summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid A. Madore <david+git@madore.org>2010-05-10 16:10:06 +0200
committerDavid A. Madore <david+git@madore.org>2010-05-10 16:10:06 +0200
commit16df2829df57e1d57af86d87824fa8d06705b8fd (patch)
treeee26a5398c23ad1ca9c6180e21e5b4f1ba697f4b
downloadmdi349-16df2829df57e1d57af86d87824fa8d06705b8fd.tar.gz
mdi349-16df2829df57e1d57af86d87824fa8d06705b8fd.tar.bz2
mdi349-16df2829df57e1d57af86d87824fa8d06705b8fd.zip
Introduction / motivation.
-rw-r--r--notes-mdi349.tex210
1 files changed, 210 insertions, 0 deletions
diff --git a/notes-mdi349.tex b/notes-mdi349.tex
new file mode 100644
index 0000000..0a09f2a
--- /dev/null
+++ b/notes-mdi349.tex
@@ -0,0 +1,210 @@
+%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it?
+\documentclass[12pt,a4paper]{article}
+\usepackage[francais]{babel}
+\usepackage[utf8]{inputenc}
+\usepackage{times}
+% A tribute to the worthy AMS:
+\usepackage{amsmath}
+\usepackage{amsfonts}
+\usepackage{amssymb}
+\usepackage{amsthm}
+%
+\usepackage{mathrsfs}
+\usepackage{wasysym}
+\usepackage{url}
+%
+\usepackage{graphics}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tikz}
+%
+\theoremstyle{definition}
+\newtheorem{comcnt}{Tout}[subsection]
+\newcommand\thingy{%
+\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
+\newtheorem{defn}[comcnt]{Définition}
+\newtheorem{prop}[comcnt]{Proposition}
+\newtheorem{lem}[comcnt]{Lemme}
+\newtheorem{thm}[comcnt]{Théorème}
+\newtheorem{cor}[comcnt]{Corollaire}
+\newtheorem{rmk}[comcnt]{Remarque}
+\newtheorem{exmps}[comcnt]{Exemples}
+\newcommand{\limp}{\mathrel{\Rightarrow}}
+\newcommand{\liff}{\mathrel{\Longleftrightarrow}}
+\newcommand{\pgcd}{\operatorname{pgcd}}
+\newcommand{\ppcm}{\operatorname{ppcm}}
+\newcommand{\signe}{\operatorname{signe}}
+\newcommand{\tee}{\mathbin{\top}}
+\newcommand{\Frob}{\operatorname{Frob}}
+\renewcommand{\qedsymbol}{\smiley}
+\DeclareUnicodeCharacter{00A0}{~}
+%
+%
+%
+\begin{document}
+\title{\underline{Brouillon} de notes de cours\\de géométrie algébrique}
+\author{David A. Madore}
+\maketitle
+
+\centerline{\textbf{MDI349}}
+
+%
+%
+%
+
+\section*{Conventions}
+
+Sauf précision expresse du contraire, tous les anneaux considérés sont
+commutatifs et ont un élément unité (noté $1$).
+
+Si $k$ est un anneau, une \emph{$k$-algèbre} (là aussi : implicitement
+commutative) est la donnée d'un morphisme d'anneaux $k
+\buildrel\varphi\over\to A$. On peut multiplier un élément de $A$ par
+un élément de $k$ avec : $c\cdot x = \varphi(c)\,x \in A$ (pour $c\in
+k$ et $x\in A$).
+
+
+%
+%
+%
+
+\section{Introduction / motivations}
+
+Qu'est-ce que la géométrie algébrique ? En condensé :
+\begin{itemize}
+\item\textbf{But :} Étudier les solutions de systèmes d'équations
+ polynomiales dans un corps ou un anneau quelconque, ou des objets
+ apparentés. (Étudier = étudier leur existence, les compter, les
+ paramétrer, les relier, définir une structure dessus, etc.)
+\item\textbf{Géométrie :} Voir de tels systèmes d'équations comme des
+ objets géo\-mé\-triques, soit plongés dans un espace ambiant (espace
+ affine, espace projectif), soit intrinsèques ; leur appliquer des
+ concepts de géométrie (espace tangent, étude locale de singularités,
+ etc.).
+\item\textbf{Moyens :} L'étude locale de ces objets passe par les
+ fonctions définies dessus, qui sont des anneaux tout à fait
+ généraux, donc l'\emph{algèbre commutative} (étude des anneaux
+ commutatifs et de leurs idéaux).
+\end{itemize}
+
+\smallbreak
+
+Problèmes \emph{géométriques} = étude de solutions sur des corps
+algébriquement clos (e.g., $\mathbb{C}$ : géométrie algébrique
+complexe ; $\bar{\mathbb{F}}_p$) ou « presque » (e.g., $\mathbb{R}$ :
+géométrie algébrique réelle). Problèmes \emph{arithmétiques} = sur
+des corps loin d'être algébriquement clos (e.g., $\mathbb{Q}$ :
+géométrie arithmétique), ou des anneaux plus gé\-né\-raux
+(e.g., $\mathbb{Z}$ : idem, « équations diophantiennes »).
+
+Applications : cryptographie et codage (géométrie sur $\mathbb{F}_q$),
+calcul formel, robotique (géométrie sur $\mathbb{R}$), analyse
+complexe (géométrie sur $\mathbb{C}$), théorie des nombres
+(sur $\mathbb{Q}$, corps de nombres...), etc.
