summaryrefslogtreecommitdiffstats
path: root/exercices3.tex
blob: eb19a9fbc99af2998b48604773680b7c58272323 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{arrows,automata,positioning}
\usepackage[hyperindex=false]{hyperref}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newcommand\exercice{%
\refstepcounter{comcnt}\bigbreak\noindent\textbf{Exercice~\thecomcnt.}}
\renewcommand{\qedsymbol}{\smiley}
%
\newcommand{\liff}{\mathrel{\Longleftrightarrow}\relax}
%
\DeclareUnicodeCharacter{00A0}{~}
\DeclareUnicodeCharacter{03B5}{$\varepsilon$}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
\newcommand{\spaceout}{\hskip1emplus2emminus.5em}
\newif\ifcorrige
\corrigetrue
\newenvironment{corrige}%
{\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi%
\smallbreak\noindent{\underbar{\textit{Corrigé.}}\quad}}
{{\hbox{}\nobreak\hfill\checkmark}%
\ifcorrige\relax\else\egroup\fi\par}
%
%
% NOTE: compile dot files with
% dot2tex --figonly -f tikz --tikzedgelabels --graphstyle=automaton file.dot  > file.tex
\tikzstyle{automaton}=[>=stealth',initial text={},thick,every loop/.style={min distance=7mm,looseness=5}]
\tikzstyle{state}=[]
\tikzstyle{final}=[accepting by arrow]
%
%
%
\begin{document}
\ifcorrige
\title{Exercices divers — Corrigé}
\else
\title{Exercices divers}
\fi
\author{David A. Madore}
\maketitle

\centerline{\textbf{INF105}}

{\footnotesize
\immediate\write18{sh ./vc > vcline.tex}
\begin{center}
Git: \input{vcline.tex}
\end{center}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}

\pretolerance=8000
\tolerance=50000



%
%
%

\exercice

On rappelle qu'une fonction $f\colon \mathbb{N} \to \mathbb{N}$ est
dite \emph{calculable} lorsqu'il existe un algorithme (par exemple, un
programme pour une machine de Turing) prenant en entrée un
$n\in\mathbb{N}$ qui termine toujours en temps fini et renvoie la
valeur $f(n)$.  On rappelle qu'une partie $E$ de $\mathbb{N}$ ou de
$\mathbb{N}^2$ est dite \emph{décidable} lorsque sa fonction
indicatrice est calculable, ou, ce qui revient au même, lorsqu'il
existe un algorithme prenant en entrée un élément de $\mathbb{N}$ ou
de $\mathbb{N}^2$ qui termine toujours en temps fini et renvoie
vrai ($1$) ou faux ($0$) selon que l'élément fourni appartient ou non
à $E$.  On rappelle enfin qu'une partie $E$ de $\mathbb{N}$ ou de
$\mathbb{N}^2$ est dite \emph{semi-décidable} lorsqu'il existe un
algorithme prenant en entrée un élément de $\mathbb{N}$ ou de
$\mathbb{N}^2$ qui termine toujours en temps fini et renvoie
vrai ($1$) si l'élément fourni appartient à $E$, et sinon ne termine
pas (on peut aussi accepter qu'il termine en renvoyant faux, cela ne
change rien).

Soit $f\colon \mathbb{N} \to \mathbb{N}$ : montrer qu'il y a
équivalence entre les affirmations suivantes :
\begin{enumerate}
\item la fonction $f$ est calculable,
\item le graphe $\Gamma_f := \{(n,f(n)) : n\in\mathbb{N}^2\} =
  \{(n,p)\in\mathbb{N}^2 : p=f(n)\}$ de $f$ est décidable,
\item le graphe $\Gamma_f$ de $f$ est semi-décidable.
\end{enumerate}

(Montrer que (3) implique (1) est le plus difficile : on pourra
commencer par s'entraîner en montrant que (2) implique (1).  Pour
montrer que (3) implique (2), on pourra chercher une façon de tester
en parallèle un nombre croissant de valeurs de $p$ de manière à
s'arrêter si l'une quelconque convient.)

