1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}[subsection]
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newtheorem{defn}[comcnt]{Définition}
\newtheorem{prop}[comcnt]{Proposition}
\newtheorem{lem}[comcnt]{Lemme}
\newtheorem{thm}[comcnt]{Théorème}
\newtheorem{cor}[comcnt]{Corollaire}
\newtheorem{scho}[comcnt]{Scholie}
\renewcommand{\qedsymbol}{\smiley}
%
\newcommand{\id}{\operatorname{id}}
\newcommand{\Frac}{\operatorname{Frac}}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{}
\DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{}
\newcommand{\manfntsymbol}[1]{%
{\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
\hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
%
%
\begin{document}
\title{Courbes algébriques\\(notes provisoires)}
\author{David A. Madore}
\maketitle
\centerline{\textbf{ACCQ205}}
{\footnotesize
\immediate\write18{sh ./vc > vcline.tex}
\begin{center}
Git: \input{vcline.tex}
\end{center}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}
%
%
%
\section{Corps et extensions de corps}
\subsection{Anneaux, algèbres, corps, idéaux premiers et maximaux et corps des fractions}
\thingy Sauf précision expresse du contraire, tous les anneaux
considérés sont commutatifs et ont un élément unité (noté $1$). Il
existe un unique anneau dans lequel $0=1$, c'est l'anneau réduit à un
seul élément, appelé l'\textbf{anneau nul}. (Pour tout anneau $A$, il
existe un unique morphisme de $A$ vers l'anneau nul ; en revanche, il
n'existe un morphisme de l'anneau nul vers $A$ que si $A$ est lui-même
l'anneau nul.)
\thingy Si $k$ est un anneau, une \textbf{$k$-algèbre} (là aussi :
implicitement commutative) est la donnée d'un morphisme d'anneaux $k
\buildrel\varphi_A\over\to A$ appelé \textbf{morphisme structural} de
l'algèbre. On peut multiplier un élément de $A$ par un élément de $k$
avec : $c\cdot x = \varphi_A(c)\,x \in A$ (pour $c\in k$ et $x\in A$).
Un morphisme de $k$-algèbres est un morphisme d'anneaux
$A\buildrel\psi\over\to B$ tel que le morphisme structural $k
\buildrel\varphi_B\over\to B$ de $B$ soit la composée $k
\buildrel\varphi_A\over\to A\buildrel\psi\over\to B$ de celui de $A$
avec le morphisme considéré.
De façon équivalente, une $k$-algèbre est un $k$-module qui est muni
d'une multiplication $k$-bilinéaire qui en fait un anneau, et les
morphismes de $k$-algèbres sont les applications $k$-linéaires qui
préservent la multiplication ; le morphisme structural peut alors se
retrouver par $c \mapsto c\cdot 1$. Notons qu'une
$\mathbb{Z}$-algèbre est exactement la même chose qu'un anneau (raison
pour laquelle il est souvent préférable d'énoncer les résultats en
parlant de $k$-algèbres pour plus de généralité).
Dans la pratique, cependant $k$ sera généralement un corps : une
$k$-algèbre est donc un $k$-espace vectoriel muni d'une multiplication
$k$-bilinéaire qui en fait un anneau, et le morphisme structural est
automatiquement injectif si l'algèbre n'est pas l'algèbre nulle.
\thingy Un élément $a$ d'un anneau $A$ (sous-entendu : commutatif) est
dit \textbf{régulier}, resp. \textbf{inversible}, lorsque $x \mapsto
ax$ est injectif, resp. bijectif, autrement dit lorsque $ax = 0$
implique $x = 0$ (la réciproque est toujours vraie), resp. lorsqu'il
existe $x$ (appelé inverse de $a$) tel que $ax = 1$.
Un anneau dans $A$ dans lequel l'ensemble des éléments régulier est
égal à l'ensemble $A \setminus \{0\}$ des éléments non-nuls est appelé
anneau \textbf{intègre} : autrement dit, un anneau intègre est un
anneau dans lequel ($0\neq 1$ et) $ab = 0$ implique $a=0$ ou $b=0$ (la
réciproque est toujours vraie). Par convention, l'anneau nul n'est
pas intègre.
Un idéal $\mathfrak{p}$ d'un anneau $A$ est dit \textbf{premier}
lorsque l'anneau quotient $A/\mathfrak{p}$ est un anneau intègre,
autrement dit lorsque $\mathfrak{p}\neq A$ et que $ab \in
\mathfrak{p}$ implique $a \in \mathfrak{p}$ ou $b \in \mathfrak{p}$
(la réciproque est toujours vraie).
