%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it? \documentclass[12pt,a4paper]{article} \usepackage[french]{babel} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} %\usepackage{ucs} \usepackage{times} % A tribute to the worthy AMS: \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} % \usepackage{mathrsfs} \usepackage{wasysym} \usepackage{url} % \usepackage{graphics} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{tikz} % \theoremstyle{definition} \newtheorem{comcnt}{Tout}[section] \newcommand\thingy{% \refstepcounter{comcnt}\medskip\noindent\textbf{\thecomcnt.} } \newcommand\exercice{% \refstepcounter{comcnt}\bigskip\noindent\textbf{Exercice~\thecomcnt.}} % \newcommand{\dbllangle}{\mathopen{\langle\!\langle}} \newcommand{\dblrangle}{\mathclose{\rangle\!\rangle}} % \DeclareUnicodeCharacter{00A0}{~} % \newif\ifcorrige \corrigetrue \newenvironment{corrige}% {\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi% \smallbreak\footnotesize\noindent{\underbar{\textit{Corrigé.}}\quad}} {{\hbox{}\nobreak\hfill\checkmark}% \ifcorrige\relax\else\egroup\fi\par} % % % \begin{document} \title{Logique et Fondements de l'Informatique\\Exercices} \author{David A. Madore} \maketitle \centerline{\textbf{INF1110}} \vskip2cm {\footnotesize \immediate\write18{sh ./vc > vcline.tex} \begin{center} Git: \input{vcline.tex} \\ (Recopier la ligne ci-dessus dans tout commentaire sur ce document) \end{center} \immediate\write18{echo ' (stale)' >> vcline.tex} \par} \pretolerance=8000 \tolerance=50000 % % % \section{Calculabilité} \exercice\ ($\star$) On considère la fonction $f\colon \mathbb{N} \to \mathbb{N}$ qui à $n \in \mathbb{N}$ associe le $n$-ième chiffre de l'écriture décimale de $\sqrt{2} \approx 1.41421356237309504880\ldots$, c'est-à-dire $f(0) = 1$, $f(1) = 4$, $f(2) = 1$, $f(3) = 4$, etc. La fonction $f$ est-elle calculable ? Est-elle primitive récursive ? On expliquera précisément pourquoi. \begin{corrige} On peut calculer $f(n)$ selon l'algorithme suivant : calculer $N = 10^n$, puis pour $i$ allant de $0$ à $2N$, tester si $i^2 \leq 2 N^2 < (i+1)^2$ : lorsque c'est le cas (et ce sera le cas pour exactement un $i$ dans l'intervalle), renvoyer le reste $i\% 10$ de la division euclidienne de $i$ par $10$. Cet algorithme est correct car l'inégalité $i^2 \leq 2 N^2 < (i+1)^2$ testé équivaut à $\frac{i}{N} \leq \sqrt{2} < \frac{i+1}{N}$, ce qui se produit pour exactement un $i$, à savoir $\lfloor \sqrt{2}\times 10^n \rfloor$ (on peut arrêter la boucle à $2N$ car $\sqrt{2} < 2$), et que le dernier chiffre décimal $i\% 10$ de ce $i$ est le $n$-ième chiffre de l'écriture décimale de $\sqrt{2}$. D'autre part, comme on a donné un algorithme explicite, $f$ est calculable. Mieux : comme la boucle utilisée est bornée \textit{a priori}, $f$ est primitive récursive. \end{corrige} % \exercice\label{exercice-image-calculable-est-semi-decidable}\ ($\star$) \textbf{(1)} Soit $f\colon \mathbb{N} \to \mathbb{N}$ totale calculable. Montrer que l'image $f(\mathbb{N})$ (c'est-à-dire $\{f(i) : i\in\mathbb{N}\}$) est semi-décidable. \textbf{(2)} Soit $f\colon \mathbb{N} \to \mathbb{N}$ totale calculable et strictement croissante. Montrer que l'image $f(\mathbb{N})$ (c'est-à-dire $\{f(i) : i\in\mathbb{N}\}$) est décidable. \begin{corrige} \textbf{(1)} L'algorithme évident suivant semi-décide $\{f(i) : i\in\mathbb{N}\}$ : donné $m \in \mathbb{N}$ l'entier à tester, faire une boucle infinie sur $i$ parcourant les entiers naturels et pour chacun, tester si $f(i) = m$ : si c'est le cas, terminer et répondre « oui », sinon, continuer la boucle. \textbf{(2)} L'algorithme évident suivant décide $\{f(i) : i\in\mathbb{N}\}$ : donné $m \in \mathbb{N}$ l'entier à