scindé sur $L$ et on a $L =
K(x_1,\ldots,x_n)$, donc $L$ est un corps de décomposition de $f$
sur $K$.  Pour montrer (2) et (2b), soit $x'$ une racine de $f$
dans $L'$ : d'après \ref{existence-uniqueness-rupture-field}(2), il
existe un unique plongement de $E$ dans $L'$ envoyant $x_1$ sur $x'$ :
quitte à identifier $E$ à son image, on peut considérer qu'il s'agit
de l'identité ; comme $L$ est un corps de décomposition de $f_2$
sur $E$, par l'hypothèse de récurrence, il existe un morphisme $L \to
L'$ qui soit l'identité sur $E$, donc sur $K$, ce qui prouve (2), et
ce morphisme envoie $x_1$ sur $x'$ (on les a identifiés), ce qui
prouve aussi (2b).

Enfin, pour ce qui est de (3), le morphisme est un isomorphisme (i.e.,
est surjectif) puisque son image est un corps contenant $K$ et toutes
les racines $x'_1,\ldots,x'_n$ de $f$ dans $L'$, or on a $L =
K(x'_1,\ldots,x'_n)$.
\end{proof}

On peut obtenir l'existence et l'unicité du corps de décomposition
d'une famille finie de polynômes en appliquant le résultat ci-dessus à
leur produit (puisque visiblement, décomposer complètement
$f_1,\ldots,f_n$ revient à décomposer complètement leur produit
$f_1\cdots f_n$).  Le même résultat vaut pour un nombre possiblement
infini de polynômes :
\begin{prop}\label{existence-uniqueness-decomposition-field-infinite-family}
Soit $K$ un corps et $(f_i)$ une famille quelconque d'éléments
de $K[t]$.  Alors : (1) Il existe un corps de décomposition des $f_i$
sur $K$.  (2) Si $K \subseteq L$ est un corps de décomposition des
$f_i$ sur $K$, et si $K \subseteq L'$ est une extension dans laquelle
tous les $f_i$ sont scindés, il existe un morphisme de
corps $L \to L'$ qui soit l'identité sur $K$ ; de plus, (2b) dans les
conditions, si un des $f_i$ est irréductible, et si $x$ et $x'$ sont
une racine de $f_i$ dans $L$ et $L'$ respectivement, on peut de plus
choisir l'isomorphisme pour envoyer $x$ sur $x'$.  (3) Si en outre $K
\subseteq L'$ est aussi un corps de décomposition des $f_i$ sur $K$,
tout morphisme comme en (2) est un isomorphisme ; autrement dit : si
$K \subseteq L$ et $K \subseteq L'$ sont deux corps de décomposition
des $f_i$ sur $K$, il existe un morphisme $L \to L'$ qui soit
l'identité sur $K$, et un tel morphisme est un isomorphisme ;
notamment, deux corps de décomposition des $f_i$ sur $K$ sont
isomorphes.
\end{prop}
\begin{proof}[Esquisse de démonstration]
Le (1) se montre comme
\ref{existence-uniqueness-decomposition-field}(1) avec un argument de
passage à l'infini : pour chaque polynôme $f_i \in K[t]$, on construit
un corps de décomposition de ce polynôme au-dessus de tous les coprs
de décomposition précédemment obtenus, et tous ces corps sont
algébriques d'après \ref{basic-facts-algebraic-extensions} (3) et (4).
Le (2) et (2b) se montrent comme
\ref{existence-uniqueness-decomposition-field}(2), de nouveau en
passant à l'infini : quitte à supposer que $L$ a été construit comme
on vient de l'indiquer, pour chaque polynôme $f_i \in K[t]$, on
construit un morphisme entre le corps de décomposition de ce polynôme
au-dessus de tous les précédents, et un sous-corps de $L'$, jusqu'à
obtenir un morphisme de $L$ dans $L'$.  Pour le (3), il s'agit de
nouveau d'observer que si $L'$ est engendré par toutes les racines de
tous les $f_i$, comme elles sont dans l'image du morphisme, le
morphisme est surjectif..
\end{proof}