\thingy Dans un anneau (toujours sous-entendu commutatif...),
l'ensemble noté $A^\times$ des éléments inversibles est un groupe,
aussi appelé groupe des \textbf{unités} de $A$.
Un \textbf{corps} est un anneau $k$ dans lequel l'ensemble $k^\times$
des éléments inversibles est égal à l'ensemble $k\setminus\{0\}$ des
éléments non-nuls : autrement dit, un corps est un anneau dans lequel
($0\neq 1$ et) tout élément non-nul est inversible. De façon
équivalente, un corps est un anneau ayant exactement deux idéaux (qui
sont alors $0$ et lui-même). Par convention, l'anneau nul n'est pas
un corps.
Un corps est, en particulier, un anneau intègre.
Un idéal $\mathfrak{m}$ d'un anneau $A$ est dit \textbf{maximal}
lorsque l'anneau quotient $A/\mathfrak{m}$ est un corps : de façon
équivalente, lorsque $\mathfrak{m}\neq A$ et que $\mathfrak{m}$ est
maximal pour l'inclusion parmi les idéaux $\neq A$. Un idéal maximal
est, en particulier, premier.
\thingy À titre d'exemple, l'idéal $n\mathbb{Z}$ de $\mathbb{Z}$ (on
rappelle que tous les idéaux de $\mathbb{Z}$ sont de cette forme, pour
un $n \in \mathbb{N}$ défini de façon unique) est premier si et
seulement si $n = 0$ (le quotient étant $\mathbb{Z}$ lui-même) ou bien
$n$ est un nombre premier ; il est intègre exactement si $n$ est un
nombre premier (le quotient étant alors le corps
$\mathbb{Z}/n\mathbb{Z}$).
Pour donner un exemple moins évident, dans l'anneau $k[x,y]$ des
polynômes à deux indéterminées $x,y$ sur un corps $k$, l'idéal $(y)$
(des polynômes s'annulant identiquement sur l'axe des abscisses) est
premier mais non maximal puisque $k[x,y]/(y) \cong k[x]$, tandis que
l'idéal $(x,y)$ (des polynômes s'annulant à l'origine) est maximal
puisque $k[x,y]/(x,y) \cong k$.
\thingy Si $A$ est un anneau intègre, on définit un corps $\Frac(A)$,
dit \textbf{corps des fractions} de $A$, dont les éléments sont les
symboles formels $\frac{a}{q}$ avec $a \in A$ et $q \in A
\setminus\{0\}$, en convenant d'identifier $\frac{a}{q}$ avec
$\frac{a'}{q'}$ lorsque $aq' = a'q$ (i.e., formellement, $\Frac(A)$
est le quotient de $A \times (A\setminus\{0\})$ par la relation
d'équivalence qu'on vient de dire) ; la structure d'anneau est définie
par $\frac{a}{q} + \frac{a'}{q'} = \frac{aq'+a'q}{qq'}$ et
$\frac{a}{q} \cdot \frac{a'}{q'} = \frac{aa'}{qq'}$. On a aussi un
morphisme injectif $A \to \Frac(A)$ envoyant $a$ sur $\frac{a}{1}$, et
on identifiera $A$ à son image par ce morphisme.
À titre d'exemple, $\Frac(\mathbb{Z})$ est $\mathbb{Q}$ (c'est même la
définition de ce dernier).
\thingy\label{universal-property-of-fraction-field} Le corps des
fractions d'un anneau intègre $A$ vérifie la propriété « universelle »
suivante : si $K$ est un corps quelconque, et $\varphi\colon A \to K$
un morphisme d'anneaux injectif, il existe un unique morphisme de
corps $\hat\varphi\colon \Frac(A) \to K$ (i.e., extension de corps,
cf. ci-dessous) qui prolonge $\varphi$ (i.e., $\hat\varphi(a) =
\varphi(a)$ si $a\in A$). En effet, il suffit de définir
$\hat\varphi(\frac{a}{q})$ par $\varphi(a)/\varphi(q)$.
\thingy Le corps des fractions de l'anneau $k[t_1,\ldots,t_n]$ des
polynômes en $n$ indéterminées $t_1,\ldots,t_n$ sur un corps $k$ est
appelé corps des \textbf{fractions rationnelles} (ou parfois
« fonctions rationnelles ») en $n$ indéterminées $t_1,\ldots,t_n$
sur $k$, et noté $k(t_1,\ldots,t_n)$.
