summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid A. Madore <david@procyon.(none)>2010-06-09 22:48:19 +0200
committerDavid A. Madore <david@procyon.(none)>2010-06-09 22:48:19 +0200
commit6d2697aef16dc104efecc9b41c5c0c576e8bd147 (patch)
tree364a93901be77dd54c89d9f697df784d6cbb5635
parent5516cf1b7c6ea7204fbbe21446e1660936c3beea (diff)
downloadmdi349-6d2697aef16dc104efecc9b41c5c0c576e8bd147.tar.gz
mdi349-6d2697aef16dc104efecc9b41c5c0c576e8bd147.tar.bz2
mdi349-6d2697aef16dc104efecc9b41c5c0c576e8bd147.zip
Start a section about curves.
-rw-r--r--notes-geoalg.tex246
1 files changed, 239 insertions, 7 deletions
diff --git a/notes-geoalg.tex b/notes-geoalg.tex
index e5195b5..f62906b 100644
--- a/notes-geoalg.tex
+++ b/notes-geoalg.tex
@@ -47,6 +47,7 @@
\newcommand{\Gal}{\operatorname{Gal}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\init}{\operatorname{in}}
+\newcommand{\ord}{\operatorname{ord}}
\renewcommand{\qedsymbol}{\smiley}
%
\DeclareUnicodeCharacter{00A0}{~}
@@ -222,7 +223,7 @@ $\mathbb{Z}[x,y]/(x^2+y^2-1) \to k$.
\section{Prolégomènes d'algèbre commutative}
-\subsection{Anneaux réduits, intègres}
+\subsection{Anneaux réduits, intègres}\label{subsection-reduced-and-integral-rings}
Anneau \textbf{réduit} = anneau dans lequel $x^n = 0$ implique $x =
0$. En général, un $x$ (dans un anneau $A$) tel que $x^n = 0$ pour un
@@ -2550,7 +2551,7 @@ l'identité.
\medbreak
-\begin{thm}
+\begin{thm}\label{projective-to-affine-morphisms-are-constant}
Tout morphisme d'une variété projective connexe vers une variété
affine est constant. (En particulier, toute fonction régulière sur
une variété projective, c'est-à-dire morphisme vers $\mathbb{A}^1$,
@@ -2693,7 +2694,7 @@ $\degtrans_k K = 0$ et réciproquement. Par ailleurs, lorsque $k
\subseteq K \subseteq L$ sont trois corps, on a toujours $\degtrans_k L
= \degtrans_k K + \degtrans_K L$.
-\begin{defn}
+\begin{defn}\label{definition-rational-function-and-dimension}
Si $X$ est une variété \emph{irréductible} sur $k$, on appelle
\textbf{fonction rationnelle} sur $X$ une fonction régulière sur un
ouvert non-vide=dense quelconque de $X$, en identifiant deux fonctions
@@ -2704,7 +2705,7 @@ fractions (noté $k(X)$) de $\mathcal{O}(X)$ (=l'anneau des fonctions
régulières sur $X$, qui est intègre). De façon générale, $k(X)$
coïncide avec $k(U)$ pour n'importe quel ouvert non-vide=dense $U$
de $X$ (on peut donc définir $k(X) = \Frac \mathcal{O}(U)$ pour $U$ un
-ouvert dense de $X$).
+ouvert affine dense de $X$).
On appelle \textbf{dimension de $X$} le degré de transcendance sur $k$
de $k(X)$.
@@ -3222,7 +3223,7 @@ structure sur $k$ / l'action de Galois).
\medbreak
-Attention : si un idéal $I \subseteq k[t_1,\ldots,t_d]$ est premier
+\underline{Attention :} si un idéal $I \subseteq k[t_1,\ldots,t_d]$ est premier
(cela signifie qu'il est radical et que la variété $X = Z(I) \subseteq
\mathbb{A}^d$ définie sur $k$ est irréductible au sens où elle n'est
pas réunion de deux fermés plus petits définis sur $k$), cela
@@ -3237,6 +3238,23 @@ mais sur $\mathbb{R}$ il est irréductible car tout fermé défini
sur $\mathbb{R}$ qui contient une de ces droites doit contenir
l'autre.
