summaryrefslogtreecommitdiffstats
path: root/notes-geoalg.tex
diff options
context:
space:
mode:
authorDavid A. Madore <david+git@madore.org>2010-05-17 19:16:25 +0200
committerDavid A. Madore <david+git@madore.org>2010-05-17 19:16:25 +0200
commit80db73bb4f371d761177d1b853caca0d6f349c13 (patch)
treeefd19f799750b22e2ee28f9d7b36e54220afb317 /notes-geoalg.tex
parent733b3e5a4e35940c0457bed6fa0584abb04bb6e7 (diff)
downloadmdi349-80db73bb4f371d761177d1b853caca0d6f349c13.tar.gz
mdi349-80db73bb4f371d761177d1b853caca0d6f349c13.tar.bz2
mdi349-80db73bb4f371d761177d1b853caca0d6f349c13.zip
Change file name.
Diffstat (limited to 'notes-geoalg.tex')
-rw-r--r--notes-geoalg.tex1128
1 files changed, 1128 insertions, 0 deletions
diff --git a/notes-geoalg.tex b/notes-geoalg.tex
new file mode 100644
index 0000000..690552a
--- /dev/null
+++ b/notes-geoalg.tex
@@ -0,0 +1,1128 @@
+%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it?
+\documentclass[12pt,a4paper]{article}
+\usepackage[francais]{babel}
+\usepackage[utf8]{inputenc}
+\usepackage{times}
+% A tribute to the worthy AMS:
+\usepackage{amsmath}
+\usepackage{amsfonts}
+\usepackage{amssymb}
+\usepackage{amsthm}
+%
+\usepackage{mathrsfs}
+\usepackage{wasysym}
+\usepackage{url}
+%
+\usepackage{graphics}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tikz}
+\usetikzlibrary{matrix}
+%
+\theoremstyle{definition}
+\newtheorem{comcnt}{Tout}[subsection]
+\newcommand\thingy{%
+\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
+\newtheorem{defn}[comcnt]{Définition}
+\newtheorem{prop}[comcnt]{Proposition}
+\newtheorem{lem}[comcnt]{Lemme}
+\newtheorem{thm}[comcnt]{Théorème}
+\newtheorem{cor}[comcnt]{Corollaire}
+\newtheorem{rmk}[comcnt]{Remarque}
+\newtheorem{scho}[comcnt]{Scholie}
+\newtheorem{exmps}[comcnt]{Exemples}
+\newcommand{\limp}{\mathrel{\Rightarrow}}
+\newcommand{\liff}{\mathrel{\Longleftrightarrow}}
+\newcommand{\pgcd}{\operatorname{pgcd}}
+\newcommand{\ppcm}{\operatorname{ppcm}}
+\newcommand{\Hom}{\operatorname{Hom}}
+\newcommand{\id}{\operatorname{id}}
+\newcommand{\Frob}{\operatorname{Frob}}
+\newcommand{\Frac}{\operatorname{Frac}}
+\renewcommand{\qedsymbol}{\smiley}
+%
+\DeclareUnicodeCharacter{00A0}{~}
+%
+\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
+\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
+%
+\DeclareFontFamily{U}{manual}{}
+\DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{}
+\newcommand{\manfntsymbol}[1]{%
+ {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
+\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
+\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
+ \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
+%
+%
+%
+\begin{document}
+\title{\underline{Brouillon} de notes de cours\\de géométrie algébrique}
+\author{David A. Madore}
+\maketitle
+
+\centerline{\textbf{MDI349}}
+
+%
+%
+%
+
+\section*{Conventions}
+
+Sauf précision expresse du contraire, tous les anneaux considérés sont
+commutatifs et ont un élément unité (noté $1$).
+
+Si $k$ est un anneau, une \textbf{$k$-algèbre} (là aussi :
+implicitement commutative) est la donnée d'un morphisme d'anneaux $k
+\buildrel\varphi\over\to A$ (appelé \emph{morphisme structural} de
+l'algèbre). On peut multiplier un élément de $A$ par un élément
+de $k$ avec : $c\cdot x = \varphi(c)\,x \in A$ (pour $c\in k$ et $x\in
+A$).
+
+
+%
+%
+%
+
+\section{Introduction / motivations}
+
+Qu'est-ce que la géométrie algébrique ? En condensé :
+\begin{itemize}
+\item\textbf{But :} Étudier les solutions de systèmes d'équations
+ polynomiales dans un corps ou un anneau quelconque, ou des objets
+ apparentés. (Étudier = étudier leur existence, les compter, les
+ paramétrer, les relier, définir une structure dessus, etc.)
+\item\textbf{Géométrie :} Voir de tels systèmes d'équations comme des
+ objets géo\-mé\-triques, soit plongés dans un espace ambiant (espace
+ affine, espace projectif), soit intrinsèques ; leur appliquer des
+ concepts de géométrie (espace tangent, étude locale de singularités,
+ etc.).
+\item\textbf{Moyens :} L'étude locale de ces objets passe par les
+ fonctions définies dessus, qui sont des anneaux tout à fait
+ généraux, donc l'\emph{algèbre commutative} (étude des anneaux
+ commutatifs et de leurs idéaux).
+\end{itemize}
+
+\smallbreak
+
+Problèmes \emph{géométriques} = étude de solutions sur des corps
+algébriquement clos (e.g., $\mathbb{C}$ : géométrie algébrique
+complexe ; $\bar{\mathbb{F}}_p$) ou « presque » (e.g., $\mathbb{R}$ :
+géométrie algébrique réelle). Problèmes \emph{arithmétiques} = sur
+des corps loin d'être algébriquement clos (e.g., $\mathbb{Q}$ :
+géométrie arithmétique), ou des anneaux plus gé\-né\-raux
+(e.g., $\mathbb{Z}$ : idem, « équations diophantiennes »).
+
+Applications : cryptographie et codage (géométrie sur $\mathbb{F}_q$),
+calcul formel, robotique (géométrie sur $\mathbb{R}$), analyse
+complexe (géométrie sur $\mathbb{C}$), théorie des nombres
+(sur $\mathbb{Q}$, corps de nombres...), etc.
+
+\smallbreak
+
+\textbf{Un exemple :} Pour tout anneau $k$, on définit $C(k) =
+\{(x,y)\in k^2 : x^2+y^2 = 1\}$. Interprétation géométrique : ceci
+est un cercle ! Il est plongé dans le « plan affine » $\mathbb{A}^2$
+défini par $\mathbb{A}^2(k) = k^2$ pour tout anneau $k$.
+
+\begin{itemize}
+\item Sur $\mathbb{R}$, les solutions forment effectivement un cercle,
+ au sens naïf.
+\item (Sur $\mathbb{C}$, les solutions dans $\mathbb{C}^2$ forment une
+ surface, qui ressemblerait plutôt à une sphère privée de deux
+ points.)
+\item Sur $\mathbb{F}_q$, on peut compter les solutions : on peut
+ montrer qu'il y en a $q-1$ ou $q+1$ selon que $q \equiv 1\pmod{4}$
+ ou $q \equiv 3\pmod{4}$ (ou encore $q$ pour $q = 2^r$).
+\item Sur $\mathbb{Q}$, il n'est pas complètement évident de trouver
+ des solutions autres que $(\pm 1,0)$ et $(0,\pm 1)$. Un exemple :
+ $(\frac{4}{5},\frac{3}{5})$ (Pythagore, Euclide...).