L'intérêt principal de la proposition qu'on vient de démontrer est de
montrer l'existence et l'unicité de la clôture algébrique :

\begin{defn}\label{definition-algebraic-closure}
Soit $K$ un corps.  On appelle \textbf{clôture algébrique} de $K$ une
extension $K \subseteq L$ algébrique telle que tout polynôme de $K[t]$
soit scindés sur $L$.
\end{defn}

De toute évidence, un corps est algébriquement clos si et seulement si
il est égal à sa propre clôture algébrique.  Remarquons également
qu'une cloture algébrique de $K$ est exactement la même chose qu'un
corps de décomposition de \emph{tous} les polynômes à coefficients
dans $K$.

\begin{prop}[théorème de Steinitz]
Soit $K$ un corps quelconque.  Alors il existe une clôture algébrique
de $K$, et de plus, si $L$ et $L'$ sont deux clôtures algébriques
de $K$, il existe un isomorphisme entre elles qui soit l'identité
sur $K$.  Enfin, une clôture algébrique de $K$ est algébriquement
close.
\end{prop}
\begin{proof}
L'existence et l'unicité résultent de la
proposition \ref{existence-uniqueness-decomposition-field-infinite-family}
appliquée à la famille de tous les polynômes à coefficients dans $K$.

Enfin, si $M$ est une clôture algébrique de $L$, qui est lui-même une
clôture algébrique de $K$, on voit que $M$ est algébrique sur $K$
d'après \ref{basic-facts-algebraic-extensions}(4), donc tout élément
de $M$ est racine d'un polynôme à coefficients dans $K$, donc il est
déjà dans $L$, et en fait $L = M$, ce qui montre que $L$ est
algébriquement clos.
\end{proof}


\subsection{Éléments et extensions algébriques séparables}

\thingy On rappelle que la \textbf{caractéristique} d'un corps $k$ est
le générateur positif de l'idéal noyau de l'unique morphisme d'anneux
$\mathbb{Z} \to k$ : plus concrètement, c'est le plus petit entier $p$
tel que $p = 0$ dans $k$ (au sens où $1 + 1 + \cdots + 1 = 0$ avec $p$
termes dans la somme), ou bien $0$ si un tel entier n'existe pas :
c'est soit $0$ soit un nombre premier (positif).

Si $k$ est de caractéristique $p>0$, alors l'application
$\Frob_p\colon k \to k$ définie par $x \mapsto x^p$, ou
\textbf{Frobenius} d'exposant $p$, est un morphisme de corps, i.e., on
a $(x+y)^p = x^p + y^p$ et $(xy)^p = x^p y^p$ ; en particulier, il est
injectif.  On notera $k^p$ l'image de ce morphisme
(cf. \ref{definition-perfect-field}), qui est donc un sous-corps
de $k$.  Par exemple, $k^p[t]$ désigne l'anneau des polynômes dont les
coefficients sont des puissances $p$-ièmes.

L'application $x \mapsto x^{p^e}$ est l'itérée $e$-ième du Frobenius
et peut se noter indifféremment $\Frob_{p^e}$ ou $\Frob_p^e$.  Son
image se note bien sûr $k^{p^e}$.

\thingy Si $k$ est un corps, et $f \in k[t]$ un polynôme en une
indéterminée sur $k$, on dit que $f$ est \textbf{séparable} lorsque
$f$ est premier avec sa dérivée $f'$ : ceci revient à dire que les
racines de $f$ sont simples (=sans multiplicité) dans une extension où
$f$ est scindé (cf. \ref{existence-uniqueness-decomposition-field}).
Lorsque $f$ est de plus irréductible (sur $k$), dire qu'il est
séparable signifie simplement que $f' \neq 0$ (puisque $f'$ ne peut
diviser $f$ qu'en étant nulle).

Si $k$ est de caractéristique $0$, tout polynôme irréductible est
séparable.  Si $k$ est de caractéristique $p>0$, tout polynôme $f \in
k[t]$ s'écrit de façon unique sous la forme $f(t) = f_0(t^{p^e})$ pour
un certain $e \in \mathbb{N}$ et où $f_0' \neq 0$ (en effet, un
polynôme de dérivée nulle n'a que des termes d'exposant multiple
de $p$, et on itère) ; avec une telle écriture, si $f$ est séparable
alors $e = 0$, et si $f$ est irréductible alors $f_0$ l'est aussi.

