summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid A. Madore <david+git@madore.org>2010-05-20 17:33:52 +0200
committerDavid A. Madore <david+git@madore.org>2010-05-20 17:33:52 +0200
commit94588801ebc3ddf39cc77a01dd20a3d4a91a4ddd (patch)
tree3ae6a98f65cfcfecf13abd53a27993a6c2931708
parent17250277bd970a7b95b31c3f4bc37d05045580bb (diff)
downloadmdi349-94588801ebc3ddf39cc77a01dd20a3d4a91a4ddd.tar.gz
mdi349-94588801ebc3ddf39cc77a01dd20a3d4a91a4ddd.tar.bz2
mdi349-94588801ebc3ddf39cc77a01dd20a3d4a91a4ddd.zip
The Zariski topology.
-rw-r--r--notes-geoalg.tex110
1 files changed, 104 insertions, 6 deletions
diff --git a/notes-geoalg.tex b/notes-geoalg.tex
index c7ef761..a89b31c 100644
--- a/notes-geoalg.tex
+++ b/notes-geoalg.tex
@@ -840,7 +840,7 @@ réunion de $Z(x)$ (l'axe des ordonnées) et $Z(y)$ (l'axe des
abscisses) qui sont tous tous les deux strictement plus petits
que $Z(xy)$.
-\begin{prop}
+\begin{prop}\label{ferme-irreductible-ssi-ideal-premier}
Un fermé de Zariski $E \subseteq k^d$ est irréductible si, et
seulement si, l'idéal $\mathfrak{I}(E)$ est premier.
\end{prop}
@@ -1245,17 +1245,115 @@ dans $\mathbb{A}^e$), les fonctions définissant $f|_{X'}$ sont
simplement $f_1|_{X'},\ldots,f_e|_{X'}$.
%
-\subsection{Ouverts de Zariski et variétés quasi-affines}
+\subsection{La topologie de Zariski}
On appelle \textbf{ouvert de Zariski} dans $k^d$ (toujours avec $k$ un
corps algébriquement clos) le complémentaire d'un fermé de Zariski.
Autrement dit, si $I$ est un idéal de $k[t_1,\ldots,t_d]$, on définit
$U(I) = \{(x_1,\ldots,x_d) \in k^d :\penalty0 (\forall f\in I)\,
f(x_1,\ldots,x_d) \neq 0\}$ le complémentaire de $Z(I)$ : un ouvert de
-Zariski de $k^d$ est un ensemble de la forme $U(I)$. Si $I$ est
-engendré par les éléments $f_1,\ldots,f_r \in k[t_1,\ldots,t_d]$, on
-peut écrire $U(I) = D(f_1) \cup \cdots \cup D(f_r)$ où $D(f_i) :=
-U(\{f_i\})$ est l'ouvert où $f_i$ ne s'annule pas.
+Zariski de $k^d$ est un ensemble de la forme $U(I)$. Plus
+généralement, si $X$ est une variété algébrique affine, si $I$ est un
+idéal de $\mathcal{O}(X)$, on définit $U(I) = \{(x_1,\ldots,x_d) \in X
+:\penalty0 (\forall f\in I)\, f(x_1,\ldots,x_d) \neq 0\}$ le
+complémentaire de $Z(I)$ : on appelle ces ensembles ouverts de Zariski
+de $X$. (Pour l'instant, on les voit comme des ensembles de
+$k$-points, on verra plus loin comment définir leurs $A$-points, leurs
+morphismes, etc.)
+
+Étant donné qu'une intersection quelconque ou une réunion finie de
+fermés sont des fermés, dualement, \emph{une réunion quelconque ou une
+ intersection finie d'ouverts sont des ouverts} (par ailleurs,
+l'ensemble vide et l'ensemble plein sont des ouverts) --- ces
+propriétés sont constitutives de la notion de \emph{topologie}, en
+l'occurrence la \textbf{topologie de Zariski} (sur l'ensemble $k^d$ ou
+$X(k)$).
+
+Si $I$ est engendré par les éléments $f_1,\ldots,f_r$, on peut écrire
+$U(I) = D(f_1) \cup \cdots \cup D(f_r)$ où $D(f_i) := U(\{f_i\})$ est
+l'ouvert où $f_i$ ne s'annule pas (les $D(f)$ s'appellent parfois
+\emph{ouverts principaux}, on verra plus loin pourquoi il est utile de
+les distinguer).
+
+\begin{prop}\label{recouvrement-par-ouverts-principaux}
+Si $X$ est une variété algébrique affine et $f_i \in \mathcal{O}(X)$
+(pour $i \in \Lambda$ disons), alors $\bigcup_{i\in\Lambda} D(f_i) =
+X$ si et seulement si les $f_i$ engendrent l'idéal unité
+dans $\mathcal{O}(X)$ (c'est-à-dire ssi il existe des $g_i$, tous nuls
+sauf un nombre fini, tels que $\sum_{i\in\Lambda} g_i f_i = 1$).