\thingy\label{finite-integral-algebra-is-a-field} Le fait suivant sera
important : si $k$ est un corps et $K$ une $k$-algèbre \emph{de
dimension finie} intègre, alors $K$ est, en fait, un corps. En
effet, une application $k$-linéaire $K \to K$ injective est
automatiquement bijective, et en appliquant ce fait à la
multiplication par un $a\in K$, on voit que tout élément régulier est
inversible.
\subsection{Algèbre engendrée, extensions de corps}
\thingy Si $A$ est une $k$-algèbre (où $k$ est un anneau), et
$(x_i)_{i\in I}$ est une famille d'éléments de $A$, l'intersection de
toutes les sous-$k$-algèbres de $A$ contenant les $x_i$ est encore une
sous-$k$-algèbre de $A$ contenant les $x_i$, c'est-à-dire que c'est la
plus petite sous-$k$-algèbre de $A$ contenant les $x_i$. On l'appelle
$k$-algèbre \textbf{engendrée} (dans $A$) par les $x_i$ et on la note
$k[x_i]_{i\in I}$. Lorsque les $x_i$ sont en nombre fini (le cas qui
nous intéressera le plus), disons indicés par $1,\ldots,n$, on note
$k[x_1,\ldots,x_n]$, et on dit que $k[x_1,\ldots,x_n]$ est une
$k$-algèbre \textbf{de type fini} (comme $k$-algèbre).
\danger On prendra garde au fait que la même notation
$k[x_1,\ldots,x_n]$ peut désigner soit la $k$-algèbre engendrée
par $x_1,\ldots,x_n$ dans une $k$-algèbre $A$ plus grande, soit
l'anneau des polynômes à $n$ indéterminées $x_1,\ldots,x_n$ sur $k$.
Ces conventions sont cependant cohérentes en ce sens que l'anneau des
polynômes à $n$ indéterminées sur $k$ est bien la $k$-algèbre
engendrée par les indéterminées (cf. le point suivant). Il faut donc
prendre garde à ce que sont $x_1,\ldots,x_n$ quand cette notation
apparaît : si aucune remarque n'est faite et que les $x_i$ n'ont pas
été introduits auparavant, il est généralement sous-entendu que ce
sont des indéterminées.
\thingy\label{subalgebra-generated-is-polynomials} La $k$-algèbre
engendrée par les $x_i$ dans $A$ peut encore se décrire concrètement
comme l'ensemble de tous les éléments de $A$ qui peuvent être obtenus
à partir de $1$ et des $x_i$ par sommes, produits par éléments de $k$
et produits binaires. Autrement dit, ce sont les valeurs des
polynômes à coefficients dans $k$ évalués en des $x_i$. Pour dire les
choses de façon plus sophistiquée, en supposant les $x_i$ en nombre
fini pour simplifier (et indicés par $1,\ldots,n$), il existe un
unique morphisme $k[t_1,\ldots,t_n] \to A$ envoyant $t_i$ sur $x_i$, à
savoir le morphisme « d'évaluation » qui à un $P \in
k[t_1,\ldots,t_n]$ associe $P(x_1,\ldots,x_n)$, et $k[x_1,\ldots,x_n]$
est l'\emph{image} de ce morphisme. On peut donc dire qu'une
$k$-algèbre de type fini $k[x_1,\ldots,x_n]$ est la même chose qu'un
\emph{quotient} de l'algèbre de polynômes $k[t_1,\ldots,t_n]$ (par le
noyau du morphisme d'évaluation).
\thingy Une \textbf{extension de corps} est un morphisme d'anneaux $k
\to K$ entre corps (c'est-à-dire que $K$ est une $k$-algèbre qui est
un corps). Un tel morphisme est automatiquement injectif (car son
noyau est un idéal d'un corps qui ne contient pas $1$), et qui peut
donc être considéré comme une inclusion : on notera soit $k \subseteq
K$ soit $K/k$ une telle extension ; lorsque l'inclusion a été fixée,
on dit aussi que $k$ est un \textbf{sous-corps} de $K$. Un
\textbf{corps intermédiaire} à une extension $k \subseteq K$, ou
encore \textbf{sous-extension}, est, naturellement, une extension de
corps $k \subseteq E$ contenue dans $K$.