+\medbreak
+
+Quant aux idéaux \emph{maximaux} de $k[t_1,\ldots,t_d]$, ils
+correspondent aux \emph{orbites} sous $\Gamma_k$, c'est-à-dire aux
+ensembles (nécessairement finis) de $k^{\alg}$-points tels que
+n'importe lequel puisse être envoyé sur n'importe lequel par un
+élément de $\Gamma_k$ (c'est-à-dire, si on préfère, qu'aucun
+sous-ensemble non-vide n'est stable par $\Gamma_k$). (On peut, si on
+le souhaite, considérer que ce sont là les « points » de l'espace
+affine $\mathbb{A}^d$, auquel cas on les appelle « points fermés »
+pour bien les distinguer des « $k$-points », c'est-à-dire les éléments
+de $k^d$, ou orbites réduites à un seul élément.) Une remarque
+analogue vaut pour des variétés algébriques sur $k$ plus générales :
+les idéaux maximaux de $k[t_1,\ldots,t_d]/I$, pour $I$ idéal radical
+de $k[t_1,\ldots,t_d]$, correspondent aux orbites sous $\Gamma_k$ de
+$Z(I)(k^{\alg})$.
+
\subsection{Morphismes entre icelles}
@@ -3716,9 +3734,223 @@ c'est-à-dire $(x_1,\ldots,x_d) \mapsto (x_1,\ldots,x_d)$) de $Z(I)$.
%
%
-\section{TODO}
+\section{Les courbes}
+
+\subsection{Corps des fonctions et morphismes vers $\mathbb{P}^1$}
+
+\begin{defn}
+On appelle \textbf{courbe (projective lisse)} sur un corps $k$ une
+variété algébrique projective lisse irréductible de dimension $1$
+sur $k$. Lorsque la variété n'est pas supposée lisse, on parle de
+courbe « non nécessairement lisse ».
+\end{defn}
+
+Les fermés de Zariski d'une courbe qui ne sont pas la courbe tout
+entière sont de dimension zéro (cf. \ref{hauptidealsatz}) donc sont
+(sur $k^{\alg}$) des réunions finies de points.
+
+Si $C$ est une courbe non nécessairement lisse, on note $k(C)$ le
+corps des fonctions rationnelles sur $C$
+(cf. \ref{definition-rational-function-and-dimension}). Rappelons
+qu'il s'agit des fonctions régulières sur un ouvert non-vide (=dense)
+de $C$, définies sur $k$ (où on identifie deux fonctions quand elles
+coïncident sur l'intersection des ouverts sur lesquels elles sont
+données) ; on l'appelle simplement \textbf{corps des fonctions}
+de $C$. On a $k(C) = \Frac(\mathcal{O}(U))$ pour n'importe quel
+ouvert affine non-vide (=dense) de $C$. On appelle évidemment
+\textbf{constantes} les éléments de $k$ vus dans $k(C)$.
+
+On note aussi $k^{\alg}(C)$ le corps des fonctions rationnelles
+sur $C_{k^{\alg}}$, c'est-à-dire après passage à la clôture algébrique
+$k^{\alg}$ de $k$. On voit $k(C)$ à l'intérieur de $k^{\alg}(C)$ ;
+pour $k$ parfait, le corps $k(C)$ est simplement le corps des éléments
+de $k^{\alg}(C)$ fixés par le groupe de Galois absolu de $k$.
+
+Le degré de transcendance de $k(C)$ (ou $k^{\alg}(C)$) sur $k$
+(ou $k^{\alg}$, s'agissant de $k^{\alg}(C)$) est $1$ : c'est-à-dire
+qu'il existe des éléments de $k(C)$ n'appartenant pas à $k^{\alg}$, et
+que deux tels éléments sont toujours algébriques l'un par rapport à
+l'autre.