\thingy\label{raising-polynomial-to-the-power-p} Le fait facile
suivant reviendra très souvent : si $g \in k[t]$ où $k$ est de
caractéristique $p$, alors $g(t)^p = g^{\Frob}(t^p)$ où $g^{\Frob}$
désigne le polynôme obtenu en élevant chaque coefficient de $g$ à la
puissance $p$ (c'est donc un élément de $k^p[t]$).  En effet, si on
appelle $c_n$ le coefficient devant $t^n$ dans $g$, on a $(c_n t^n)^p
= (c_n)^p (t^n)^p$.

On a bien sûr de même $g(t)^{p^e} = g^{\Frob^e}(t^{p^e})$ où
$g^{\Frob^e} \in k^{p^e}[t]$ désigne le polynôme obtenu en élevant
chaque coefficient de $g$ à la puissance $p^e$.

\begin{lem}\label{power-in-kp-lemma}
Soit $k$ un corps de caractéristique $p>0$, et soit $h \in k[t]$ un
polynôme tel que $h^i \in k^p[t]$ pour un certain $1\leq i < p$.
Alors $h \in k^p[t]$.
\end{lem}
\begin{proof}
Comme $i$ est premier avec $p$, on peut trouver une relation de Bézout
$ui = 1 + vp$ avec $u,v\in\mathbb{N}$.  On a alors $(h^i)^u = h\cdot
(h^p)^v$ avec $h^i \in k^p[t]$ par hypothèse et $h^p \in k^p[t]$
d'après \ref{raising-polynomial-to-the-power-p}.  On a donc $h \in
k^p(t)$ (comme quotient de $(h^i)^u$ par $(h^p)^v$), et $h \in k[t]$,
et il suffit d'appliquer la remarque (triviale mais importante) que si
$k_0 \subseteq k$ est une extension de corps alors $k_0(t) \cap k[t] =
k_0[t]$.
\end{proof}

\begin{prop}\label{irreducibility-of-frobeniused-polynomials}
Soit $k$ un corps de caractéristique $p>0$, soit $f_0 \in k[t]$
unitaire irréductible, et soit $f(t) := f_0(t^{p^e})$ où $e>0$.  Alors
$f$ est réductible (i.e., n'est pas irréductible) si et seulement si
les coefficients de $f_0$ (ou de façon équivalente, ceux de $f$) sont
des puissances $p$-ièmes, i.e., si et seulement si $f_0 \in k^p[t]$.
De plus, dans ce cas, $f$ est en fait une puissance $p$-ième
(cf. \ref{raising-polynomial-to-the-power-p}).
\end{prop}
\begin{proof}
Si $f_0 \in k^p[t]$, disons $f_0 = (f_1)^{\Frob}$ (c'est-à-dire le
polynôme obtenu en appliquant $\Frob_p$ coefficient par coefficient)
avec $f_1 \in k[t]$, alors $f(t) = f_0(t^{p^e}) =
(f_1(t^{p^{e-1}}))^p$ (cf. \ref{raising-polynomial-to-the-power-p}),
donc $f$ n'est pas irréductible.

Montrons la réciproque : supposons que les coefficients de $f_0$ ne
soient pas tous des puissances $p$-ièmes, et on veut montrer que $f$
est irréductible.  Par récurrence, on se ramène au cas $e=1$,
c'est-à-dire $f(t) = f_0(t^p)$.  Comme $\Frob_p$ est un isomorphisme
entre $k$ et $k^p$, il suffit de montrer que $f^{\Frob}$ est
irréductible dans $k^p[t]$.  Or on a $f^{\Frob} = f_0(t)^p$ comme au
paragraphe précédent : dans $k[t]$, il s'agit d'une factorisation
irréductible (car on a supposé $f_0$ irréductible) ; donc tout
diviseur unitaire non-constant de $f^{\Frob}$ dans $k[t]$, et en
particulier tout facteur irréductible de $f^{\Frob}$ dans $k^p[t]$,
doit être de la forme $f_0^i$ pour un certain $1\leq i\leq p$.  Mais
si $f_0^i \in k^p[t]$ pour $i<p$, le lemme \ref{power-in-kp-lemma}
montre que $f_0 \in k^p[t]$, et on a supposé le contraire : c'est donc
que le seul facteur irréductible de $f^{\Frob}$ dans $k^p[t]$
est $f_0^p = f^{\Frob}$ lui-même, donc que $f^{\Frob}$ est
irréductible dans $k^p[t]$ donc que $f$ l'est dans $k[t]$.
\end{proof}

