diff options
author | David A. Madore <david+git@madore.org> | 2016-12-01 17:06:39 +0100 |
---|---|---|
committer | David A. Madore <david+git@madore.org> | 2016-12-01 17:06:39 +0100 |
commit | 0e1bac4b46f50e1c9f9b0806369142029142c4fc (patch) | |
tree | ce14bac916994f9616ca219b320673e553bf07c0 | |
parent | 069896a82c38c6660f0d55c012c4c2796a52cdb2 (diff) | |
download | inf105-0e1bac4b46f50e1c9f9b0806369142029142c4fc.tar.gz inf105-0e1bac4b46f50e1c9f9b0806369142029142c4fc.tar.bz2 inf105-0e1bac4b46f50e1c9f9b0806369142029142c4fc.zip |
Remove any ambiguity about whether 0 is a power of two (it is not).
-rw-r--r-- | exercices1.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/exercices1.tex b/exercices1.tex index 58bf415..17c96ed 100644 --- a/exercices1.tex +++ b/exercices1.tex @@ -129,7 +129,7 @@ $2n+x$ modulo $3$ ?), nombre premier, (e) le langage $L_e$ des mots binaires dont la valeur numérique est -une puissance de $2$, +une puissance de $2$, i.e., de la forme $2^i$ pour $i\in\mathbb{N}$, \begin{corrige} (1) On peut écrire $L_n = L_{0|1(0|1){*}}$, langage dénoté par |