tester, faire une boucle pour $i$ parcourant les entiers naturels, et pour chacun, tester si $f(i) = m$ : si c'est le cas, terminer et répondre « oui », tandis que si $f(i) > m$, terminer et répondre « non », sinon, continuer la boucle. La boucle termine en temps fini car $f(i) \geq i$ (inégalité claire pour une fonction $\mathbb{N} \to \mathbb{N}$ strictement croissante) et notamment la boucle s'arrêtera au pire lorsque $i$ vaut $m+1$. (Du coup, si on préfère, on peut réécrire la boucle potentiellement infinie comme une boucle pour $i$ allant de $0$ à $m$.) \end{corrige} % \exercice\label{exercice-image-fonction-partielle-calculable}\ ($\star\star$) \textbf{(1)} Soit $B \subseteq \mathbb{N}$ semi-décidable et non-vide. Montrer qu'il existe $f\colon \mathbb{N} \to \mathbb{N}$ totale calculable telle que $f(\mathbb{N}) = B$. (\emph{Indication :} si $m_0 \in B$ et si $B$ est semi-décidé par le $e$-ième programme, i.e., $B = \{m : \varphi_e(m)\downarrow\}$, on définira $\tilde f\colon \mathbb{N}^2 \to \mathbb{N}$ par $\tilde f(n,m) = m$ si $T(n,e,\dbllangle m\dblrangle)$, où $T(n,e,v)$ est comme dans le théorème de la forme normale de Kleene\footnote{Rappel : c'est-à-dire que $T(n,e,\dbllangle \underline{x}\dblrangle)$ signifie : « $n$ est le code d'un arbre de calcul de $\varphi_e(\underline{x})$ termine » (le résultat $\varphi_e(\underline{x})$ du calcul étant alors noté $U(n)$).}, et $\tilde f(n,m) = m_0$ sinon. Alternativement, si on préfère raisonner sur les machines de Turing : si $B$ est semi-décidé par la machine de Turing $\mathscr{M}$, on définit $\tilde f(n,m) = m$ si $\mathscr{M}$ termine sur l'entrée $m$ en $\leq n$ étapes d'exécution, et $\tilde f(n,m) = m_0$ sinon.) \textbf{(2)} Soit $f\colon \mathbb{N} \dasharrow \mathbb{N}$ partielle calculable. Montrer que l'image $f(\mathbb{N})$ (c'est-à-dire $\{f(i) : i\in\mathbb{N} \text{~et~} f(i){\downarrow}\}$) est semi-décidable. (\emph{Indication :} chercher à formaliser l'idée de lancer les calculs des différents $f(i)$ « en parallèle ».) \begin{corrige} \textbf{(1)} La fonction $\tilde f \colon \mathbb{N}^2 \to \mathbb{N}$ définie dans l'indication est calculable (et d'ailleurs même primitive récursive) : si on a pris la définition avec $T$ le fait que $T$ soit p.r. fait partie du théorème de la forme normale ; si on préfère les machines de Turing, c'est le fait qu'on peut simuler l'exécution de $\mathscr{M}$ pour $n$ étapes (de façon p.r.). Et on voit qu'on a $\tilde f(n,m) \in B$ dans tous les cas : donc $\tilde f(\mathbb{N}^2) \subseteq B$. Mais réciproquement, si $m \in B$, alors $\varphi_e(m)\downarrow$ (si on préfère les machines de Turing, $\mathscr{M}$ termine sur l'entrée $m$), et ceci dit précisément qu'il existe $n$ tel que $\tilde f(n,m) = m$, donc $m \in \tilde f(\mathbb{N}^2)$ ; bref, $B \subseteq \tilde f(\mathbb{N}^2)$. On a donc $\tilde f(\mathbb{N}^2) = B$ par double inclusion. Quitte à remplacer $\tilde f \colon \mathbb{N}^2 \to \mathbb{N}, (n,m) \mapsto \tilde f(n,m)$ par $f \colon \mathbb{N} \to \mathbb{N}, \langle n,m\rangle \mapsto \tilde f(n,m)$, on a $f(\mathbb{N}) = B$. \textbf{(2)} Ici on ne peut pas appliquer bêtement l'algorithme exposé dans l'exercice \ref{exercice-image-calculable-est-semi-decidable} question (1) car si le calcul de $f(i)$ ne termine pas, il bloquera tous les suivants. Il faut donc mener le calcul des $f(i)$ « en parallèle ». On va procéder par énumération des couples $(n,i)$ et lancer le calcul de $f(i)$ sur $n$ étapes. Plus précisément : considérons l'algorithme suivant : il prend en entrée un entier $m$ dont il s'agit de semi-décider s'il appartient à $f(\mathbb{N})$. L'algorithme fait une boucle infinie sur $p$ parcourant les