\thingy\label{subfield-generated} Si $k \subseteq K$ est une extension
de corps, et $(x_i)_{i\in I}$ est une famille d'éléments de $K$,
l'intersection de tous les sous-corps de $K$ contenant $k$ et
les $x_i$ est encore un sous-corps de $K$ contenant $k$ et les $x_i$,
c'est-à-dire que c'est le plus petit corps intermédiaire contenant
les $x_i$. On l'appelle sous-extension \textbf{engendrée} (dans $K$)
par les $x_i$ et on la note $k(x_i)_{i\in I}$. Lorsque les $x_i$ sont
en nombre fini (le cas qui nous intéressera le plus), disons indicés
par $1,\ldots,n$, on note $k(x_1,\ldots,x_n)$, et on dit que
$k(x_1,\ldots,x_n)$ est une extension de $k$ \textbf{de type fini}
(comme extension de corps).
\danger On prendra garde au fait que la même notation
$k(x_1,\ldots,x_n)$ peut désigner soit la sous-extension engendrée
par $x_1,\ldots,x_n$ dans une extension $K$ plus grande, soit le corps
des fractions rationnelles à $n$ indéterminées $x_1,\ldots,x_n$
sur $k$. Ces conventions sont cependant cohérentes en ce sens que le
corps des fractions rationnelles à $n$ indéterminées sur $k$ est bien
la sous-extension engendrée par les indéterminées (cf. le point
suivant). Comme dans le cas de la $k$-algèbre engendrée, il faut donc
prendre garde à ce que sont $x_1,\ldots,x_n$ quand cette notation
apparaît : si aucune remarque n'est faite et que les $x_i$ n'ont pas
été introduits auparavant, il est généralement sous-entendu que ce
sont des indéterminées.
\thingy\label{subfield-generated-is-quotients} La sous-extension
engendrée (au-dessus de $k$) par les $x_i$ dans $K$ peut encore se
décrire concrètement comme l'ensemble de tous les éléments de $A$ qui
peuvent être obtenus à partir des éléments de $k$ et des $x_i$ par
sommes, produits et inverses (d'éléments non nuls). Autrement dit, ce
sont les valeurs des fractions rationnelles à coefficients dans $k$
évalués en des $x_i$ (à condition d'être bien définies).
\subsection{Extensions algébriques et degré}
\thingy\label{monogeneous-extensions-dichotomy} Si $k \subseteq K$ est
une extension de corps et $x\in K$, on a noté
(cf. \ref{subfield-generated}) $k(x)$ l'extension de $k$ engendrée
par $x$. On dira aussi que $k \subseteq k(x)$ est une extension
\textbf{monogène}.
On se pose la question de mieux comprendre cette extension. Pour
cela, on introduit l'unique morphisme $\varphi\colon k[t] \to K$, où
$k[t]$ est l'anneau des polynômes en une indéterminée $t$ sur $k$, qui
envoie $t$ sur $x$, c'est-à-dire, le morphisme « d'évaluation »
envoyant $P$ sur $P(x)$ pour chaque $P \in k[t]$. Le noyau de
$\varphi$ est un idéal de $k[t]$. Exactement l'un des deux cas
suivants se produit :
\begin{itemize}
\item Soit $\varphi$ est injectif (=son noyau est nul), auquel cas on
dit que $x$ est \textbf{transcendant} sur $k$. Dans ce cas, d'après
la propriété universelle du corps des fractions
(cf. \ref{universal-property-of-fraction-field}), $\varphi$ se
prolonge de manière unique en une extension de corps $k(t) \to K$
(où $k(t)$ est le corps des fractions rationnelles en l'indéterminée
$t$ sur $k$), envoyant $P/Q \in k(t)$ sur $P(x)/Q(x) \in K$, et
l'image de $k(t)$ dans $K$ est précisément $k(x)$
(cf. \ref{subfield-generated-is-quotients}). Ceci permet
d'identifier $k(x)$ avec le corps des fractions rationnelles en une
indéterminée (i.e., de considérer $x$ comme une indéterminée).
\item Soit le noyau de $\varphi$ est engendré par un unique polynôme
unitaire $\mu_x\in k[t]$, qu'on appelle le \textbf{polynôme minimal}
de $x$, et alors $x$ est dit \textbf{algébrique} (ou
\textbf{entier}) sur $k$. Alors l'image $k[x]$ de $\varphi$
(cf. \ref{subalgebra-generated-is-polynomials}) s'identifie à
$k[t]/(\mu_x)$, une $k$-algèbre de dimension $\deg\mu_x$ finie
sur $k$, qu'on appelle le \textbf{degré} de $x$ ; mais comme $k[x]$
est intègre (puisque c'est une sous-algèbre d'un corps), et de
dimension finie, c'est un corps
(cf. \ref{finite-integral-algebra-is-a-field}) : on a donc $k(x) =
k[x] = k[t]/(\mu_x)$ dans cette situation. De plus, le polynôme
$\mu_x$ est irréductible dans $k[t]$ (sans quoi on aurait deux
éléments dont le produit est nul dans $K$).