\thingy\label{definition-separable-element} Lorsque $k \subseteq K$
est une extension de corps, un élément $x \in K$ algébrique sur $k$
est dit \textbf{séparable} (sur $k$) lorsque son polynôme minimal
l'est.  D'après ce qu'on a dit ci-dessus, en caractéristique $0$, tout
algébrique est séparable ; et en caractéristique $p$, pour tout
algébrique $x$ il existe un $e$ unique tel que $x^{p^e}$ soit
séparable et de degré égal à l'entier $\deg(x)/p^e$, et en
particulier, si $\deg(x)$ n'est pas multiple de $p$, alors $x$ est
séparable.

On remarquera que si $k \subseteq k' \subseteq K$ est une tour
d'extension, un élément $x\in K$ séparable sur $k$ est en particulier
séparable sur $k'$ (car son polynôme minimal sur $k'$ divise celui
sur $k$ et un polynôme divisant un polynôme séparable est séparable).

\begin{prop}\label{separable-inseparable-dichotomy}
Soit $k \subseteq K$ une extension de corps de caractéristique $p>0$,
et $x \in K$ algébrique sur $k$.  Exactement l'un des deux cas
suivants se produit :
\begin{itemize}
\item soit $x$ est séparable, le polynôme minimal de $x^p$ sur $k$ a
  des coefficients dans $k^p$, et alors $\deg(x^p) = \deg(x)$ et $k(x)
  = k(x^p)$,
\item soit $x$ n'est pas séparable, le polynôme minimal de $x^p$
  sur $k$ a des coefficients qui ne sont pas tous dans $k^p$, et alors
  on a déjà vu $\deg(x^p) = \deg(x)/p$.
\end{itemize}
\end{prop}
\begin{proof}
Soit $f_0$ le polynôme minimal de $x^p$ sur $k$, et soit $f(t) =
f_0(t^p)$, de sorte que $f \in k[t]$ annule $x$.  D'après la
proposition \ref{irreducibility-of-frobeniused-polynomials}, deux cas
peuvent se produire : soit les coefficients de $f_0$ sont des
puissances $p$-ièmes auquel cas $f$ est une puissance $p$-ième, soit
$f$ est irréductible dans $k[t]$.  Dans le premier cas, disons $f =
f_1^p$, alors $\deg(f_1) = \deg(f_0)$ et $f_1(x) = 0$, ce qui montre
$\deg(x) \leq \deg(x^p)$, mais l'inclusion réciproque est évidente
puisque $k(x^p) \subseteq k(x)$, et l'égalité des degrés montre
l'égalité des corps.  Dans le second cas, $f$ est le polynôme minimal
de $x$ sur $k$, et on a $\deg(f) = p\cdot \deg(f_0)$ donc $\deg(x) =
p\cdot \deg(x^p)$.
\end{proof}

\thingy\label{linear-criterion-for-separability} On peut donner encore
une autre condition équivalente au fait qu'un élément $x \in K$
algébrique sur un sous-corps $k$ soit séparable (en
caractéristique $p>0$) : on vient de voir que cela équivaut à
$\deg(x^p) = \deg(x)$ ou à $k(x^p) = k(x)$ ; mais comme on a de toute
manière $[k(x):k] = [k^p(x^p) : k^p]$ (puisque le Frobenius est un
isomorphisme entre $k(x)$ et $k^p(x^p)$), la séparabilité de $x$
équivaut aussi à $[k(x^p):k] = [k^p(x^p) : k^p]$, c'est-à-dire,
d'après \ref{linear-disjointness-and-degrees}, au fait que les
extensions $k^p(x^p)$ et $k$ de $k^p$ sont linéairement disjointes
(cf. \ref{definition-linear-disjointness}).  C'est cette façon de voir
les choses qui va inspirer l'énoncé et la démonstration
de \ref{linear-criterion-for-separable-algebraic-extensions}.