+
+\textbf{Exemple :} $\mathbb{P}^1$ sur $k$ est une courbe sur $k$, son
+corps des fonctions est $k(\mathbb{P}^1) = k(t)$ où $t$ est un
+paramètre affine quelconque sur $\mathbb{P}^1$ ; et on a bien sûr
+$k^{\alg}(\mathbb{P}^1) = k^{\alg}(t)$.
+
+\medbreak
+
+\begin{defn}
+Soit $X$ une variété quasiprojective irréductible (non nécessairement
+lisse), et $P$ un $k^{\alg}$-point de $X$, on note $\mathcal{O}_{X,P}$
+et on appelle \textbf{anneau local de $X$ en $P$} le sous-anneau de
+$k(X)$ formé des fonctions rationnelles qui sont données sur un ouvert
+contenant $P$. Ces fonctions sont dites \textbf{régulières en $P$}.
+\end{defn}
+
+Grâce au recollement on peut affirmer que, si $U$ est la réunion de
+tous les ouverts sur lesquels $f$ peut être donnée comme une fonction
+régulière, on peut effectivement représenter $f$ comme une fonction
+régulière sur tout $U$ : on appelle $U$ \textbf{l'ouvert de
+ régularité} de $f$ (ou parfois l'ouvert de définition).
+
+On peut décrire $\mathcal{O}_{X,P}$ autrement : si $U$ est un ouvert
+affine contenant $P$, et $\mathfrak{m}_P$ l'idéal maximal de
+$\mathcal{O}(U)$ des fonctions s'annulant en $P$, alors
+$\mathcal{O}_{X,P}$ est le \emph{localisé} de $\mathcal{O}(U)$ en
+l'idéal $\mathfrak{m}_P$ (c'est-à-dire inversant toutes les fonctions
+qui ne sont pas dans $\mathfrak{m}_P$, cf. les remarques suivant
+\ref{properties-localization}). Il s'agit bien d'un anneau local au sens
+définit en \ref{subsection-reduced-and-integral-rings}.
+
+\medbreak
+
+Le fait suivant peut sembler clair, mais il joue un rôle
+crucial\footnote{Pour voir qu'il n'est pas vrai de façon plus
+ générale, penser à la fonction rationnelle $x/y$ sur $\mathbb{P}^2$,
+ où $x,y$ sont deux des trois coordonnées homogènes : ni elle ni son
+ inverse ne sont régulières au point $x=y=0$.} pour expliquer
+pourquoi la dimension $1$ est particulièrement simple :
+\begin{prop}
+Si $C$ est une courbe non nécessairement lisse, et $P$ un
+$k^{\alg}$-point \emph{lisse} de $C$, alors pour tout $f \in k(C)$ non
+nul on a $f \in \mathcal{O}_{C,P}$ ou bien $f^{-1} \in
+\mathcal{O}_{C,P}$.
+
+Autrement dit : pour $f$ une fonction rationnelle sur une courbe $C$
+et $P$ un point lisse sur $C$, si $f$ n'est pas régulière en $P$ alors
+$f^{-1}$ l'est.
+\end{prop}
+
+Pour $C$ une courbe (lisse), on peut considérer une fonction
+rationnelle $f \in k(C)$ comme une fonction régulière $U \to
+\mathbb{A}^1$ sur son ouvert $U$ de régularité (l'ensemble des points
+où $f$ est régulière). La proposition affirme donc que les ouverts de
+régularité $U$ de $f$ et $U'$ de $f^{-1}$ recouvrent $C$. Les
+morphismes $U \to \mathbb{P}^1$ et $U' \to \mathbb{P}^1$ définis par
+$P \mapsto (1:f(P))$ et $P \mapsto (f^{-1}(P):1)$ se recollent et
+définissent donc un morphisme $C \to \mathbb{P}^1$ qu'on veut
+identifier à $f$. Réciproquement, tout morphisme $C \to \mathbb{P}^1$
+qui n'est pas constamment égal à $\infty$ (=le point complémentaire
+de $\mathbb{A}^1$) définit une fonction régulière sur l'ouvert $U =
+f^{-1}(\mathbb{A}^1)$ de $C$. On a donc expliqué pourquoi :
+\begin{prop}
+Si $C$ est une courbe (lisse), les fonctions rationnelles sur $C$
+s'identifient (comme expliqué ci-dessus) aux morphismes $C \to
+\mathbb{P}^1$ non constamment égaux à $\infty$.