entiers naturels : chaque $p$ est d'abord décodé comme le code $\langle n,i\rangle$ d'un couple d'entiers naturels (ceci est bien sûr calculable). On teste si l'exécution de $f(i)$ termine en $\leq n$ étapes (ou, si on préfère le théorème de la forme de normale, on teste si $T(n,e,\dbllangle i\dblrangle)$, où $e$ est un code de la fonction $f = \varphi^{(1)}_e$) : si oui, et si la valeur $f(i)$ calculée est égale à l'entier $m$ considéré, on termine en renvoyant « oui », sinon on continue la boucle. Cet algorithme semi-décide bien $f(\mathbb{N})$ : en effet, dire que $m \in f(\mathbb{N})$, équivaut à l'existence de $i$ tel que $f(i){\downarrow} = m$, c'est-à-dire à l'existence de $n,i$ tel que l'algorithme renverra « oui » en testant $\langle n,i\rangle$. (\emph{Variante :} plutôt qu'utiliser le codage des couples $\langle n,i\rangle$, on peut aussi faire ainsi : on parcourt les entiers naturels $p$ en une boucle infini et pour chacun on effectue deux boucles bornées pour $0\leq n\leq p$ et $0\leq i\leq p$ : peu importent les bornes précises, l'important est que pour $p$ assez grand on va finir par tester le couple $(n,i)$.) \end{corrige} % \exercice\ ($\star\star$) Soit $f\colon \mathbb{N} \to \mathbb{N}$ une fonction totale : montrer qu'il y a équivalence entre les affirmations suivantes : \begin{enumerate} \item la fonction $f$ est calculable, \item le graphe $\Gamma_f := \{(i,f(i)) : i\in\mathbb{N}\} = \{(i,q)\in\mathbb{N}^2 : q=f(i)\}$ de $f$ est décidable, \item le graphe $\Gamma_f$ de $f$ est semi-décidable. \end{enumerate} (Montrer que (3) implique (1) est le plus difficile : on pourra commencer par s'entraîner en montrant que (2) implique (1). Pour montrer que (3) implique (1), on pourra chercher une façon de tester en parallèle un nombre croissant de valeurs de $q$ de manière à s'arrêter si l'une quelconque convient. On peut s'inspirer de l'exercice \ref{exercice-image-fonction-partielle-calculable} question (2).) \begin{corrige} Montrons que (1) implique (2) : si on dispose d'un algorithme $\mathscr{F}$ capable de calculer $f(i)$ en fonction de $i$, alors il est facile d'écrire un algorithme $\mathscr{D}$ capable de décider si $q=f(i)$ (il suffit de calculer $f(i)$ avec l'algorithme $\mathscr{F}$ supposé exister, de comparer avec la valeur de $q$ fournie, et de renvoyer vrai/$1$ si elles sont égales, et faux/$0$ sinon), c'est-à-dire que l'algorithme $\mathscr{D}$ décide $\Gamma_f$. Le fait que (2) implique (3) est évident car tout ensemble décidable est en particulier semi-décidable. Montrons que (2) implique (1) même si ce ne sera au final pas utile : supposons qu'on ait un algorithme $\mathscr{D}$ qui décide $\Gamma_f$ (i.e., donnés $(i,q)$, termine toujours en temps fini, en répondant « oui » si $q=f(i)$ et « non » si $q\neq f(i)$), et on cherche à écrire un algorithme $\mathscr{F}$ qui calcule $f(i)$. Pour cela, donné un $i$, il suffit de lancer l'algorithme $\mathscr{D}$ successivement sur les valeurs $(i,0)$ puis $(i,1)$ puis $(i,2)$ et ainsi de suite (c'est-à-dire faire une boucle infinie sur $q$ parcourant les entiers naturels et lancer $\mathscr{D}$ sur chaque couple $(i,q)$) jusqu'à trouver un $q$ pour lequel $\mathscr{D}$ réponde vrai : on termine alors en renvoyant la valeur $q$ qu'on a trouvée, qui vérifie $q=f(i)$ par définition de $\mathscr{D}$. L'algorithme $\mathscr{F}$ qu'on vient de décrire termine toujours car $f$ était supposée totale, donc il existe bien un $q$ pour lequel $\mathscr{D}$ répondra « oui ». Reste à montrer que (3) implique (1) : supposons maintenant qu'on ait un algorithme $\mathscr{S}$ qui « semi-décide » $\Gamma_f$ (i.e., donnés $(i,q)$, termine en temps fini et répond « oui » si $q=f(i)$, et