+\end{itemize}
+
+Paramétrage des solutions :
+
+\begin{center}
+\begin{tikzpicture}[scale=3]
+\draw[step=.2cm,help lines] (-1.25,-1.25) grid (1.25,1.25);
+\draw[->] (-1.15,0) -- (1.15,0); \draw[->] (0,-1.15) -- (0,1.15);
+\draw (0,0) circle (1cm);
+\draw (1,-1.15) -- (1,1.15);
+\coordinate (P) at (0.8,0.6);
+\coordinate (Q) at (1,0.6666666667);
+\draw (0.8,0) -- (P);
+\draw (-1,0) -- node[sloped,auto] {$\scriptstyle\mathrm{pente}=t$} (Q);
+\fill[black] (P) circle (.5pt);
+\fill[black] (Q) circle (.5pt);
+\fill[black] (-1,0) circle (.5pt);
+\node[anchor=west] at (Q) {$\scriptstyle (1,2t)$};
+\node[anchor=north east] at (-1,0) {$\scriptstyle (-1,0)$};
+\node[anchor=east] at (P) {$\scriptstyle (\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$};
+\end{tikzpicture}
+\end{center}
+
+Un petit calcul géométrique (cf. les formules exprimant
+$\cos\theta,\sin\theta$ en fonction de $\tan\frac{\theta}{2}$),
+valable sur tout corps $k$ de caractéristique $\neq 2$ (ou en fait
+tout anneau dans lequel $2$ est inversible\footnote{C'est-à-dire, une
+ $\mathbb{Z}[\frac{1}{2}]$-algèbre, où $\mathbb{Z}[\frac{1}{2}] =
+ \{\frac{a}{2^r}:a\in\mathbb{Z},r\in\mathbb{N}\}$}), permet de
+montrer que toute solution $(x,y) \in C(k)$ autre que $(-1,0)$ peut
+s'écrire de la forme $(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$ avec $t
+\in k$ (uniquement défini, et vérifiant $t^2\neq -1$).
+
+\emph{Remarques :} (a) ceci correspond à un point
+$(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}) \in C(k(t))$ où $k(t)$ est le
+corps des fonctions rationnelles à une indéterminée sur $k$ ; (b) ceci
+permet, par exemple, de trouver de nombreuses solutions
+sur $\mathbb{Q}$, ou d'en trouver rapidement sur
+$\mathbb{F}_q$ ($q$ impair) ; (c) on a, en fait, défini un
+« morphisme » d'objets géométriques de la droite affine $\mathbb{A}^1$
+vers le cercle $C$ (privé du point $(-1,0)$).
+
+On peut aussi définir une structure de \emph{groupe} (abélien) sur les
+points de $C(k)$ pour n'importe quel anneau $k$ : si $(x,y) \in C(k)$
+et $(x',y') \in C(k)$, on définit leur composée $(x,y)\star (x',y') =
+(x'',y'')$ par
+\[
+\left\{\begin{array}{c}
+x'' = xx'-yy'\\
+y'' = xy'+yx'\\
+\end{array}\right.
+\]
+(cf. les formules exprimant
+$\cos(\theta+\theta'),\sin(\theta+\theta')$ en fonction de
+$\cos\theta,\sin\theta$ et $\cos\theta',\sin\theta'$). Élément
+neutre : $(1,0)$ ; inverse de $(x,y)$ : $(x,-y)$.
+
+(Les fonctions trigonométriques, ``transcendantes'', servent à motiver
+ces formules, mais les formules sont parfaitement valables sur
+$\mathbb{F}_q$ bien que $\cos\theta,\sin\theta$ n'aient pas de sens !)
+
+\emph{Remarque :} Tout élément $f$ de l'anneau
+$\mathbb{R}[x,y]/(x^2+y^2-1)$ définit une fonction réelle sur le
+cercle $C(\mathbb{R})$ : ces fonctions s'appellent « polynômes
+ trigonométriques ». Tout élément de l'anneau
+$\mathbb{Z}[x,y]/(x^2+y^2-1)$ définit une fonction (à valeurs
+dans $k$) sur \emph{n'importe quel} $C(k)$. On verra aussi plus loin
+qu'un élément de $C(k)$ peut se voir comme un morphisme d'anneaux
+$\mathbb{Z}[x,y]/(x^2+y^2-1) \to k$.
+
+
+%
+%
+%
+
+\section{Prolégomènes d'algèbre commutative}
+
+\subsection{Anneaux réduits, intègres}
+
+Anneau \textbf{réduit} = anneau dans lequel $x^n = 0$ implique $x =
+0$. En général, un $x$ (dans un anneau $A$) tel que $x^n = 0$ pour un
+certain $n \in \mathbb{N}$ s'appelle un élément \textbf{nilpotent}.
+
+Anneau \textbf{intègre} = anneau non nul dans lequel $xy = 0$ implique
+$x=0$ ou $y=0$ (remarque : la réciproque vaut dans tout anneau). En
+général, un $x$ (dans un anneau $A$) tel qu'il existe $y \neq 0$ tel
+que $xy = 0$ s'appelle un \textbf{diviseur de zéro}.
+
+Élément \textbf{inversible} (ou \emph{unité}) d'un anneau $A$ =
+élément $x$ tel qu'il existe $y$ vérifiant $xy = 1$. L'ensemble
+$A^\times$ ou $\mathbb{G}_m(A)$ des tels éléments forme un
+\emph{groupe}, appelé groupe multiplicatif des inversibles de $A$. Un
+\textbf{corps} est un anneau tel que $A^\times = A\setminus\{0\}$.
+
+Un corps est un anneau intègre. Un anneau intègre est un anneau
+réduit.
+
+\smallbreak
+
+Idéal \textbf{maximal} d'un anneau $A$ = un idéal $\mathfrak{m} \neq
+A$ tel que si $\mathfrak{m} \subseteq \mathfrak{m}'$ (avec
+$\mathfrak{m}'$ un autre idéal) alors soit
+$\mathfrak{m}'=\mathfrak{m}$ soit $\mathfrak{m}'=A$). Propriété
+équivalente : c'est un idéal $\mathfrak{m}$ tel que $A/\mathfrak{m}$
+soit un corps.
+
+Idéal \textbf{premier} d'un anneau $A$ = un idéal $\mathfrak{p} \neq
+A$ tel que si $x,y\not\in\mathfrak{p}$ alors $xy \not\in
+\mathfrak{p}$. Propriété équivalente : c'est un idéal $\mathfrak{p}$
+tel que $A/\mathfrak{p}$ soit intègre.
+
+Idéal \textbf{radical} d'un anneau $A$ = un idéal $\mathfrak{r}$ tel
+que si $x^n \in \mathfrak{r}$ alors $x \in \mathfrak{r}$. Propriété
+équivalente : c'est un idéal $\mathfrak{r}$ tel que $A/\mathfrak{r}$
+soit réduit.
+
+\emph{Exemples :} L'idéal $7\mathbb{Z}$ de $\mathbb{Z}$ est maximal
+(le quotient $\mathbb{Z}/7\mathbb{Z}$ est un corps), donc \textit{a
+ fortiori} premier et radical. L'idéal $0$ de $\mathbb{Z}$ est
+premier mais non maximal (le quotient $\mathbb{Z}/0\mathbb{Z} =
+\mathbb{Z}$ est un anneau intègre mais non un corps). L'idéal
+$6\mathbb{Z}$ de $\mathbb{Z}$ est radical mais n'est pas premier.
+L'idéal $9\mathbb{Z}$ de $\mathbb{Z}$ n'est pas radical.
+
+\smallbreak
+
+Un anneau est un corps ssi son idéal $(0)$ est maximal. Un anneau est
+intègre ssi son idéal $(0)$ est premier. Un anneau est réduit ssi son
+idéal $(0)$ est radical.
+
+Un anneau est dit \textbf{local} lorsqu'il a un unique idéal maximal.
+(En particulier, un corps est un anneau local.) Le quotient d'un
+anneau local par son idéal maximal s'appelle son \emph{corps
+ résiduel}. \emph{Exercice :} l'anneau $A$ des rationnels de la
+forme $\frac{a}{b}$ avec $a,b \in \mathbb{Z}$ et $b$ impair est un
+anneau local dont l'idéal maximal $\mathfrak{m}$ est formé des
+$\frac{a}{b}$ avec $a$ pair. (Quel est le corps résiduel ?)