\thingy\label{definition-separable-algebraic-extension} Une extension
de corps $k \subseteq K$ algébrique est dite \textbf{séparable} (ou
que $K$ est séparable sur / au-dessus de $k$) lorsque tout élément
de $K$ est séparable sur $k$ (cf. \ref{definition-separable-element}).
C'est, bien sûr, toujours le cas en caractéristique $0$.

\begin{prop}\label{linear-criterion-for-separable-algebraic-extensions}
Soit $k \subseteq K$ une extension de corps \emph{finie} de
caractéristique $p$ telle que $K^p$ engendre $K$ comme $k$-espace
vectoriel.  Alors $K$ est séparable sur $k$.
\end{prop}
\begin{proof}[Démonstration utilisant \ref{linear-disjointness-and-degrees}]
On a $[K^p : k^p] = [K : k]$ car $\Frob$ est un isomorphisme de $K$
sur $K^p$.  Par hypothèse, $K = K^p.k$
(cf. \ref{definition-compositum} pour la notation, et
cf. aussi \ref{compositum-generated-by-products}) : ainsi, $[K^p.k :
  k] = [K^p : k^p]$, donc
d'après \ref{linear-disjointness-and-degrees} les extensions $K^p$ et
$k$ de $k^p$ sont linéairement disjointes.  En particulier, si $y\in
K$, les extensions $k^p(y^p)$ et $k$ sont linéairement disjointes, ce
qui d'après \ref{linear-criterion-for-separability} implique que $y$
est séparable sur $k$.
\end{proof}

\begin{proof}[Démonstration directe (déroulée)]
Soit $d = [K:k]$ et soit $x_1,\ldots,x_d$ une base de $K$ comme
$k$-espace vectoriel.  Soit $y \in K$ : on veut montrer que $y$ est
séparable sur $k$.  Écrivons $y^j = \sum_{i=0}^{d-1} c_{i,j} x_i$ sur
cette base, pour $0\leq j\leq d'-1$ avec $d' = \deg(y)$ : le fait que
$y$ soit de degré $d'$ entraîne que $1,y,\ldots,y^{d'-1}$ sont
linéairement indépendants sur $k$, autrement dit la matrice des
$c_{i,j}$ est de rang $d'$.  Maintenant, en élevant $y^j =
\sum_{i=0}^{d-1} c_{i,j} x_i$ à la puissance $p$, on trouve $y^{pj} =
\sum_{i=0}^{d-1} c_{i,j}^p x_d^p$.

L'hypothèse que $K^p$ engendre $K$ comme $k$-espace vectoriel signifie
que tout élément de $K$ peut s'écrire comme combinaison linéaire
d'éléments de $K^p$ à coefficients dans $k$ ; comme les éléments de
$K^p$ peuvent eux-mêmes s'écrire comme combinaisons linéaires des
$x_1^p,\ldots,x_d^p$ à coefficients dans $k^p$ (donc dans $k$), on
voit que $x_1^p,\ldots,x_d^p$ engendrent $K$ comme $k$-espace
vectoriel, donc en sont une base (puisque $[K:k] = d$).

Or la matrice des $c_{i,j}^p$ est de rang $d'$ car le Frobenius est un
isomorphisme de $k$ sur $k^p$ et que \emph{le rang d'une matrice ne
  dépend pas du corps sur lequel on la considère}.  Des trois
dernières phrases, on déduit que $1,y^p,\ldots,y^{p(d'-1)}$ sont
linéairement indépendants sur $k$, c'est-à-dire que $\deg(y^p) \geq
d'$, l'inégalité dans le sens contraire étant évidente on a $\deg(y^p)
= \deg(y)$ et $y$ est séparable.
\end{proof}