\begin{corrige}
Montrons que (1) implique (2) : si on dispose d'un algorithme capable
de calculer $f(n)$ en fonction de $n$, alors il est facile d'écrire un
algorithme capable de décider si $p=f(n)$ (il suffit de calculer
$f(n)$ avec l'algorithme supposé exister, de comparer avec la valeur
de $p$ fournie, et de renvoyer vrai/$1$ si elles sont égales, et
faux/$0$ sinon).

Le fait que (2) implique (3) est évident car tout ensemble décidable
est semi-décidable.

Montrons que (2) implique (1) même si ce ne sera au final pas utile :
supposons qu'on ait un algorithme $T$ qui décide $\Gamma_f$ (i.e.,
donnés $(n,p)$, termine toujours en temps fini, en répondant oui si
$p=f(n)$ et non si $p\neq f(n)$), et on cherche à écrire un algorithme
qui calcule $f(n)$.  Pour cela, donné un $n$, il suffit de lancer
l'algorithme $T$ successivement sur les valeurs $(n,0)$ puis $(n,1)$
puis $(n,2)$ et ainsi de suite (c'est-à-dire faire une boucle infinie
sur $p$ et lancer $T$ sur chaque couple $(n,p)$) jusqu'à trouver un
$p$ pour lequel $T$ réponde vrai : on termine alors en renvoyant la
valeur $p$ qu'on a trouvée, qui vérifie $p=f(n)$ par définition
de $T$.

Reste à montrer que (3) implique (1) : supposons qu'on ait un
algorithme $T$ qui « semi-décide » $\Gamma_f$ (i.e., donnés $(n,p)$,
termine en temps fini et répond oui si $p=f(n)$, et ne termine pas
sinon), et on cherche à écrire un algorithme qui calcule $f(n)$.  Pour
cela, on va tester les valeurs $0\leq p\leq M$ chacune pour $M$ étapes
et faire tendre $M$ vers l'infini : plus exactement, on utilise
l'algorithme $U$ suivant :
\begin{itemize}
\item pour $M$ allant de $0$ à l'infini,
\begin{itemize}
\item pour $p$ allant de $0$ à $M$,
\begin{itemize}
\item exécuter l'algorithme $T$ sur l'entrée $(n,p)$ pendant au
  plus $M$ étapes,
\item s'il termine en renvoyant vrai ($1$), terminer et renvoyer $p$
  (sinon, continuer les boucles).
\end{itemize}
\end{itemize}
\end{itemize}

(Intuitivement, $U$ essaie de lancer l'algorithme $T$ sur un nombre de
valeurs de $p$ de plus en plus grand et en attendant de plus en plus
longtemps pour voir si l'une d'elles termine.)

Si l'algorithme $U$ défini ci-dessus termine, il renvoie forcément
$f(n)$ (puisque l'algorithme $T$ a répondu vrai, c'est que $p=f(n)$,
et on renvoie la valeur en question) ; il reste à expliquer pourquoi
$U$ termine toujours.  Mais la valeur $f(n)$ existe (même si on ne la
connaît pas) car la fonction $f$ était supposée définie partout, et
lorsque l'algorithme $T$ est lancé sur $(n,f(n))$ il est donc censé
terminer en un certain nombre (fini !) d'étapes : si $M$ est supérieur
à la fois à $f(n)$ et à ce nombre d'étapes, la valeur $f(n)$ va être
prise par $p$ dans la boucle intérieure, et pour cette valeur,
l'algorithme $T$ va terminer sur l'entrée $(n,p)$ en au plus $M$
étapes, ce qui assure que $U$ termine effectivement.

L'algorithme $U$ calcule donc bien la fonction $f$ demandée, ce qui
prouve (1).
\end{corrige}


%
%
%
\end{document}