+
+\smallbreak
+
+On admet le résultat ensembliste suivant :
+\begin{lem}[principe maximal de Hausdorff]
+Soit $\mathscr{F}$ un ensemble de parties d'un ensemble $A$. On
+suppose que $\mathscr{F}$ est non vide et que pour toute partie non
+vide $\mathscr{T}$ de $\mathscr{F}$ totalement ordonnée par
+l'inclusion (c'est-à-dire telle que pour $I,I' \in \mathscr{T}$ on a
+soit $I \subseteq I'$ soit $I \supseteq I'$) la réunion $\bigcup_{I
+ \in \mathscr{T}} I$ soit contenue dans un élément de $\mathscr{F}$.
+Alors il existe dans $\mathscr{F}$ un élément $\mathfrak{M}$ maximal
+pour l'inclusion (c'est-à-dire que si $I \supseteq \mathfrak{M}$ avec
+$I \in \mathscr{F}$ alors $I=\mathfrak{M}$).
+\end{lem}
+
+\begin{prop}
+Dans un anneau $A$, tout idéal strict (=autre que $A$) est inclus dans
+un idéal maximal.
+\end{prop}
+\begin{proof}
+Si $I$ est un idéal strict de $A$, on applique le principe maximal de
+Hausdorff à $\mathscr{F}$ l'ensemble des idéaux stricts de $A$
+contenant $I$. Si $\mathscr{T}$ est une chaîne (=partie totalement
+ordonnée pour l'inclusion) de tels idéaux, la réunion $\bigcup_{I \in
+ \mathscr{T}} I$ en est encore un\footnote{La réunion de deux idéaux
+ n'est généralement pas un idéal, car si $x\in I$ et $x' \in I'$, la
+ somme $x+x'$ n'a pas de raison d'appartenir à $I\cup I'$. En
+ revanche, si $\mathscr{T}$ est une famille d'idéaux totalement
+ ordonnée par l'inclusion, alors $\bigcup_{I \in \mathscr{T}} I$ est
+ un idéal : si $x\in I$ et $x' \in I'$, où $I,I'\in \mathscr{T}$, on
+ peut écrire soit $I \subseteq I'$ soit $I'\subseteq I$, et dans un
+ cas comme dans l'autre on a $x+x' \in \bigcup_{I \in \mathscr{T}}
+ I$.} (pour voir que la réunion est encore un idéal strict, remarquer
+que $1$ n'y appartient pas). Le principe maximal de Hausdorff permet
+de conclure.
+\end{proof}
+
+\begin{prop}
+Dans un anneau, l'ensemble des éléments nilpotents est un idéal :
+c'est le plus petit idéal radical. Cet idéal est précisément
+l'intersection des idéaux premiers de l'anneau. On l'appelle le
+\textbf{nilradical} de l'anneau.
+\end{prop}
+\begin{proof}
+L'ensemble des nilpotents est un idéal car si $x^n=0$ et $y^n=0$ alors
+$(x+y)^{2n}=0$ en développant. Il est inclus dans tout idéal radical,
+et il est visiblement lui-même radical : c'est donc le plus petit
+idéal radical. Étant inclus dans tout idéal radical, il est \textit{a
+ fortiori} inclus dans tout idéal premier. Reste à montrer que si
+$z$ est inclus dans tout idéal premier, alors $x$ est nilpotent.
+
+Supposons que $z$ n'est pas nilpotent. Considérons $\mathfrak{p}$ un
+idéal maximal pour l'inclusion parmi les idéaux ne contenant aucun
+$z^n$ : un tel idéal existe d'après le principe maximal de Hausdorff
+(il existe un idéal ne contenant aucun $z^n$, à savoir $\{0\}$).
+Montrons qu'il est premier : si $x,y \not \in \mathfrak{p}$, on veut
+voir que $xy \not\in \mathfrak{p}$. Par maximalité de $\mathfrak{p}$,
+chacun des idéaux\footnote{On rappelle que si $I,J$ sont deux idéaux
+ d'un anneau, l'ensemble $I + J = \{u+v : u\in I, v\in J\}$ est un
+ idéal, c'est l'idéal engendré par $I\cup J$, c'est-à-dire, le plus
+ petit idéal contenant $I$ et $J$ ; on l'appelle idéal somme de $I$
+ et $J$. Dans le cas particulier où $J = (x)$ est engendré par un
+ élément, c'est donc l'idéal engendré par $I\cup\{x\}$.}
+$\mathfrak{p}+(x)$ et $\mathfrak{p}+(y)$ doit rencontrer $\{z^n\}$,
+c'est-à-dire qu'on doit pouvoir trouver deux éléments de la forme
+$f+ax$ et $g+by$ avec $f,g\in\mathfrak{p}$ et $a,b\in A$, qui soient
+des puissances de $z$ ; leur produit est alors aussi une puissance
+de $z$, donc n'est pas dans $\mathfrak{p}$, donc $abxy
+\not\in\mathfrak{p}$ (car les trois autres termes sont
+dans $\mathfrak{p}$), et a plus forte raison $xy \not\in
+\mathfrak{p}$.
+\end{proof}
+
+En appliquant ce résultat à $A/I$, on obtient :
+\begin{prop}
+Si $A$ est un anneau et $I$ un idéal de $A$, l'ensemble des éléments
+tels que $z^n \in I$ pour un certain $n \in \mathbb{N}$ est un idéal :
+c'est le plus petit idéal radical contenant $I$. Cet idéal est
+précisément l'intersection des idéaux premiers de $A$ contenant $I$.
+On l'appelle le \textbf{radical} de l'idéal $I$ et on le note $\surd
+I$.
+\end{prop}
+
+L'intersection des idéaux maximaux d'un anneau s'appelle le
+\textbf{radical de Jacobson} de cet anneau : il est, en général,
+strictement plus grand que le nilradical.
+
+%
+\subsection{Modules}
+
+Un \textbf{module} $M$ sur un anneau $A$ est un groupe abélien muni
+d'une multiplication externe $A \times M \to M$ vérifiant :
+\begin{itemize}
+\item $a(x+y) = ax + ay$
+\item $1x = x$
+\item $(ab)x = a(bx)$
+\item $(a+b)x = ax + bx$
+\end{itemize}
+(Exercice : $a0 = 0$, $a(-x) = -(ax)$, $0x = x$, $(-a)x = -(ax)$...)
+
+Un \textbf{sous-module} $M'$ d'un module $M$ est un sous-groupe $M'$
+de $M$ tel que $ax \in M'$ dès que $x\in M'$ et $a\in A$.
+
+Tout anneau est un module sur lui-même de façon évidente. Un
+sous-$A$-module de $A$ est la même chose qu'un idéal de $A$. Si $B$
+est une $A$-algèbre, c'est-à-dire si on se donne un morphisme
+d'anneaux $A \buildrel\varphi\over\to B$, on peut voir $B$ comme un
+$A$-module (par $a\cdot b = \varphi(a)\,b$).
+
+Module de type fini = il existe une famille \emph{finie} $(x_i)$
+d'éléments de $M$ qui engendre $M$ comme $A$-module, c'est-à-dire que
+tout $x \in M$ peut s'écrire $\sum_i a_i x_i$ pour certains $a_i \in
+A$.
+
+Module libre = il existe une base $(x_i)$, c'est-à-dire une famille
+(non né\-ces\-sairement finie) telle que tout $x \in M$ peut s'écrire
+\emph{de façon unique} comme $\sum_i a_i x_i$ pour certains $a_i \in
+A$ tous nuls sauf un nombre fini (de façon unique, c'est-à-dire que
+$\sum_i a_i x_i = 0$ implique $a_i = 0$ pour tout $i$).
+
+%
+\subsection{Anneaux noethériens}
+
+Anneau \textbf{noethérien} : c'est un anneau $A$ vérifiant les
+proprités équivalentes suivantes :
+\begin{itemize}
+\item toute suite croissante pour l'inclusion $I_0 \subseteq I_1
+ \subseteq I_2 \subseteq \cdots$ d'idéaux de $A$ stationne
+ (c'est-à-dire est constante à partir d'un certain rang) ;
+\item tout idéal $I$ de $A$ est de type fini : il existe une famille
+ \emph{finie} $(x_i)$ d'éléments de $I$ qui engendre $I$ comme idéal
+ (= comme $A$-module) (c'est-à-dire que tout $x \in I$ peut s'écrire
+ $\sum_i a_i x_i$ pour certains $a_i \in A$) ;
+\item plus précisément, si $I$ est l'idéal engendré par une famille
+ $x_i$ d'éléments, on peut trouver une sous-famille finie des $x_i$
+ qui engendre le même idéal $I$ ;
+\item un sous-module d'un $A$-module de type fini est de type fini.