\thingy L'hypothèse « finie » est essentielle
dans \ref{linear-criterion-for-separable-algebraic-extensions}, et ne
peut pas être remplacée par « algébrique » : un contre-exemple est
fourni par $k = \mathbb{F}_p(t)$ et pour $K$ la réunion des
$\mathbb{F}_p(t^{1/p^i})$ pour $i\in\mathbb{N}$ (chaque
$\mathbb{F}_p(t^{1/p^i})$ est un corps de fractions rationnelles à une
indéterminée $t^{1/p^i}$, plongé dans les suivants en identifiant
$t^{1/p^i}$ à $(t^{1/p^j})^{p^{j-i}}$ si $j\geq i$ : on dit que $K$
est la « clôture parfaite » de $k$, on l'obtient en prenant toutes les
racines $p^i$-ièmes des éléments de $k$).  Alors $k \subseteq K$ est
une extension algébrique ; et $K$ est un corps parfait
(cf. \ref{definition-perfect-field}), c'est-à-dire que $K^p = K$ (on
l'a construit exprès pour), et a fortiori $K^p$ engendre $K$ comme
$k$-espace vectoriel : pourtant, l'extension $k \subseteq K$ n'est
aucunement séparable (elle est même « purement inséparable »).

\begin{prop}\label{tower-of-finite-separable-extensions}
Soit $k \subseteq K$ une extension de corps.  Si $x_1,\ldots,x_n$ sont
des éléments de $K$ tels que $x_i$ est algébrique séparable sur
$k(x_1,\ldots,x_{i-1})$ pour chaque $1\leq i\leq n$, alors
$k(x_1,\ldots,x_n)$ est séparable sur $k$.
\end{prop}
\begin{proof}
En caractéristique $0$, il n'y a rien à prouver : plaçons-nous en
caractéristique $p > 0$.

Comme $x_1$ est séparable sur $k$, on a $k(x_1) = k(x_1^p)$ ; comme
$x_2$ est séparable sur $k(x_1)$, on a $k(x_1,x_2) = k(x_1)(x_2) =
k(x_1)(x_2^p) = k(x_1^p)(x_2^p) = k(x_1^p,x_2^p)$, et en procédant
ainsi de suite on voit que $k(x_1,\ldots,x_n) =
k(x_1^p,\ldots,x_n^p)$.  L'hypothèse
de \ref{linear-criterion-for-separable-algebraic-extensions} est donc
vérifiée (les monômes en $x_1^p,\ldots,x_n^p$
engendrent $k(x_1,\ldots,x_n)$ comme $k$-espace vectoriel,
cf. \ref{basic-facts-algebraic-extensions}(1bis)), donc
$k(x_1,\ldots,x_n)$ est séparable sur $k$.
\end{proof}

\begin{cor}\label{separably-generated-algebraic-extension-is-separable}
Soit $K = k(x_i)_{i\in I}$ avec les $x_i$ algébriques séparables
sur $k$.  Alors tout $K$ est (algébrique) séparable sur $k$.
(Comparer avec \ref{basic-facts-algebraic-extensions}(3).)

Concrètement, donc, les sommes, différences, produits et inverses de
quantités algébriques séparables sur $k$ sont algébriques séparables
sur $k$.
\end{cor}
\begin{proof}
Il s'agit de montrer que tout élément de $K$ est séparable sur $k$ :
comme tout élément de $K = k(x_i)_{i\in I}$ s'écrit en utilisant un
ensemble fini des $x_i$, i.e., appartient à $k(x_i)_{i\in J}$ pour $J
\subseteq I$ fini (cf. \ref{subfield-generated-is-quotients}), on peut
supposer que $J$ est fini, disons $J = \{1,\ldots,n\}$, bref $K =
k(x_1,\ldots,x_n)$.  Chaque $x_i$ est séparable sur $k$ donc \textit{a
  fortiori} sur $k(x_1,\ldots,x_{i-1})$ et le résultat découle
de \ref{tower-of-finite-separable-extensions}.
\end{proof}

\begin{cor}\label{tower-of-separable-extensions-is-separable}
Soit $k \subseteq K \subseteq L$ une tour d'extensions algébriques.
Si $K$ est séparable sur $k$ et $L$ est séparable sur $K$, alors $L$
est séparable sur $k$ (la réciproque est claire).