\end{itemize}
On remarquera que les éléments de $k$ eux-mêmes sont exactement les
algébriques de degré $1$ sur $k$.
\thingy La dichotomie décrite ci-dessus admet une sorte de
réciproque : d'une part, si $t$ est une indéterminée, alors dans
$k(t)$ (le corps des fractions rationnelles) l'élément $t$ est bien
transcendant sur $k$ (en fait, toute fraction rationnelle non
constante est transcendante sur $k$) ; d'autre part, si $\mu$ est un
polynôme unitaire irréductible sur $k$, alors $k[t]/(\mu)$ est une
$k$-algèbre de dimension finie intègre donc
(cf. \ref{finite-integral-algebra-is-a-field}) une extension de corps
de $k$ dans laquelle la classe $x := \bar t$ de l'indéterminée $t$ est
algébrique de polynôme minimal $\mu$ : ce corps $k(x) = k[t]/(\mu)$
est appelé \textbf{corps de rupture} du polynôme irréductible $\mu$
sur $k$ (lorsque $\mu$ n'est pas unitaire, on peut encore parler de
corps de rupture quitte à diviser par le coefficient dominant ; en
revanche, l'irréductibilité est essentielle), et il va de soi que le
corps de rupture coïncide avec $k$ si et seulement si $\mu$ est de
degré $1$ (précisément, si $\mu = t-a$ alors l'élément $x := \bar t$
de $k(x) = k[t]/(\mu)$ s'identifie avec $a \in k$).
\thingy Une extension de corps $k\subseteq K$ est dite
\textbf{algébrique} lorsque chaque élément de $K$ est algébrique
sur $k$.
Un corps $k$ est dit \textbf{algébriquement clos} lorsque la seule
extension algébrique de $k$ est $k$ lui-même : d'après les remarques
précédentes, cela revient à dire que les seuls polynômes unitaires
irréductibles dans $k[t]$ sont les $t-a$.
\thingy Si $k\subseteq K$ est une extension de corps, on peut
considérer $K$ comme un $k$-espace vectoriel, et sa dimension (finie
ou infinie) est notée $[K:k]$ et appelée \textbf{degré} de
l'extension. Une extension de degré fini est aussi dite
\textbf{finie}.
Il résulte de l'identification de $k(x)$ à $k[t]/(\mu_x)$ que, si $x$
est un élément algébrique sur $k$, alors $[k(x):k]$ est fini et égal
au degré $\deg\mu_x =: \deg(x)$ de $x$. \textit{A contrio}, si $x$
est transcendant, alors $[k(x):k]$ est infini. En particulier, on a
montré que : \emph{l'extension monogène $k\subseteq k(x)$ est finie si
et seulement si $x$ est algébrique sur $k$}.
\thingy On aura également besoin du fait que si $k \subseteq K
\subseteq L$ sont deux extensions imbriquées alors
$[L:k] = [K:k] \, [L:K]$ (au sens où le membre de gauche est fini si et
seulement si les deux facteurs du membre de droite le sont, et dans ce
cas leur produit lui est égal). Cela résulte du fait plus précis que
si $(x_\iota)_{\iota\in I}$ est une $k$-base de $K$ et
$(y_\lambda)_{\lambda\in\Lambda}$ une $K$-base de $L$, alors $(x_\iota
y_\lambda)_{(\iota,\lambda)\in I\times\Lambda}$ est une $k$-base
de $L$ (vérification aisée).
\thingy Les deux faits suivants sont à noter :
Une extension de corps engendrée par un nombre fini d'éléments
algébriques est finie (en effet, si $x_1,\ldots,x_n$ sont algébriques
sur $k$, alors chaque extension $k(x_1,\ldots,x_{i-1}) \subseteq
k(x_1,\ldots,x_i)$ est monogène algébrique, donc finie, donc leur
composée est fini).