ne termine pas sinon), et on cherche à écrire un algorithme qui, donné $i$ en entrée, calcule $f(i)$. Notre algorithme (appelons-le $\mathscr{F}$) fait une boucle infinie sur $p$ parcourant les entiers naturels : chaque $p$ est d'abord décodé comme le code $\langle n,q\rangle$ d'un couple d'entiers naturels. On teste si l'exécution de $\mathscr{S}$ sur l'entrée $(i,q)$ termine en $\leq n$ étapes (ce qui est bien faisable algorithmiquement) : si oui, on renvoie la valeur $q$ ; sinon, on continue la boucle. Cet algorithme $\mathscr{F}$ termine toujours : en effet, pour chaque $i$ donné, il existe $q$ tel que $(i,q) \in \Gamma_f$, à savoir $q = f(i)$ ; et alors l'algorithme $\mathscr{S}$ doit terminer sur l'entrée $(i,q)$, c'est-à-dire que pour $n$ assez grand, il termine en $\leq n$ étapes, donc $\mathscr{F}$ terminera lorsqu'il arrivera à $p = \langle n,q\rangle$, et il renverra bien $q$ comme annoncé. On a donc montré que $f$ était calculable puisqu'on a exhibé un algorithme qui la calcule. (Comme dans l'exercice \ref{exercice-image-fonction-partielle-calculable}, on peut utiliser le $T$ de la forme normale de Kleene au lieu de parler d'« étapes » d'exécution d'une machine de Turing. Aussi, plutôt qu'utiliser le codage des couples $\langle n,i\rangle$, on peut préférer faire ainsi : on parcourt les entiers naturels $p$ en une boucle infini et pour chacun on effectue deux boucles bornées pour $0\leq n\leq p$ et $0\leq q\leq p$ : peu importent les bornes précises, l'important est que pour $p$ assez grand on va finir par tester le couple $(n,q)$.) \end{corrige} % \exercice\ ($\star\star\star$) On considère la fonction $f\colon \mathbb{N}^2 \to \mathbb{N}$ qui à $(e,x)$ associe $1$ si $\psi^{(1)}_e(x) = 0$ et $0$ sinon (y compris si $\psi^{(1)}_e$ n'est pas définie), où $e \mapsto \psi^{(1)}$ est la numérotation standard des fonctions primitives récursives en une variable (= d'arité $1$). La fonction $f$ est-elle calculable ? Est-elle primitive récursive ? On expliquera précisément pourquoi. (On s'inspirera de résultats vus en cours.) Cela changerait-il si on inversait les valeurs $0$ et $1$ dans $f$ ? \begin{corrige} La fonction $f$ est calculable. En effet, \begin{itemize} \item on peut décider de façon algorithmique si $e$ est un numéro valable de fonction primitive récursive (i.e., si $\psi^{(1)}_e$), il s'agit pour cela simplement de « décoder » $e$ et de vérifier qu'il suit les conventions utilisées pour numéroter les fonctions primitives récursives (pour être bien précis, le décodage termine parce que le code d'une liste est supérieur à tout élément de cette liste) ; \item lorsque c'est le cas, on peut calculer $\psi^{(1)}_e(x)$ car quand elle est définie elle coïncide avec $\varphi^{(1)}_e(x)$ (numérotation des fonctions générales récursives), dont on sait qu'il est calculable (universalité) ; \item calculer $f$ ne pose ensuite aucune difficulté. \end{itemize} Montrons que $f$ n'est pas primitive récursive (on a vu en cours que $(e,x) \mapsto \psi^{(1)}_e(x)$ ne l'est pas, mais cela ne suffit pas : on pourrait imaginer que le fait qu'il soit égal à $0$ soit plus facile à tester). Pour cela, supposons par l'absurde que $f$ soit primitive récursive. Par le théorème de récursion de Kleene, il existe $e$ tel que $\psi^{(1)}_e(x) = f(e,x)$. Or la définition même de $f$ fait que $f(e,x) \neq \psi^{(1)}_e(x)$ dans tous les cas : ceci est une contradiction. Donc $f$ n'est pas primitive récursive. Cela ne change bien sûr rien d'échanger $0$ et $1$, c'est-à-dire de remplacer $f$ par $1 - f$ (l'une est récursive, resp. p.r., ssi l'autre l'est), mais la démonstration ne se serait pas appliquée telle quelle. \end{corrige} % % % \end{document}