+\end{itemize}
+
+L'essentiel des anneaux utilisés en géométrie algébrique (en tout cas,
+auxquels on aura affaire) sont noethériens. L'anneau $\mathbb{Z}$ est
+noethérien. Tout corps est un anneau noethérien. Tout quotient d'un
+anneau noethérien est noethérien (attention : il n'est pas vrai qu'un
+sous-anneau d'un anneau noethérien soit toujours noethérien). Et
+surtout :
+\begin{prop}[théorème de la base de Hilbert]
+Si $A$ est un anneau noethérien, alors l'anneau $A[t]$ des polynômes à
+une indéterminée sur $A$ est noethérien.
+\end{prop}
+\begin{proof}
+Soit $I \subseteq A[t]$ un idéal. Supposons par l'absurde que $I$
+n'est psa de type fini. On construit par récurrence une suite
+$f_0,f_1,f_2,\ldots$ d'éléments de $I$ comme suit. Si
+$f_0,\ldots,f_{r-1}$ ont déjà été choisis, comme l'idéal
+$(f_0,\ldots,f_{r-1})$ qu'ils engendrent n'est pas $I$, on peut
+choisir $f_r$ de plus petit degré possible parmi les éléments de $I$
+non dans $(f_0,\ldots,f_{r-1})$.
+
+Appelons $c_i$ le coefficient dominant de $f_i$. Comme $A$ est
+supposé noethérien, il existe $m$ tel que $c_0,\ldots,c_{m-1}$
+engendrent l'idéal $J$ engendré par tous les $c_i$. Montrons qu'en
+fait $f_0,\ldots,f_{m-1}$ engendrent $I$ (ce qui constitue une
+contradiction).
+
+On peut écrire $c_m = a_0 c_0 + \cdots + a_{m-1} c_{m-1}$. Par
+ailleurs, le degré de $f_m$ est supérieur ou égal au degré de chacun
+de $f_0,\ldots,f_{m-1}$ par minimalité de ces derniers. On peut donc
+construire le polynôme $g = \sum_{i=0}^{m-1} a_i f_i t^{\deg f_m -
+ \deg f_i}$, qui a les mêmes degré et coefficient dominant que $f_m$,
+et qui appartient à $(f_0,\ldots,f_{m-1})$. Alors, $f_m - g$ est de
+degré strictement plus petit que $f_m$, il appartient à $I$ mais pas
+à $(f_0,\ldots,f_{m-1})$ : ceci contredit la minimalité dans le choix
+de $f_m$.
+\end{proof}
+
+En itérant ce résultat, on voit que si $A$ est noethérien, alors
+$A[t_1,\ldots,t_d]$ l'est pour tout $d\in\mathbb{N}$. Comme un
+quotient d'un anneau noethérien est encore noethérien :
+
+\begin{defn}
+Une $A$-algèbre $B$ est dite \textbf{de type fini} (comme $A$-algèbre)
+lorsqu'il existe $x_1,\ldots,x_d \in B$ (qu'on dit \emph{engendrer}
+$B$ comme $A$-algèbre) tel que tout élément de $B$ s'écrive
+$f(x_1,\ldots,x_d)$ pour un certain polynôme $f \in
+A[t_1,\ldots,t_d]$.
+\end{defn}
+
+\danger\textbf{Attention :} Cela ne signifie pas que $B$ soit de type
+fini comme $A$-module. Lorsque c'est le cas, on dit que $B$ est une
+$A$-algèbre \emph{finie}, ce qui est plus fort car cela signifie que
+$f$ serait de degré $1$. (Par exemple, $k[t]$ est une $k$-algèbre de
+type fini, engendrée par $t$, mais pas finie.)
+
+Dire que $B$ est une $A$-algèbre de type fini engendrée par
+$x_1,\ldots,x_d$ signifie donc que le morphisme $\xi\colon
+A[t_1,\ldots,t_d] \to B$ défini par $f \mapsto f(x_1,\ldots,x_d)$ est
+\emph{surjectif}. Par conséquent, si $I$ désigne le noyau de ce
+morphisme (c'est-à-dire l'ensemble des $f \in A[t_1,\ldots,t_d]$ qui
+s'annulent en $(x_1,\ldots,x_d)$) alors $\xi$ définit un isomorphisme
+$A[t_1,\ldots,t_d]/I \buildrel\sim\over\to B$. On peut donc dire :
+une $A$-algèbre de type fini est un quotient de $A[t_1,\ldots,t_d]$
+(pour un certain $d$).
+
+\begin{cor}
+Une algèbre de type fini sur un anneau noethérien, et en particulier
+sur un corps ou sur $\mathbb{Z}$, est un anneau noethérien.
+\end{cor}
+
+%
+\subsection{Notes sur les morphismes}
+\label{section-note-morphismes}
+
+Si $A,B$ sont deux $k$-algèbres (où $k$ est un anneau), c'est-à-dire
+qu'on se donne deux morphismes $\varphi_A \colon k\to A$ et $\varphi_B
+\colon k\to B$, on note $\Hom_k(A,B)$ (ou bien
+$\Hom_{k\traitdunion\mathrm{Alg}}(A,B)$ s'il y a
+ambiguïté\footnote{Par exemple pour bien distinguer de l'ensemble
+ $\Hom_{k\traitdunion\mathrm{Mod}}(A,B)$ des applications
+ $k$-linéaires, ou morphismes de $k$-modules, entre $A$ et $B$ vus
+ comme des $k$-modules.}) l'ensemble des morphismes de $k$-algèbres
+$A\to B$, c'est-à-dire l'ensemble des morphismes d'anneaux
+$A\buildrel\psi\over\to B$ « au-dessus de $k$ », ou faisant commuter
+le diagramme :
+\begin{center}
+\begin{tikzpicture}[auto]
+\matrix(diag)[matrix of math nodes,column sep=2.5em,row sep=5ex]{
+A&&B\\&k&\\};
+\draw[->] (diag-2-2) -- node{$\varphi_A$} (diag-1-1);
+\draw[->] (diag-2-2) -- node[swap]{$\varphi_B$} (diag-1-3);
+\draw[->] (diag-1-1) -- node{$\psi$} (diag-1-3);
+\end{tikzpicture}
+\end{center}
+
+Remarque : une $\mathbb{Z}$-algèbre est la même chose qu'un anneau, et
+un morphisme de $\mathbb{Z}$-algèbres qu'un morphisme d'anneaux.
+
+\begin{prop}
+\begin{itemize}
+\item $\Hom_k(k,A)$ est un singleton pour toute $k$-algèbre $A$.
+\item $\Hom_k(k[t],A)$ est en bijection avec $A$ en envoyant
+ $\psi\colon k[t]\to A$ sur $\psi(t)$.
+\item De même, $\Hom_k(k[t_1,\ldots,t_d],A)$ est en bijection avec
+ l'ensemble $A^d$ (en envoyant $\psi$ sur
+ $(\psi(t_1),\ldots,\psi(t_d))$).
+\item Si $I$ est un idéal de $R$, alors $\Hom_k(R/I, A)$ est en
+ bijection avec le sous-ensemble de $\Hom_k(R,A)$ formé des
+ $\psi\colon R\to A$ qui s'annulent sur $I$ (la bijection envoyant
+ $\hat\psi \colon R/I \to A$ sur $\psi \colon R\to A$ composé de
+ $\hat\psi$ avec la surjection canonique $R \to R/I$).