Une extension $k\subseteq K$ est finie si et seulement si elle est à
la fois algébrique et de type fini. (Le sens « si » résulte de
l'affirmation précédente ; pour le sens « seulement si », remarquer
que pour tout $x\in K$, l'extension $k\subseteq k(x)$ est finie donc
algébrique, et qu'une base de $K$ comme $k$-espace vectoriel engendre
certainement $K$ comme extension de corps de $k$.)
\subsection{Bases et degré de transcendance}
\begin{defn}
Si $k\subseteq K$ est une extension de corps, une famille finie
$x_1,\ldots,x_n$ d'éléments de $K$ est dite \textbf{algébriquement
indépendante} (il serait plus logique de dire « collectivement
transcendante ») lorsque le seul polynôme $P \in k[t_1,\ldots,t_n]$ à
coefficients dans $k$ et tel que $P(x_1,\ldots,x_n) = 0$ est le
polynôme nul, autrement dit, lorsque le morphisme « d'évaluation »
$k[t_1,\ldots,t_n] \to K$ (avec $k[t_1,\ldots,t_n]$ l'anneau des
polynômes en $n$ indéterminées) envoyant $P$ sur $P(x_1,\ldots,x_n)$
est injectif. En particulier, chacun des $x_i$ est transcendant
sur $k$.
On dit d'une famille infinie $(x_i)$ d'éléments de $K$ qu'elle est
algébriquement indépendante lorsque toute sous-famille finie d'entre
eux l'est.
Une famille $(x_i)$ d'éléments de $K$ est appelée \textbf{base de
transcendance} de $K$ sur $k$ lorsqu'elle est algébriquement
indépendante est $K$ est une extension algébrique de l'extension
$k(x_i)$ de $k$ engendrée par les $x_i$.
\end{defn}
\thingy Il est trivialement le cas que $t_1,\ldots,t_n$ sont
algébriquement indépendants si $t_1,\ldots,t_n$ sont des
indéterminées, c'est-à-dire, si $k(t_1,\ldots,t_n)$ est le corps des
fractions rationnelles en $n$ indéterminées. Réciproquement, si
$x_1,\ldots,x_n$ sont algébriquement indépendants, alors
$k(x_1,\ldots,x_n)$ s'identifie au corps des fractions rationnelles en
$n$ indéterminées comme dans le cas $n=1$ déjà vu
en \ref{monogeneous-extensions-dichotomy} ci-dessus (en envoyant
$P/Q$, avec $P,Q\in k[t_1,\ldots,t_n]$ et $Q\neq 0$, sur
$P(x_1,\ldots,x_n)/Q(x_1,\ldots,x_n)$).
(On peut encore dire la même chose pour un nombre infini de $x_i$, à
condition de définir le corps des fractions rationnelles en un nombre
infini d'indéterminées, comme « réunion », techniquement la limite
inductive, des corps de fractions rationnelles sur une sous-famille
finie quelconque d'entre elles.)
\thingy Lorsque les $(x_i)$ sont algébriquement indépendants, on dit
aussi que l'extension $k \subseteq k(x_i)$ est \textbf{transcendante
pure} : autrement dit, une extension transcendante pure est un corps
de fractions rationnelles en un nombre quelconque (peut-être infini,
cf. ci-dessus) de variables.
La question de déterminer si une extension de corps est transcendante
pure peut être extrêmement difficile ; à titre d'exemple, le corps
$\mathbb{R}(x,y : x^2+y^2-1)$ des fractions de
$\mathbb{R}[x,y]/(x^2+y^2-1)$ est une extension transcendante pure de
$\mathbb{R}$, car il est en fait isomorphe à $\mathbb{R}(t)$ où $t =
\frac{y}{x+1}$ (de réciproque $x = \frac{1-t^2}{1+t^2}$ et $y =
\frac{2t}{1+t^2}$) : on reviendra sur cet exemple.
Certains auteurs disent parfois par abus de langage (ces notes
tâcheront de l'éviter) que $k \subseteq k(x_1,\ldots,x_n)$ est
transcendante pure pour dire en fait que les $x_1,\ldots,x_n$ sont
algébriquement indépendants. L'exemple ci-dessus montre que c'est
abusif ; cependant, on verra que ce ne l'est plus si on sait que le
degré de transcendance est bien $n$.
Si $x_i$ est une base de transcendance de $K$ sur $k$, celle-ci
« décompose » l'extension $k \subseteq K$ en deux : l'extension $k
\subseteq k(x_i)$ est transcendante pure, et l'extension $k(x_i)
\subseteq K$ est algébrique.
%
%
%
\end{document}
|