+\end{prop}
+
+
+
+%
+\subsection{Valuation d'une fonction en un point}
+
+Soit $C$ une courbe (non nécessairement lisse) et $P$ un
+$k^{\alg}$-point lisse sur $C$. On appelle $\mathfrak{m}_P$ l'idéal
+dans $\mathcal{O}_{C,P}$ formé des fonctions s'annulant en $P$.
+
+\begin{prop}
+Avec les notations ci-dessus, il existe une unique fonction $\ord_P
+\colon k(C) \to \mathbb{Z} \cup \{+\infty\}$ vérifiant :
+\begin{itemize}
+\item si $\ord_P(f) = +\infty$ ssi $f=0$, et $\ord_P(c) = 0$ pour tout
+ $c \in k^\times$,
+\item si $f,g \in k(C)$, on a $\ord_P(f+g) \geq
+ \min(\ord_P(f),\ord_P(g))$ (note : ceci implique qu'il y a égalité
+ si $\ord_P(f) \neq \ord_P(g)$),
+\item si $f,g \in k(C)$, on a $\ord_P(fg) = \ord_P(f) + \ord_P(g)$,
+\item on a $\ord_P(f) \geq 0$ ssi $f \in \mathcal{O}_{C,P}$ (i.e.,
+ $f$ est régulière en $P$), et $\ord_P(f) > 0$ ssi $f \in
+ \mathfrak{m}_P$ (i.e., $f$ s'annule en $P$),
+\item il existe des $f$ tels que $\ord_P(f) = 1$.
+\end{itemize}
+\end{prop}
+
+Cette fonction s'appelle la \textbf{valuation en $P$} ou
+l'\textbf{ordre (du zéro) en $P$}. Lorsque $\ord_P(f) = v > 0$, on
+dit que $f$ a un zéro d'ordre $v$ en $P$ ; lorsque $\ord_P(f) = (-v) <
+0$, on dit que $f$ a un pôle d'ordre $v$ en $P$ ; lorsque $\ord_P(f) =
+0$, on dit que $f$ est inversible en $P$ (cela signifie bien que $f$
+est inversible dans $\mathcal{O}_{C,P}$).
+
+\textbf{Exemple :} Si on voit $k(t)$ comme $k(\mathbb{P}^1)$, alors
+\begin{itemize}
+\item pour $P \in \mathbb{A}^1(k) = k$, la valuation en $P$ est bien
+ l'ordre d'annulation en $P$ de la fraction rationnelle $f$ (en
+ particulier, si $f$ est un polynôme, $\ord_P(f)$ est la multiplicité
+ de $(t-P)$ dans la décomposition en facteurs irréductibles de $f$ ;
+ et si $P = 0$, c'est ce qu'on appelle souvent, sans autre précision,
+ la valuation d'un polynôme) ;
+\item pour $P = \infty$, la valuation en $\infty$ d'un polynôme est
+ l'opposé de son degré, et la valuatin en $\infty$ d'une fraction
+ rationnelle $f$ est le degré de son dénominateur moins le degré de
+ son numérateur ;
+\item pour $P \in \mathbb{A}^1(k^{alg}) = k^{\alg}$, la valuation en
+ $P$ d'un polynôme $f$ est la multiplicité de $\mu_P$ dans la
+ décomposition en facteurs irréductibles de celui-ci, où $\mu_P$ est
+ le polynôme minimal de $P$ (par exemple, sur les réels,
+ $\ord_i(t^2+1) = 1$), et pour une fraction rationnelle on peut bien
+ sûr le calculer comme l'ordre du numérateur moins celui du
+ dénominateur.