+\item (En particulier,) si $I = (f_1,\ldots,f_r)$ est un idéal de
+ $k[t_1,\ldots,t_d]$ et si $R = k[t_1,\ldots,t_d]/I$, alors
+ $\Hom_k(R, A)$ est en bijection avec l'ensemble $\{(x_1,\ldots,x_d)
+ \in A^d :\penalty0 (\forall j)\,f_j(x_1,\ldots,x_d) = 0\}$ (noté
+ $Z(I)(A)$ ou $Z_A(I)$).
+\end{itemize}
+\end{prop}
+
+À titre d'exemple, dans l'introduction on avait posé $C(T) =
+\{(x,y)\in T^2 : x^2+y^2 = 1\}$ pour tout anneau $T$. Un élément de
+$C(T)$ peut donc se voir comme un morphisme
+$\mathbb{Z}[x,y]/(x^2+y^2-1) \to T$.
+
+\textbf{Exercice :} Si on note $k[x,x^{-1}] = k[x,y]/(xy-1)$, à quoi
+peut-on identifier l'ensemble $\Hom_k(k[x,x^{-1}], A)$ ?
+
+\smallbreak
+
+Si $\beta\colon B \to B'$, on définit une application
+$\Hom_k(A,\beta)\colon \Hom_k(A,B) \to \Hom_k(A,B')$ par $\psi \mapsto
+\beta\circ\psi$ ; si $\alpha \colon A' \to A$ (attention au sens de la
+flèche !), on définit de même une application $\Hom_k(\alpha,B) \colon
+\Hom_k(A,B) \to \Hom_k(A',B)$ par $\psi \mapsto \psi\circ\alpha$. Ces
+applications $\Hom_k(A,\beta)$ et $\Hom_k(\alpha,B)$ commutent au sens
+où $\Hom_k(\alpha,B') \circ \Hom_k(A,\beta) = \Hom_k(A',\beta) \circ
+\Hom_k(\alpha,B) \penalty0\colon \Hom_k(A,B) \to \Hom_k(A',B')$ (c'est
+trivial : composer $\psi$ à droite par $\alpha$ puis à gauche
+par $\beta$ revient à le composer à gauche par $\beta$ puis à droite
+par $\alpha$). De façon à peine moins triviale :
+
+\begin{prop}[lemme de Yoneda]
+Soient $B,B'$ deux $k$-algèbres. On suppose que pour toute
+$k$-algèbre $A$ on se donne une application $\beta_A\colon \Hom_k(A,B)
+\to \Hom_k(A,B')$ telle que si $\alpha\colon A'\to A$ alors
+$\Hom_k(\alpha,B') \circ \beta_A = \beta_{A'} \circ \Hom_k(\alpha,B)$.
+Alors il existe un unique morphisme $\beta\colon B \to B'$ de
+$k$-algèbres tel que $\beta_A = \Hom_k(A,\beta)$ pour toute
+$k$-algèbre $A$.
+
+Dans l'autre sens : si $A,A'$ sont deux $k$-algèbres, et si pour toute
+$k$-algèbre $B$ on se donne une application $\alpha_B\colon
+\Hom_k(A,B) \to \Hom_k(A',B)$ telle que $\alpha_{B'} \circ
+\Hom_k(A,\beta) = \Hom_k(A',\beta) \circ \alpha_B$, alors il existe un
+unique morphisme $\alpha\colon A'\to A$ de $k$-algèbres tel que
+$\alpha_B = \Hom_k(\alpha,B)$ pour toute $k$-algèbre $B$.
+\end{prop}
+\begin{proof}
+Prendre pour $\beta$ l'image de l'identité $\id_B$ par $\beta_B$, ou
+pour $\alpha$ l'image de l'identité $\id_A$ par $\alpha_A$.
+\end{proof}
+
+%
+\subsection{Localisation}
+
+On dit qu'une partie $S$ d'un anneau $A$ est \emph{multiplicative}
+lorsque $1\in S$ et $s,s'\in S \limp ss'\in S$. Par exemple, le
+complémentaire d'un idéal premier est, par définition,
+multiplicative ; en particulier, dans un anneau intègre, l'ensemble
+des éléments non nuls est une partie multiplicative.
+
+Dans ces conditions, on construit un anneau noté $A[S^{-1}]$ (ou
+$S^{-1}A$) de la façon suivante : ses éléments sont notés $a/s$ avec
+$a\in A$ et $s \in S$, où on identifie\footnote{Ce racourci de langage
+ signifie qu'on considère la relation d'équivalence $\sim$ sur
+ $A\times S$ définie par $(a,s) \sim (a',s')$ lorsqu'il existe $t \in
+ S$ tel que $t(a's-as') = 0$, on appelle $A[S^{-1}]$ le quotient
+ $(A\times S)/\sim$, et on note $a/s$ la classe de $(a,s)$ pour cette
+ relation ; il faudrait encore vérifier que toutes les opérations
+ proposées ensuite sont bien définies.} $a/s = a'/s'$ lorsqu'il
+existe $t \in S$ tel que $t(a's-as') = 0$. L'addition est définie par
+$(a/s)+(a'/s') = (a's+as')/(ss')$ (le zéro par $0/1$, l'opposé par
+$-(a/s) = (-a)/s$) et la multiplication par $(a/s)\cdot (a'/s') =
+(aa')/(ss')$ (l'unité par $1/1$). Cet anneau est muni d'un morphisme
+naturel $A \buildrel\iota\over\to A[S^{-1}]$ donné par $a \mapsto
+a/1$. On l'appelle le \textbf{localisé} de $A$ inversant la partie
+multiplicative $S$. Si $A$ est une $k$-algèbre (pour un certain
+anneau $k$) alors $A[S^{-1}]$ est une $k$-algèbre de façon évidente
+(en composant le morphisme structural $k\to A$ par le morphisme
+naturel $A \to A[S^{-1}]$).
+
+\begin{prop}
+\begin{itemize}
+\item Le morphisme naturel $A \buildrel\iota\over\to A[S^{-1}]$ est
+ injectif si et seulement si $S$ ne contient aucun diviseur de zéro.
+ (Extrême inverse : si $S$ contient $0$, alors $A[S^{-1}]$ est
+ l'anneau nul.)
+\item Tout idéal $J$ de $A[S^{-1}]$ est de la forme $J = I[S^{-1}] :=
+ \{a/s : a\in I,\penalty0 s \in S\}$ où $I$ est l'image réciproque
+ dans $A$ (par le morphisme naturel $\iota\colon A \to A[S^{-1}]$) de
+ l'idéal $J$ considéré. Autrement dit, $J \mapsto \iota^{-1}(J)$
+ définit une injection des idéaux de $A[S^{-1}]$ dans ceux de $A$.
+\item Un idéal $I$ de $A$ est de la forme $\iota^{-1}(J)$ pour un
+ idéal $J$ de $A[S^{-1}]$ (né\-ces\-sai\-rement $J = I[S^{-1}]$ d'après le
+ point précédent) ssi aucun élément de $S$ n'est diviseur de zéro
+ dans $A/I$.
+\item En particulier, $\mathfrak{p} \mapsto \iota^{-1}(\mathfrak{p})$
+ définit une bijection entre les idéaux premiers de $A[S^{-1}]$ et
+ ceux de $A$ ne rencontrant pas $S$.
+\item Si $A$ est une $k$-algèbre, $\Hom_k(A[S^{-1}],B)$ s'identifie,
+ via $\Hom_k(\iota,B)\colon\penalty0 \Hom_k(A[S^{-1}],B) \to
+ \Hom_k(A,B)$, au sous-ensemble de $\Hom_k(A,B)$ formé des morphismes
+ $\psi\colon A\to B$ tels que $\psi(s)$ soit inversible pour
+ tout $s\in S$.
