%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it? \documentclass[12pt,a4paper]{article} \usepackage[francais]{babel} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} %\usepackage{ucs} \usepackage{times} % A tribute to the worthy AMS: \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} % \usepackage{mathrsfs} \usepackage{wasysym} \usepackage{url} % \usepackage{graphics} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{tikz} \usetikzlibrary{arrows,automata,positioning} \usepackage[hyperindex=false]{hyperref} % \theoremstyle{definition} \newtheorem{comcnt}{Tout} \newcommand\thingy{% \refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} } \newcommand\exercice{% \refstepcounter{comcnt}\bigbreak\noindent\textbf{Exercice~\thecomcnt.}} \renewcommand{\qedsymbol}{\smiley} % \newcommand{\liff}{\mathrel{\Longleftrightarrow}\relax} % \DeclareUnicodeCharacter{00A0}{~} \DeclareUnicodeCharacter{03B5}{$\varepsilon$} % \DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C} \DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D} % % \DeclareFontFamily{U}{manual}{} \DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{} \newcommand{\manfntsymbol}[1]{% {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}} \newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped \newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2% \hbox to0pt{\hskip-\hangindent\dbend\hfill}} % \newcommand{\spaceout}{\hskip1emplus2emminus.5em} \newif\ifcorrige \corrigetrue \newenvironment{corrige}% {\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi% \smallbreak\noindent{\underbar{\textit{Corrigé.}}\quad}} {{\hbox{}\nobreak\hfill\checkmark}% \ifcorrige\relax\else\egroup\fi\par} % % % NOTE: compile dot files with % dot2tex --figonly -f tikz --tikzedgelabels --graphstyle=automaton file.dot > file.tex \tikzstyle{automaton}=[>=stealth',initial text={},thick,every loop/.style={min distance=7mm,looseness=5}] \tikzstyle{state}=[] \tikzstyle{final}=[accepting by arrow] % % % \begin{document} \ifcorrige \title{Exercices divers — Corrigé} \else \title{Exercices divers} \fi \author{David A. Madore} \maketitle \centerline{\textbf{INF105}} {\footnotesize \immediate\write18{sh ./vc > vcline.tex} \begin{center} Git: \input{vcline.tex} \end{center} \immediate\write18{echo ' (stale)' >> vcline.tex} \par} \pretolerance=8000 \tolerance=50000 % % % \exercice On rappelle qu'une fonction $f\colon \mathbb{N} \to \mathbb{N}$ est dite \emph{calculable} lorsqu'il existe un algorithme (par exemple, un programme pour une machine de Turing) prenant en entrée un $n\in\mathbb{N}$ qui termine toujours en temps fini et renvoie la valeur $f(n)$. On rappelle qu'une partie $E$ de $\mathbb{N}$ ou de $\mathbb{N}^2$ est dite \emph{décidable} lorsque sa fonction indicatrice est calculable, ou, ce qui revient au même, lorsqu'il existe un algorithme prenant en entrée un élément de $\mathbb{N}$ ou de $\mathbb{N}^2$ qui termine toujours en temps fini et renvoie vrai ($1$) ou faux ($0$) selon que l'élément fourni appartient ou non à $E$. On rappelle enfin qu'une partie $E$ de $\mathbb{N}$ ou de $\mathbb{N}^2$ est dite \emph{semi-décidable} lorsqu'il existe un algorithme prenant en entrée un élément de $\mathbb{N}$ ou de $\mathbb{N}^2$ qui termine toujours en temps fini et renvoie vrai ($1$) si l'élément fourni appartient à $E$, et sinon ne termine pas (on peut aussi accepter qu'il termine en renvoyant faux, cela ne change rien). Soit $f\colon \mathbb{N} \to \mathbb{N}$ : montrer qu'il y a équivalence entre les