+\end{prop}
+\begin{proof}
+Dire $\bigcup_{i\in\Lambda} D(f_i) = X$ équivaut à
+$\bigcap_{i\in\Lambda} Z(f_i) = \varnothing$, c'est-à-dire encore
+$Z(\{f_i\}) = \varnothing$, soit encore $Z(I) = \varnothing$ où $I$
+est l'idéal engendré par les $f_i$, et l'énoncé découle du
+Nullstellensatz faible.
+\end{proof}
+
+\smallbreak
+
+Un peu de vocabulaire de topologie : dans ce qui suit, on suppose que
+$X$ est un ensemble muni d'une topologie (c'est-à-dire un ensemble de
+parties de $X$ dites « ouvertes » contenant $\varnothing$ et $X$ et
+telles qu'une réunion quelconque ou une intersection finie d'ouverts
+sont des ouverts), sachant qu'on s'intéresse évidemment au cas de la
+topologie de Zariski.
+
+Si $x \in U \subseteq V$ avec $U$ ouvert (et $V$ une partie quelconque
+de $X$), on dit que $V$ est un \textbf{voisinage} de $x$. (Un
+voisinage ouvert de $x$ est donc tout simplement la même chose qu'un
+ouvert contenant $x$.)
+
+Si $E \subseteq X$ est une partie quelconque, l'intersection de tous
+les fermés (=complémentaires des ouverts) contenant $E$, c'est-à-dire
+le plus petit fermé contenant $E$, s'appelle \textbf{adhérence}
+de $E$, parfois notée $\overline{E}$. Il s'agit de l'ensemble des $x
+\in X$ tels que tout voisinage de $x$ rencontre $E$. Lorsque
+l'adhérence de $E$ est $X$ tout entier, on dit que $E$ est
+\textbf{dense} dans $X$.
+
+On dit que $X$ est \textbf{irréductible} lorsque toute écriture $X =
+F' \cup F''$ avec $F',F''$ fermés impose $F' = X$ ou $F'' = X$ ; de
+façon équivalente, cela signifie que tout ouvert non vide de $X$ est
+dense.
+
+On dit que $X$ est \textbf{quasi-compact} lorsque dès qu'on a une
+écriture $X = \bigcup_{i\in \Lambda} U_i$ avec $U_i$ ouverts
+(autrement dit, un recouvrement ouvert de $X$), il existe $\Xi
+\subseteq \Lambda$ fini tel que $X = \bigcup_{i\in\Xi} U_i$.
+
+\smallbreak
+
+Dans le cas de la topologie de Zariski sur une variété algébrique
+affine $X$ sur un corps algébriquement clos $k$ (c'est-à-dire,
+sur $X(k)$) :
+\begin{itemize}
+\item $X$ est irréductible ssi $\mathcal{O}(X)$ est intègre
+ (cf. \ref{ferme-irreductible-ssi-ideal-premier}),
+\item $X$ est toujours quasi-compact (découle
+ de \ref{recouvrement-par-ouverts-principaux} : si $f_i$ engendrent
+ l'idéal unité, un sous-ensemble fini d'entre eux l'engendrent ---
+ même sans utiliser le caractère noethérien de l'anneau),
+\item l'adhérence de Zariski d'une partie $E \subseteq X(k)$ est
+ $Z(\mathfrak{I}(E))$ (en effet, ceci est un fermé de Zariski
+ contenant $E$, et si $Z(J) \supseteq E$ est un autre fermé de
+ Zariski contenant $E$ alors on a vu $J \subseteq \mathfrak{I}(E)$
+ donc $Z(J) \supseteq Z(\mathfrak{I}(E))$ --- ceci montre que
+ $Z(\mathfrak{I}(E))$ est bien le plus petit pour l'inclusion fermé
+ de Zariski contenant $E$).
+\end{itemize}
+
+Exemple (idiot) : On suppose $k$ de caractéristique zéro, disons $k =
+\mathbb{C}$ ; quelle est l'adhérence de Zariski de $\mathbb{Z}$ dans
+$\mathbb{A}^1(k)$ ? Réponse : L'ensemble $\mathfrak{I}(\mathbb{Z})$
+des polynômes s'annulant en chaque point de $\mathbb{Z}$ est réduit
+à $(0)$ puisqu'un polynôme en une variable ne peut avoir qu'un nombre
+fini de racines ; donc l'adhérence de Zariski de $\mathbb{Z}$ est
+$Z(\mathfrak{I}(\mathbb{Z})) = \mathbb{A}^1(k)$ tout entier,
+c'est-à-dire que $\mathbb{Z}$ est dense dans la droite affine pour la
+topologie de Zariski. Plus généralement, on peut facilement montrer
+que les seuls fermés de Zariski de $\mathbb{A}^1(k)$ sont la droite
+$\mathbb{A}^1(k)$ tout entière et les parties \emph{finies}.
%