(Comparer avec \ref{basic-facts-algebraic-extensions}(4).)
\end{cor}
\begin{proof}
Si $y\in L$ et si $x_1,\ldots,x_n \in K$ sont les coefficients du
polynôme minimal de $y$ sur $K$, alors $y$ est algébrique séparable
sur $k(x_1,\ldots,x_n)$ et $x_1,\ldots,x_n$ sont séparables sur $k$ :
le résultat découle de \ref{tower-of-finite-separable-extensions}.
\end{proof}

\thingy\label{separable-closure} (Comparer
avec \ref{relative-algebraic-closure}.)  La
proposition \ref{separably-generated-algebraic-extension-is-separable}
entraîne que si $k\subseteq K$ est une extension de corps, l'extension
de $k$ engendrée par tous les éléments de $K$ algébriques séparables
sur $k$ est tout simplement l'\emph{ensemble} de tous les éléments
de $K$ algébriques séparables sur $k$, c'est-à-dire que cet ensemble
est un corps, qui est manifestement la plus grande extension
intermédiaire algébrique séparable sur $k$ : on l'appelle la
\textbf{fermeture [algébrique] séparable} de $k$ dans $K$.

La fermeture séparable de $k$ dans une clôture algébrique de $k$
(cf. \ref{definition-algebraic-closure}) s'appelle \textbf{clôture
  séparable} de $k$.  Si $k$ est égal à sa clôture séparable (i.e.,
séparablement fermé dans une clôture algébrique), on dit que $k$ est
\textbf{séparablement clos}.



\subsection{Corps parfaits, théorème de l'élément primitif}

\begin{defn}\label{definition-perfect-field}
Un corps $k$ est dit \textbf{parfait} lorsque \emph{soit} $k$ est de
caractéristique $0$, \emph{soit} $k$ est de caractéristique $p$ et le
morphisme de Frobenius, $\Frob\colon x\mapsto x^p$, est surjectif $k
\to k$, i.e. tout élément a une racine $p$-ième (automatiquement
unique), i.e. $k^p = k$.
\end{defn}

\thingy Ainsi, les corps $\mathbb{Q},\mathbb{R},\mathbb{C}$ sont
parfaits (car de caractéristique $0$).  Il en va de même d'un corps
fini $\mathbb{F}_q$ (car le morphisme de Frobenius, injectif d'un
ensemble fini vers lui-même, est forcément surjectif).  Enfin, un
corps algébriquement clos est parfait (car le polynôme $x^p - c$ se
scinde).

Un exemple de corps qui \emph{n'est pas} parfait est le corps
$\mathbb{F}_p(t)$ des fractions rationnelles en une indéterminée $t$
sur $\mathbb{F}_p$, vu que l'élément $t$ n'a pas de racine $p$-ième.

\thingy\label{field-is-perfect-iff-every-algebraic-is-separable} Si
$k$ est parfait, tout élément $x$ algébrique sur $k$ (dans un corps le
contenant) est séparable : ceci découle de la
proposition \ref{separable-inseparable-dichotomy}.

Réciproquement, si tout élément $x$ algébrique sur $k$ (dans un corps
le contenant, ou, mieux, dans une clôture algébrique $K$ fixée) est
séparable, alors $k$ est parfait : en effet, si $x\in k$, on peut
considérer $y$ sa racine $p$-ième dans la clôture algébrique $K$ :
puisque $t^p - x = (t-y)^p$ dans $K[t]$, toutes ses racines sont
égales à $y$, donc le polynôme minimal de $y$ sur $k$ est de la forme
$(t-y)^r$ pour un certain $1\leq r\leq p$, et s'il est séparable c'est
que $r=1$ donc $y\in k$.

Bien sûr, on peut aussi dire qu'un corps $k$ est parfait si et
seulement si toute extension algébrique de $k$ est séparable
(cf. \ref{definition-separable-algebraic-extension}
et \ref{separably-generated-algebraic-extension-is-separable}).