affirmations suivantes : \begin{enumerate} \item la fonction $f$ est calculable, \item le graphe $\Gamma_f := \{(n,f(n)) : n\in\mathbb{N}^2\} = \{(n,p)\in\mathbb{N}^2 : p=f(n)\}$ de $f$ est décidable, \item le graphe $\Gamma_f$ de $f$ est semi-décidable. \end{enumerate} (Montrer que (3) implique (1) est le plus difficile : on pourra commencer par s'entraîner en montrant que (2) implique (1). Pour montrer que (3) implique (2), on pourra chercher une façon de tester en parallèle un nombre croissant de valeurs de $p$ de manière à s'arrêter si l'une quelconque convient.) \begin{corrige} Montrons que (1) implique (2) : si on dispose d'un algorithme capable de calculer $f(n)$ en fonction de $n$, alors il est facile d'écrire un algorithme capable de décider si $p=f(n)$ (il suffit de calculer $f(n)$ avec l'algorithme supposé exister, de comparer avec la valeur de $p$ fournie, et de renvoyer vrai/$1$ si elles sont égales, et faux/$0$ sinon). Le fait que (2) implique (3) est évident car tout ensemble décidable est semi-décidable. Montrons que (2) implique (1) même si ce ne sera au final pas utile : supposons qu'on ait un algorithme $T$ qui décide $\Gamma_f$ (i.e., donnés $(n,p)$, termine toujours en temps fini, en répondant oui si $p=f(n)$ et non si $p\neq f(n)$), et on cherche à écrire un algorithme qui calcule $f(n)$. Pour cela, donné un $n$, il suffit de lancer l'algorithme $T$ successivement sur les valeurs $(n,0)$ puis $(n,1)$ puis $(n,2)$ et ainsi de suite (c'est-à-dire faire une boucle infinie sur $p$ et lancer $T$ sur chaque couple $(n,p)$) jusqu'à trouver un $p$ pour lequel $T$ réponde vrai : on termine alors en renvoyant la valeur $p$ qu'on a trouvée, qui vérifie $p=f(n)$ par définition de $T$. Reste à montrer que (3) implique (1) : supposons qu'on ait un algorithme $T$ qui « semi-décide » $\Gamma_f$ (i.e., donnés $(n,p)$, termine en temps fini et répond oui si $p=f(n)$, et ne termine pas sinon), et on cherche à écrire un algorithme qui calcule $f(n)$. Pour cela, on va tester les valeurs $0\leq p\leq M$ chacune pour $M$ étapes et faire tendre $M$ vers l'infini : plus exactement, on utilise l'algorithme $U$ suivant : \begin{itemize} \item pour $M$ allant de $0$ à l'infini, \begin{itemize} \item pour $p$ allant de $0$ à $M$, \begin{itemize} \item exécuter l'algorithme $T$ sur l'entrée $(n,p)$ pendant au plus $M$ étapes, \item s'il termine en renvoyant vrai ($1$), terminer et renvoyer $p$ (sinon, continuer les boucles). \end{itemize} \end{itemize} \end{itemize} (Intuitivement, $U$ essaie de lancer l'algorithme $T$ sur un nombre de valeurs de $p$ de plus en plus grand et en attendant de plus en plus longtemps pour voir si l'une d'elles termine.) Si l'algorithme $U$ défini ci-dessus termine, il renvoie forcément $f(n)$ (puisque l'algorithme $T$ a répondu vrai, c'est que $p=f(n)$, et on renvoie la valeur en question) ; il reste à expliquer pourquoi $U$ termine toujours. Mais la valeur $f(n)$ existe (même si on ne la connaît pas) car la fonction $f$ était supposée définie partout, et lorsque l'algorithme $T$ est lancé sur $(n,f(n))$ il est donc censé terminer en un certain nombre (fini !) d'étapes : si $M$ est supérieur à la fois à $f(n)$ et à ce nombre d'étapes, la valeur $f(n)$ va être prise par $p$ dans la boucle intérieure, et pour cette valeur, l'algorithme $T$ va terminer sur l'entrée $(n,p)$ en au plus $M$ étapes, ce qui assure que $U$ termine effectivement. L'algorithme $U$ calcule donc bien la fonction $f$ demandée, ce qui prouve (1). \end{corrige} % % % \end{document}