+\end{itemize}
+
+Remarquons que $\ord_P(f)$ est le même que $f$ soit considéré comme
+vivant dans $k(C)$ ou dans $k^{\alg}(C)$ (à cause de l'unicité
+affirmée pour la fonction $\ord_P$). Par ailleurs, pour $f \in k(C)$,
+on a $\ord_P(f) = \ord_{\sigma(P)}(f)$ pour tout $\sigma \in \Gal(k)$
+(le groupe de Galois absolu de $k$).
+
+\begin{prop}
+Soit $C$ une courbe (lisse) :
+\begin{itemize}
+\item Pour tout $f \in k(C)$, il n'y a qu'un nombre fini de $P \in
+ C(k^{\alg})$ tels que $\ord_P(f) \neq 0$.
+\item Si $\ord_P(f) \geq 0$ pour tout $f$, alors $f \in k$ (la
+ fonction est constante).
+\end{itemize}
+\end{prop}
+\begin{proof}
+La première affirmation vient de ce que tout fermé de Zariski d'une
+courbe est fini. La seconde découle de ce que toute fonction
+régulière (ce qu'est un $f$ comme annoncé) sur une variété projective
+connexe est constante
+(cf. \ref{projective-to-affine-morphisms-are-constant}).
+\end{proof}
+
+\medbreak
+
+\hbox to\hsize{\dotfill}
+
+Remarquons par ailleurs que $k(C)$ est engendré (en tant que
+corps)\footnote{Ceci signifie qu'il existe $x_1,\ldots,x_r \in k(C)$
+ tels que tout sous-corps de $k(C)$ contenant $k$ et $x_1,\ldots,x_r$
+ soit $k(C)$ tout entier.} par un nombre fini d'éléments au-dessus
+de $k$ (en effet, si $U$ est un ouvert affine non-vide de $C$, alors
+$\mathcal{O}(U)$ est une $k$-algèbre de type fini, et si
+$x_1,\ldots,x_r$ en sont des générateurs, ils engendrent aussi $k(C) =
+\Frac(\mathcal{O}(U))$ en tant que corps sur $k$). Enfin, remarquons
+que $k^{\alg} \cap k(C) = k$ (ce qui est clair si on a décrit $k(C)$
+comme les éléments de $k^{\alg}(C)$ fixes par Galois), c'est-à-dire
+que tout élément de $k(C)$ algébrique sur $k$ est en fait dans $k(C)$.
+
+\begin{prop}
+Soit $K$ un corps contenant $k$, de degré de transcendance $1$ dessus,
+engendré en tant que corps par un nombre fini d'éléments au-dessus
+de $k$, et tel que $k$ soit algébriquement fermé dans $K$. Alors $K$
+est le corps des fonctions $k(C)$ d'une certaine courbe (lisse) $C$
+sur $k$.
+
+De plus, cette courbe est unique à isomorphisme près (de $k$-variétés
+algébriques) --- on verra des énoncés plus précis à ce sujet plus
+loin.
+\end{prop}
+
+Si $h\colon C' \to C$ est un morphisme de courbes sur $k$, pour tout
+ouvert $U \subseteq C$ on en déduit un morphisme $h^{-1}(U) \to U$ (où
+$h^{-1}(U)$ est un ouvert de $C'$) donc un morphisme d'algèbres $h^*
+\colon \mathcal{O}(U) \to \mathcal{O}(h^{-1}(U))$. Ceci définit donc
+un morphisme de corps, c'est-à-dire une inclusion de corps, $h^*
+\colon k(C) \to k(C')$, fixant $k$.
-Courbes et corps de dimension $1$. But : arriver à Riemann-Roch.
%