+\end{itemize}
+\end{prop}
+
+Cas particuliers importants : si $\mathfrak{p}$ est premier et $S =
+A\setminus\mathfrak{p}$ est son com\-plé\-men\-taire, on note
+$A_{\mathfrak{p}} = A[S^{-1}]$ ; c'est un anneau local (dont l'idéal
+maximal est $\mathfrak{p}[S^{-1}] = \{a/s : a\in \mathfrak{p}, s
+\not\in \mathfrak{p}\}$) : on l'appelle le localisé de $A$
+\textbf{en} $\mathfrak{p}$. Si $A$ est un anneau intègre et $S = A
+\setminus\{0\}$ l'ensemble des éléments non nuls de $A$, on note
+$\Frac(A) = A[S^{-1}]$ : c'est un corps, appelé \textbf{corps des
+ fractions} de $A$. Par exemple, $\Frac(\mathbb{Z}) = \mathbb{Q}$ et
+$\Frac(k[t]) = k(t)$ pour $k$ un corps.
+
+Toute partie $\Sigma$ de $A$ engendre une partie multiplicative $S$
+(c'est l'intersection de toutes les parties multiplicatives
+contenant $\Sigma$, ou simplement l'ensemble de tous les produits
+possibles d'éléments de $\Sigma$) : on note généralement
+$A[\Sigma^{-1}]$ pour $A[S^{-1}]$. En particulier, lorsque $\Sigma$
+est le singleton d'un élément $\sigma$, on note $A[\sigma^{-1}]$ ou
+$A[\frac{1}{\sigma}]$.
+
+%
+\subsection{TODO}
+
+Lemme de Nakayama ?
+
+
+%
+%
+%
+
+\section{Variétés algébriques affines sur un corps algé\-bri\-que\-ment clos}
+
+Pour le moment, $k$ est un corps, qui sera bientôt algébriquement
+clos.
+
+%
+\subsection{Une question d'idéaux maximaux}
+
+On commence par une remarque : si $x = (x_1,\ldots,x_d)$ est un point
+de $k^d$, on dispose d'un \emph{morphisme d'évaluation en $x$},
+$k[t_1,\ldots,t_d] \to k$, donné par $f \mapsto f(x_1,\ldots,x_d)$
+(pour $f$ un polynôme à $d$ indéterminées), qui à $f$ associe sa
+valeur en $d$. Ce morphisme est évidemment surjectif (tout $c \in k$
+est l'image du polynôme constant $c$). Si on appelle $\mathfrak{m}_x$
+son noyau, c'est-à-dire, l'ensemble (donc l'idéal) des polynômes $f$
+s'annulant en $x$, alors l'évaluation définit un isomorphisme
+$k[t_1,\ldots,t_d]/\mathfrak{m}_x \buildrel\sim\over\to k$. Par
+conséquent, $\mathfrak{m}_x$ est un idéal \emph{maximal}
+de $k[t_1,\ldots,t_d]$. Notons que $\mathfrak{m}_x$ est l'idéal
+$(t_1-x_1,\ldots,t_d-x_d)$ engendré par tous les $t_i - x_i$.
+
+Si $k$ n'est pas algébriquement clos, il n'est pas vrai que tout idéal
+maximal de $k[t_1,\ldots,t_d]$ soit de la forme $\mathfrak{m}_x$ pour
+un certain $x \in k^d$ (par exemple, si $k = \mathbb{R}$, l'idéal
+qu'on pourrait noter $\mathfrak{m}_{\{\pm i\}}$ de $\mathbb{R}[t]$ et
+formé des $f \in \mathbb{R}[t]$ tels que $f(i) = 0$, ou, de façon
+équivalente, $f(-i) = 0$, c'est-à-dire l'idéal engendré par $t^2+1$,
+n'est pas de cette forme, et d'ailleurs le quotient
+$\mathbb{R}[t]/(t^2+1)$ est isomorphe à $\mathbb{C}$ et pas
+à $\mathbb{R}$). En revanche, si $k$ \emph{est} algébriquement clos,
+on va voir ci-dessous que tout idéal maximal de $k[t_1,\ldots,t_d]$
+est l'idéal $\mathfrak{m}_x$ des polynômes s'annulant en un certain
+point $x$.
+
+%
+\subsection{Correspondance entre fermés de Zariski et idéaux}
+
+\textbf{Comment associer une partie de $k^d$ à un idéal de
+ $k[t_1,\ldots,t_d]$ ?}
+
+Si $\mathscr{F}$ est une partie de $k[t_1,\ldots,t_d]$, on définit un
+ensemble $Z(\mathscr{F}) = \{(x_1,\ldots,x_d) \in k^d :\penalty0
+(\forall f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$ (on devrait
+plutôt noter $Z(\mathscr{F})(k)$ ou $Z_k(\mathscr{F})$, surtout si $k$
+n'est pas algébriquement clos, mais il le sera bientôt). Plus
+généralement, pour toute $k$-algèbre $A$, on définit
+$Z(\mathscr{F})(A) = \{(x_1,\ldots,x_d) \in A^d :\penalty0 (\forall
+f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$.
+
+Remarques évidentes : si $\mathscr{F} \subseteq \mathscr{F}'$ alors
+$Z(\mathscr{F}) \supseteq Z(\mathscr{F}')$ (la fonction $Z$ est
+« décroissante pour l'inclusion ») ; on a $Z(\mathscr{F}) = \bigcap_{f\in
+ \mathscr{F}} Z(f)$ (où $Z(f)$ est un racourci de notation pour
+$Z(\{f\})$). Plus intéressant : si $I$ est l'idéal engendré par
+$\mathscr{F}$ alors $Z(I) = Z(\mathscr{F})$. On peut donc se
+contenter de regarder les $Z(I)$ avec $I$ idéal
+de $k[t_1,\ldots,t_d]$. Encore un peu mieux : si $\surd I = \{f :
+(\exists n)\,f^n\in I\}$ désigne le radical de l'idéal $I$, on a
+$Z(\surd I) = Z(I)$ ; on peut donc se contenter de considérer les
+$Z(I)$ avec $I$ idéal radical.
+
+On appellera \textbf{fermé de Zariski} dans $k^d$ une partie $E$ de
+$k^d$ vérifiant le premier point, c'est-à-dire de la forme
+$Z(\mathscr{F})$ pour une certaine partie $\mathscr{F}$
+de $k[t_1,\ldots,t_d]$, dont on a vu qu'on pouvait supposer qu'il
+s'agit d'un idéal radical.
+
+Le vide est un fermé de Zariski ($Z(1) = \varnothing$) ; l'ensemble
+$k^d$ tout entier est un fermé de Zariski ($Z(0) = k^d$) ; tout
+singleton est un fermé de Zariski ($Z(\mathfrak{m}_x) = \{x\}$, par
+exemple en voyant $\mathfrak{m}_x$ comme $(t_1-x_1,\ldots,t_d-x_d)$).
+Si $(E_i)_{i\in \Lambda}$ sont des fermés de Zariski, alors
+$\bigcap_{i\in \Lambda} E_i$ est un fermé de Zariski : plus
+précisément, si $(I_i)_{i\in \Lambda}$ sont des idéaux
+de $k[t_1,\ldots,t_d]$, alors $Z(\sum_{i\in\Lambda} I_i) =
+\bigcap_{i\in\Lambda} Z(I_i)$. Si $E,E'$ sont des fermés de Zariski,
+alors $E \cup E'$ est un fermé de Zariski : plus précisément, si
+$I,I'$ sont des idéaux de $k[t_1,\ldots,t_d]$, alors $Z(I\cap I') =
+Z(I) \cup Z(I')$ (l'inclusion $\supseteq$ est évidente ; pour l'autre
+inclusion, si $x \in Z(I\cap I')$ mais $x \not\in Z(I)$, il existe
+$f\in I$ tel que $f(x) \neq 0$, et alors pour tout $f' \in I'$ on a
+$f(x)\,f'(x) = 0$ puisque $ff' \in I\cap I'$, donc $f'(x) = 0$, ce qui
+prouve $x \in Z(I')$).