+
+\smallbreak
+
+\textbf{Un exemple :} Pour tout anneau $k$, on définit $C(k) =
+\{(x,y)\in k^2 : x^2+y^2 = 1\}$. Interprétation géométrique : ceci
+est un cercle ! Il est plongé dans le « plan affine » $\mathbb{A}^2$
+défini par $\mathbb{A}^2(k) = k^2$ pour tout anneau $k$.
+
+\begin{itemize}
+\item Sur $\mathbb{R}$, les solutions forment effectivement un cercle,
+ au sens naïf.
+\item (Sur $\mathbb{C}$, les solutions dans $\mathbb{C}^2$ forment une
+ surface, qui ressemblerait plutôt à une sphère privée de deux
+ points.)
+\item Sur $\mathbb{F}_q$, on peut compter les solutions : on peut
+ montrer qu'il y en a $q-1$ ou $q+1$ selon que $q \equiv 1\pmod{4}$
+ ou $q \equiv 3\pmod{4}$ (ou encore $q$ pour $q = 2^r$).
+\item Sur $\mathbb{Q}$, il n'est pas complètement évident de trouver
+ des solutions autres que $(\pm 1,0)$ et $(0,\pm 1)$. Un exemple :
+ $(\frac{4}{5},\frac{3}{5})$ (Pythagore, Euclide...).
+\end{itemize}
+
+Paramétrage des solutions :
+
+\begin{center}
+\begin{tikzpicture}[scale=3]
+\draw[step=.2cm,help lines] (-1.25,-1.25) grid (1.25,1.25);
+\draw[->] (-1.15,0) -- (1.15,0); \draw[->] (0,-1.15) -- (0,1.15);
+\draw (0,0) circle (1cm);
+\draw (1,-1.15) -- (1,1.15);
+\coordinate (P) at (0.8,0.6);
+\coordinate (Q) at (1,0.6666666667);
+\draw (0.8,0) -- (P);
+\draw (-1,0) -- node[sloped,auto] {$\scriptstyle\mathrm{pente}=t$} (Q);
+\fill[black,opacity=.5] (P) circle (.5pt);
+\fill[black,opacity=.5] (Q) circle (.5pt);
+\fill[black,opacity=.5] (-1,0) circle (.5pt);
+\node[anchor=west] at (Q) {$\scriptstyle (1,2t)$};
+\node[anchor=north east] at (-1,0) {$\scriptstyle (-1,0)$};
+\node[anchor=east] at (P) {$\scriptstyle (\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$};
+\end{tikzpicture}
+\end{center}
+
+Un petit calcul géométrique (cf. les formules exprimant
+$\cos\theta,\sin\theta$ en fonction de $\tan\frac{\theta}{2}$),
+valable sur tout corps $k$ de caractéristique $\neq 2$ (ou en fait
+tout anneau dans lequel $2$ est inversible\footnote{C'est-à-dire, une
+ $\mathbb{Z}[\frac{1}{2}]$-algèbre, où $\mathbb{Z}[\frac{1}{2}] =
+ \{\frac{a}{2^r}:a\in\mathbb{Z},r\in\mathbb{N}\}$}), permet de
+montrer que toute solution $(x,y) \in C(k)$ autre que $(-1,0)$ peut
+s'écrire de la forme $(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$ avec $t
+\in k$ (uniquement défini).
+
+\emph{Remarques :} (a) ceci correspond à un point
+$(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}) \in C(k(t))$ où $k(t)$ est le
+corps des fonctions rationnelles à une indéterminée sur $k$ ; (b) ceci
+permet, par exemple, de trouver de nombreuses solutions
+sur $\mathbb{Q}$, ou d'en trouver rapidement sur
+$\mathbb{F}_q$ ($q$ impair) ; (c) on a, en fait, défini un
+« morphisme » d'objets géométriques de la droite affine $\mathbb{A}^1$
+vers le cercle $C$ (privé du point $(-1,0)$).
+
+On peut aussi définir une structure de \emph{groupe} (abélien) sur les
+points de $C(k)$ pour n'importe quel anneau $k$ : si $(x,y) \in C(k)$
+et $(x',y') \in C(k)$, on définit leur composée $(x,y)\star (x',y') =
+(x'',y'')$ par
+\[
+\left\{\begin{array}{c}
+x'' = xx'-yy'\\
+y'' = xy'+yx'\\
+\end{array}\right.
+\]
+(cf. les formules exprimant
+$\cos(\theta+\theta'),\sin(\theta+\theta')$ en fonction de
+$\cos\theta,\sin\theta$ et $\cos\theta',\sin\theta'$). Élément
+neutre : $(1,0)$ ; inverse de $(x,y)$ : $(x,-y)$.
+
+(Les fonctions trigonométriques, ``transcendantes'', servent à motiver
+ces formules, mais les formules sont parfaitement valables sur
+$\mathbb{F}_q$ bien que $\cos\theta,\sin\theta$ n'aient pas de sens !)
+
+
+%
+%
+%
+
+\section{TODO}
+
+Prolégomènes d'algèbre commutative (localisation...).
+
+Crash-course de théorie de Galois.
+
+Géométrie algébrique affine facile (idéaux de $k[x_1,\ldots,x_n]$ avec
+$k$ alg\textsuperscript{t} clos, Nullsellensatz).
+
+Introduction à l'espace projectif.
+
+Un peu d'abstract nonsense.
+
+Bases de Gröbner.
+
+Courbes et corps de dimension $1$.
+
+
+%
+%
+%
+\end{document}