\begin{prop}
Si $k \subseteq K$ est une extension algébrique avec $k$ parfait,
alors $K$ est aussi parfait.
\end{prop}
\begin{proof}
D'après \ref{field-is-perfect-iff-every-algebraic-is-separable}, il
suffit de montrer que tout algébrique sur $K$ est séparable.  Mais un
algébrique sur $K$ est en particulier algébrique sur $k$
(cf. \ref{basic-facts-algebraic-extensions}(4)), donc de nouveau
d'après \ref{field-is-perfect-iff-every-algebraic-is-separable} il est
séparable sur $k$ donc sur $K$.
\end{proof}

\begin{prop}[théorème de l'élément primitif]\label{primitive-element-theorem}
Soit $K = k(x_1,\ldots,x_n)$ avec $x_1,\ldots,x_n$ algébriques sur $k$
et $x_2,\ldots,x_n$ séparables sur $k$ (on ne suppose pas que $x_1$
soit séparable).  Alors l'extension $k\subseteq K$ est monogène,
c'est-à-dire qu'il existe $y \in K$ tel que $K = k(y)$.
\end{prop}
\begin{proof}
Si $k$ est un corps fini, alors $K$ l'est aussi (puisque $K$ est fini
sur $k$), et on peut choisir $y$ un générateur du groupe cyclique
$K^\times$ (vu que ses puissances sont tous les éléments
de $K^\times$, il engendre certainement $K$ en tant que corps).
Excluons donc ce cas.

En procédant par récurrence sur $n$, on voit qu'il suffit de montrer
le cas $n=2$.  Supposons donc $K = k(x_1,x_2)$ avec $x_1,x_2$
algébriques et $x_2$ séparable.  On va poser $y = x_1 + c x_2$ et
chercher à choisir judicieusement $c \in k$ non nul.  Pour montrer que
$K = k(y)$, il suffira de montrer que $x_2$ est dans $k(y)$, puisque
ensuite $x_1 = y - c x_2$.  Pour cela, on va s'intéresser au polynôme
minimal de $x_2$ sur $k(y)$ : il s'agit de montrer qu'il a degré $1$
(pour $c$ bien choisi).

Soient $f_1$ et $f_2$ les polynômes minimaux de $x_1$ et $x_2$
sur $k$.  Travaillons dans $L$ une extension de $K$ dans laquelle $f_1
f_2$ est scindé (cf. \ref{existence-uniqueness-decomposition-field}).
L'élément $x_2$ est racine de $f_2(t)$ et aussi de $g(t) := f_1(y -
ct)$, ce dernier étant un polynôme en $t$ à coefficients dans $k(y)$ :
il est donc racine de leur pgcd $h$ dans $k(y)[t]$.  Or toute racine
de ce pgcd dans $L$ est à la fois racine de $f_2$, appelons-la $z_2$,
et aussi de la forme $(y - z_1)/c$ pour une certaine racine $z_1$
de $f_1$ ; on a donc $y = x_1 + c x_2 = z_1 + c z_2$, et si $z_2 \neq
x_2$ cela implique $c = (z_1 - x_1)/(x_2 - z_2)$.  Autrement dit, si
on choisit pour $c$ une valeur dans $k$ différente de tous les $(z_1 -
x_1)/(x_2 - z_2)$ pour $z_1$ parcourant les racines de $f_1$ et $z_2$
parcourant celles de $f_2$ (autres que $x_2$), ce qui est possible vu
que $k$ est infini et qu'on n'exclut qu'un nombre fini de valeurs,
alors la seule racine commune de $f_1$ et $g$ est $x_2$.  Comme de
plus $f_1$ est séparable, cette racine est simple pour $f_1$ donc
pour $h$, et ainsi $x_2$ est racine d'un polynôme $h$ dans $k(y)$
ayant une unique seule racine, de surcroît simple, dans un corps $L$
où ce polynôme se scinde (parce que $f_2$ s'y scinde).  C'est donc que
$x_2 \in k(y)$, et on a expliqué que cela conclut.
\end{proof}

\begin{cor}
Toute extension finie séparable d'un corps parfait est monogène.  En
particulier, toute extension finie d'un corps parfait est monogène.
\end{cor}
\begin{proof}
Soit $k \subseteq K$ une extension finie séparable : d'après
\ref{basic-facts-algebraic-extensions}(2), elle est engendrée par un
nombre fini d'éléments algébriques, ceux-ci sont séparables sur $k$
par définition, et d'après \ref{primitive-element-theorem},
l'extension est monogène.  Si $k$ est parfait, toute extension
algébrique de $k$ est séparable.
\end{proof}

% TODO:
% * Espace projectif, Nullstellensatz, lemme de Zariski.
% * Différentielles.
% * Valuations.  Clôture intégrale ?


%
%
%
\end{document}