+
+\medbreak
+
+\textbf{Comment associer un idéal de $k[t_1,\ldots,t_d]$ à une partie
+ de $k^d$ ?}
+
+Réciproquement, si $E$ est une partie de $k^d$, on note
+$\mathfrak{I}(E) = \{f\in k[t_1,\ldots,t_d] :\penalty0 (\forall
+(x_1,\ldots,x_d)\in E)\, f(x_1,\ldots,x_d)=0\}$. Vérification
+facile : c'est un idéal de $k[t_1,\ldots,t_d]$, et même un idéal
+radical. Remarque évidente : si $E \subseteq E'$ alors
+$\mathfrak{I}(E) \supseteq \mathfrak{I}(E')$ ; on a $\mathfrak{I}(E) =
+\bigcap_{x\in E} \mathfrak{m}_x$ (où $\mathfrak{m}_x$ désigne l'idéal
+maximal $\mathfrak{I}(\{x\})$ des polynômes s'annulant en $x$), et en
+particulier $\mathfrak{I}(E) \neq k[t_1,\ldots,t_d]$ dès que $E \neq
+\varnothing$.
+
+On a de façon triviale $\mathfrak{I}(\varnothing) =
+k[t_1,\ldots,t_d]$. De façon moins évidente, si $k$ est infini (ce
+qui est en particulier le cas lorsque $k$ est algébriquement clos), on
+a $\mathfrak{I}(k^d) = (0)$ (démonstration par récurrence sur $d$,
+laissée en exercice).
+
+\danger Sur un corps fini $\mathbb{F}_q$, on a
+$\mathfrak{I}({\mathbb{F}_q}^d) \neq (0)$. Par exemple, si $t$ est
+une des in\-dé\-ter\-mi\-nées, le polynôme $t^q-t$ s'annule en tout
+point de ${\mathbb{F}_q}^d$.
+
+\medbreak
+
+\textbf{Le rapport entre ces deux fonctions}
+
+On a $E \subseteq Z(\mathscr{F})$ ssi $\mathscr{F} \subseteq
+\mathfrak{I}(E)$ (les deux signifiant « tout polynôme dans
+ $\mathscr{F}$ s'annule en tout point de $E$ »). En particulier, en
+appliquant ceci à $\mathscr{F} = \mathfrak{I}(E)$, on a $E \subseteq
+Z(\mathfrak{I}(E))$ pour toute partie $E$ de $k^d$ ; et en
+l'appliquant à $E = Z(\mathscr{F})$, on a $\mathscr{F} \subseteq
+\mathfrak{I}(Z(\mathscr{F}))$. De $E \subseteq Z(\mathfrak{I}(E))$ on
+déduit $\mathfrak{I}(E) \supseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$
+(car $\mathfrak{I}$ est décroissante), mais par ailleurs
+$\mathfrak{I}(E) \subseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$ en
+appliquant l'autre inclusion à $\mathfrak{I}(E)$ : donc
+$\mathfrak{I}(E) = \mathfrak{I}(Z(\mathfrak{I}(E)))$ pour toute partie
+$E$ de $k^d$ ; de même, $Z(\mathscr{F}) =
+Z(\mathfrak{I}(Z(\mathscr{F})))$ pour tout ensemble $\mathscr{F}$ de
+polynômes. On a donc prouvé :
+
+\begin{prop}
+Avec les notations ci-dessus :
+\begin{itemize}
+\item Une partie $E$ de $k^d$ vérifie $E = Z(\mathfrak{I}(E))$ si et
+ seulement si elle est de la forme $Z(\mathscr{F})$ pour un
+ certain $\mathscr{F}$ (=: c'est un fermé de Zariski), et dans ce cas
+ on peut prendre $\mathscr{F} = \mathfrak{I}(E)$, qui est un idéal
+ radical.
+\item Une partie $I$ de $k[t_1,\ldots,t_d]$ vérifie $I =
+ \mathfrak{I}(Z(I))$ si et seulement si elle est de la forme
+ $\mathfrak{I}(E)$ pour un certain $E$, et dans ce cas on peut
+ prendre $E = Z(I)$, et $I$ est un idéal radical
+ de $k[t_1,\ldots,t_d]$.
+\item Les fonctions $\mathfrak{I}$ et $Z$ se restreignent en des
+ bijections décroissantes réci\-proques entre l'ensemble des parties
+ $E$ de $k^d$ vérifiant le premier point ci-dessus et l'ensemble des
+ idéaux radicaux $I$ de $k[t_1,\ldots,t_d]$ vérifiant le second.
+\end{itemize}
+\end{prop}
+
+On a appelé \textbf{fermé de Zariski} une partie $E$ de $k^d$
+vérifiant le premier point, c'est-à-dire de la forme $Z(\mathscr{F})$
+pour une certaine partie $\mathscr{F}$ de $k[t_1,\ldots,t_d]$ : on a
+vu qu'on pouvait supposer qu'il s'agit d'un idéal radical, et on vient
+de voir qu'on peut écrire précisément $E = Z(I)$ où $I =
+\mathfrak{I}(E)$. (On ne donne pas de nom particulier aux idéaux
+vérifiant le second point (=être dans l'image de la
+fonction $\mathfrak{I}$), mais on va voir que pour $k$ algébriquement
+clos il s'agit de tous les idéaux radicaux.)
+
+\medbreak
+
+\textbf{Fermés irréductibles et idéaux premiers}
+
+On dit qu'un fermé de Zariski $E \subseteq k^d$ non vide est
+\textbf{irréductible} lorsqu'on ne peut pas écrire $E = E' \cup E''$,
+où $E',E''$ sont deux fermés de Zariski (forcément contenus
+dans $E$...), sauf si $E'=E$ ou $E''=E$.
+
+\emph{Contre-exemple :} $Z(xy)$ (dans le plan $k^2$ de
+coordonnées $x,y$) n'est pas ir\-ré\-duc\-tible, car $Z(xy) = \{(x,y)
+\in k^2 : xy=0\} = \{(x,y) \in k^2 :
+x=0\penalty0\ \textrm{ou}\penalty0\ y=0\} = Z(x) \cup Z(y)$ est
+réunion de $Z(x)$ (l'axe des ordonnées) et $Z(y)$ (l'axe des
+abscisses) qui sont tous tous les deux strictement plus petits
+que $Z(xy)$.
+
+\begin{prop}
+Un fermé de Zariski $E \subseteq k^d$ est irréductible si, et
+seulement si, l'idéal $\mathfrak{I}(E)$ est premier.
+\end{prop}
+\begin{proof}
+Supposons $\mathfrak{I}(E)$ premier : on veut montrer que $E$ est
+irréductible. Supposons $E = E' \cup E''$ comme ci-dessus (on a vu
+que $E = Z(\mathfrak{I}(E))$, $E' = Z(\mathfrak{I}(E'))$ et $E'' =
+Z(\mathfrak{I}(E''))$) : on veut montrer que $E' = E$ ou $E'' = E$.
+Supposons le contraire, c'est-à-dire $\mathfrak{I}(E) \neq
+\mathfrak{I}(E')$ et $\mathfrak{I}(E) \neq \mathfrak{I}(E'')$. Il
+existe alors $f' \in \mathfrak{I}(E') \setminus \mathfrak{I}(E)$ et
+$f'' \in \mathfrak{I}(E'') \setminus \mathfrak{I}(E)$. On a alors
+$f'f'' \not\in \mathfrak{I}(E)$ car $\mathfrak{I}(E)$ est premier, et
+pourtant $f'f''$ s'annule sur $E'$ et $E''$ donc sur $E$, une
+contradiction.
+
+Réciproquement, supposons $E$ irréductible : on veut montrer que
+$\mathfrak{I}(E)$ est premier. Soient $f',f''$ tels que $f'f'' \in
+\mathfrak{I}(E)$ : posons $E' = Z(\mathfrak{I}(E) + (f'))$ et $E'' =
+Z(\mathfrak{I}(E) + (f''))$. On a $E' \subseteq E$ et $E'' \subseteq
+E$ puisque $E = Z(\mathfrak{I}(E))$, et en fait $E' = E \cap Z(f')$ et
+$E'' = E \cap Z(f'')$ ; on a par ailleurs $E = E' \cup E''$ (car si $x
+\in E$ alors $f'(x)\,f''(x) = 0$ donc soit $f'(x)=0$ soit $f''(x)=0$,
+et dans le premier cas $x \in E'$ et dans le second $x \in E''$).
