From 48f36dd1654b32d782fc94c91196ac2881efef98 Mon Sep 17 00:00:00 2001 From: "David A. Madore" Date: Sun, 3 Dec 2023 23:20:17 +0100 Subject: Various examples of Curry-Howard. --- transp-inf110-02-typage.tex | 82 ++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 81 insertions(+), 1 deletion(-) diff --git a/transp-inf110-02-typage.tex b/transp-inf110-02-typage.tex index c699a10..50a442d 100644 --- a/transp-inf110-02-typage.tex +++ b/transp-inf110-02-typage.tex @@ -1549,7 +1549,7 @@ $A\land(B\lor C) \Leftrightarrow (A\land B)\lor (A\land C)$ $\top$&$\bot \Rightarrow C$\\ \hline $\top\land A \Leftrightarrow A$\quad\quad\quad$\bot \land A \Leftrightarrow \bot$ -&$\top\lor A \Leftrightarrow \top$\quad\quad\quad$\bot \lor A \Leftrightarrow A$\\ +&$\top\lor A \mathrel{\color{olive}\Leftrightarrow} \top$\quad\quad\quad$\bot \lor A \Leftrightarrow A$\\ \hline $\neg A \land \neg B \Leftrightarrow \neg(A\lor B)$&$\neg A \lor \neg B \mathrel{\color{red}\Rightarrow} \neg(A\land B)$\\ \hline @@ -2173,6 +2173,86 @@ $\inferrule*[left={Void}]{\Gamma\vdash r:\bot}{\Gamma\vdash \itempoint Pas de nouvelle règle de réduction à ajouter. +\end{frame} +% +\begin{frame} +\frametitle{Correspondance de Curry-Howard : exemples divers} + +\itempoint L'implication $(A\Rightarrow B\Rightarrow C) \Rightarrow +(A\Rightarrow B)\Rightarrow A\Rightarrow C$ est démontrée par le terme +(« combinateur $\mathsf{S}$ ») : +\[ +\lambda (x:\alpha\to\beta\to\gamma).\, +\lambda (y:\alpha\to\beta).\, +\lambda (z:\alpha).\, +xz(yz) +\] + +\medskip + +\itempoint L'équivalence $(A\land B \Rightarrow C) \Leftrightarrow +(A\Rightarrow B\Rightarrow C)$ est démontrée par les fonctions de +« curryfication » +\[ +\lambda (f:\alpha\times\beta\to\gamma).\, +\lambda (x:\alpha).\, \lambda(y:\beta).\, +f\langle x,y\rangle +\] +et « décurryfication » +\[ +\lambda (f:\alpha\to\beta\to\gamma).\, +\lambda (z:\alpha\times\beta).\, +f(\pi_1 z)(\pi_2 z) +\] + +\medskip + +\itempoint L'équivalence $A\lor(B\land C) \Leftrightarrow (A\lor +B)\land (A\lor C)$ est démontrée par les termes +{\footnotesize +\[ +\lambda (u:\alpha+(\beta\times\gamma)).\, +(\texttt{match~}u\texttt{~with~}\iota_1 v \mapsto \langle \iota^{(\alpha,\beta)}_1 v, \iota^{(\alpha,\gamma)}_1 v\rangle,\; +\iota_2 w \mapsto \langle \iota^{(\alpha,\beta)}_2 (\pi_1 w), \iota^{(\alpha,\gamma)}_2 (\pi_2 w)\rangle) +\] +\vskip-1ex et\vskip-5ex +\[ +\begin{aligned} +\lambda (u:(\alpha+\beta)\times(\alpha+\gamma)).\, +&(\texttt{match~}\pi_1 u\texttt{~with~}\iota_1 v \mapsto \iota_1^{(\alpha,\beta\times\gamma)} v,\\ +\iota_2 v' \mapsto +&(\texttt{match~}\pi_2 u\texttt{~with~}\iota_1 w \mapsto \iota_1^{(\alpha,\beta\times\gamma)} w,\; +\iota_2 w' \mapsto \iota_2^{(\alpha,\beta\times\gamma)}\langle v',w'\rangle )) +\end{aligned} +\] +} + +\end{frame} +% +\begin{frame} +\frametitle{Correspondance de Curry-Howard : exemple en OCaml} + +Reprise de l'équivalence $A\lor(B\land C) \Leftrightarrow (A\lor +B)\land (A\lor C)$ typée par OCaml : + +\bigskip + +{\footnotesize\tt +let pi1 = fun (x,y) -> x ;; (* $\pi_1$ *)\\ +{\color{purple}val pi1 : 'a * 'b -> 'a = }\\ +let pi2 = fun (x,y) -> y ;; (* $\pi_2$ *)\\ +{\color{purple}val pi2 : 'a * 'b -> 'b = }\\ +type ('a, 'b) sum = Inj1 of 'a | Inj2 of 'b ;; (* $\alpha+\beta$ *)\\ +{\color{purple}type ('a, 'b) sum = Inj1 of 'a | Inj2 of 'b}\\ +fun u -> match u with Inj1 v -> (Inj1 v, Inj1 v)\\ +\ \ | Inj2 w -> (Inj2 (pi1 w), Inj2 (pi2 w)) ;;\\ +{\color{purple}- : ('a, 'b * 'c) sum -> ('a, 'b) sum * ('a, 'c) sum = }\\ +fun u -> (match (pi1 u) with Inj1 v -> Inj1 v\\ +\ \ | Inj2 v\_ -> (match (pi2 u) with Inj1 w -> Inj1 w\\ +\ \ \ \ | Inj2 w\_ -> Inj2 (v\_,w\_))) ;;\\ +{\color{purple}- : ('a, 'b) sum * ('a, 'c) sum -> ('a, 'b * 'c) sum = } +} + \end{frame} % % TODO: -- cgit v1.2.3