+Puisqu'on a supposé $E$ irréductible, on a, disons, $E' = E$,
+c'est-à-dire $E \subseteq Z(f')$, ce qui signifie $f' \in
+\mathfrak{I}(E)$. Ceci montre bien que $\mathfrak{I}(E)$ est premier.
+\end{proof}
+
+%
+\subsection{Le Nullstellensatz}
+
+(Nullstellensatz, littéralement, « théorème du lieu d'annulation », ou
+« théorème des zéros de Hilbert ».)
+
+On suppose maintenant que $k$ est algébriquement clos !
+
+\begin{prop}[Nullstellensatz faible]
+Soit $k$ un corps algébriquement clos. Si $I$ est un idéal de
+$k[t_1,\ldots,t_d]$ tel que $Z(I) = \varnothing$, alors $I =
+k[t_1,\ldots,t_d]$.
+\end{prop}
+\begin{proof}[Démonstration dans le cas particulier où $k$ est indénombrable.]
+Supposons par contraposée $I \subsetneq k[t_1,\ldots,t_d]$. Alors il
+existe un idéal maximal $\mathfrak{m}$ tel que $I \subseteq
+\mathfrak{m}$, et on a $Z(\mathfrak{m}) \subseteq Z(I)$. On va
+montrer $Z(\mathfrak{m}) \neq \varnothing$.
+
+Soit $K = k[t_1,\ldots,t_d]/\mathfrak{m}$. Il s'agit d'un corps, qui
+est de dimension au plus dénombrable (=il a une famille génératrice
+dénombrable, à savoir les images des monômes dans les $t_i$) sur $k$.
+Mais $K$ ne peut pas contenir d'élément transcendant $\tau$ sur $k$
+car, $k$ ayant été supposé indénombrable, la famille des
+$\frac{1}{\tau - x}$ pour $x\in k$ serait linéairement indépendante
+(par décomposition en élément simples) dans $k(\tau)$ donc dans $K$.
+Donc $K$ est algébrique sur $k$. Comme $k$ était supposé
+algébriquement clos, on a en fait $K=k$. Les classes des
+indéterminées $t_1,\ldots,t_d$ définissent alors des éléments
+$x_1,\ldots,x_d \in k$, et pour tout $f \in \mathfrak{m}$, on a
+$f(x_1,\ldots,x_d) = 0$. Autrement dit, $(x_1,\ldots,x_d) \in
+Z(\mathfrak{m})$, ce qui conclut.
+\end{proof}
+
+En fait, dans le cours de cette démonstration, on a montré (dans le
+cas particulier où on s'est placé, mais c'est vrai en général) :
+\begin{prop}[{idéaux maximaux de $k[t_1,\ldots,t_d]$}]
+Soit $k$ un corps algé\-bri\-que\-ment clos. Tout idéal maximal
+$\mathfrak{m}$ de $k[t_1,\ldots,t_d]$ est de la forme
+$\mathfrak{m}_{(x_1,\ldots,x_d)} := \{f : f(x_1,\ldots,x_d) = 0\}$
+pour un certain $(x_1,\ldots,x_d) \in k^d$.
+\end{prop}
+\begin{proof}
+En fait, on a prouvé que si $\mathfrak{m}$ est un idéal maximal, il
+existe $(x_1,\ldots,x_d) \in k^d$ tels que $(x_1,\ldots,x_d) \in
+Z(\mathfrak{m})$, ce qui donne $\mathfrak{m} \subseteq
+\mathfrak{I}(\{(x_1,\ldots,x_d)\})$, mais par maximalité de
+$\mathfrak{m}$ ceci est en fait une égalité.
+\end{proof}
+
+En particulier, le corps quotient $k[t_1,\ldots,t_d]/\mathfrak{m}$ est
+isomorphe à $k$, l'isomorphisme étant donnée par l'évaluation au point
+$(x_1,\ldots,x_d)$ tel que ci-dessus.
+
+\begin{thm}[Nullstellensatz = théorème des zéros de Hilbert]
+Soit $I$ un idéal de $k[t_1,\ldots,t_d]$ (toujours avec $k$ un corps
+algébriquement clos) : alors $\mathfrak{I}(Z(I)) = \surd I$ (le
+radical de $I$).
+\end{thm}
+\begin{proof}
+On sait que $\surd I \subseteq \mathfrak{I}(Z(I))$ et il s'agit de
+montrer la réciproque. Soit $f \in \mathfrak{I}(Z(I))$ : on veut
+prouver $f\in I$. On vérifie facilement que ceci revient à montrer
+que l'idéal $I[\frac{1}{f}]$ de $k[t_1,\ldots,t_d,\frac{1}{f}]$ est
+l'idéal unité. Or $k[t_1,\ldots,t_d,\frac{1}{f}] =
+k[t_1,\ldots,t_d,z]/(zf-1)$. Soit $J$ l'idéal engendré par $I$ et
+$zf-1$ dans $k[t_1,\ldots,t_d,z]$ : on voit que $Z(J) = \varnothing$
+(dans $k^{d+1}$), donc le Nullstellensatz faible entraîne $J =
+k[t_1,\ldots,t_d,z]$ : ceci donne $I[\frac{1}{f}] =
+k[t_1,\ldots,t_d,\frac{1}{f}]$.
+\end{proof}
+
+\begin{scho}
+Si $k$ est un corps algébriquement clos, les fonctions $I \mapsto
+Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
+réci\-proques, décroissantes pour l'inclusion, entre les idéaux radicaux
+de $k[t_1,\ldots,t_d]$ d'une part, et les fermés de Zariski de $k^d$
+d'autre part.
+
+Ces bijections mettent les \emph{points} (c'est-à-dire les singletons)
+de $k^d$ en correspondance avec les idéaux maximaux de
+$k[t_1,\ldots,t_d]$, et les \emph{fermés irréductibles} en
+correspondance avec les idéaux premiers.
+\end{scho}
+
+%
+\subsection{L'anneau d'un fermé de Zariski}
+
+Si $X$ est un fermé de Zariski dans $k^d$ avec $k$ algébriquement
+clos, on a vu qu'il existe un unique idéal radical $I$
+de $k[t_1,\ldots,t_d]$, à savoir l'idéal $I = \mathfrak{I}(X)$ des
+polynômes s'annulant sur $X$, tel que $X = Z(I)$. Le quotient
+$k[t_1,\ldots,t_d] / I$ (qui est donc un anneau réduit, et intègre ssi
+$X$ est irréductible) s'appelle l'\emph{anneau des fonctions
+ régulières} sur $X$ et se note $\mathcal{O}(X)$.
+
+Pourquoi fonctions régulières ? On peut considérer un élément $f \in
+\mathcal{O}(X)$ comme une fonction $X \to k$ de la façon suivante : si
+$\tilde f \in k[t_1,\ldots,t_d]$ est un représentant de $f$
+(modulo $I$) et si $x = (x_1,\ldots,x_d) \in X$, la valeur de $\tilde
+f(x_1,\ldots,x_d)$ ne dépend pas du choix de $\tilde f$ représentant
+$f$ puisque tout élément de $I$ s'annule en $x$ ; on peut donc appeler
+$f(x)$ cette valeur. Dans le cas où $X = k^d$ tout entier (donc $I =
+(0)$), évidemment, $\mathcal{O}(X) = k[t_1,\ldots,t_d]$.
+
+On définit un fermé de Zariski de $X$ comme un fermé de Zariski
+de $k^d$ qui se trouve être inclus dans $X$. La bonne nouvelle est
+que la correspondance entre fermés de Zariski de $k^d$ et idéaux de
+$k[t_1,\ldots,t_d]$ se généralise presque mot pour mot à une
+correspondance entre fermés de Zariski de $X$ et idéaux
+de $\mathcal{O}(X)$ :
+
+\begin{prop}
+Avec les notations ci-dessus :
+\begin{itemize}
+\item Tout fermé de Zariski de $X$ est de la forme $Z(\mathscr{F}) :=
+ \{x\in X :\penalty0 {(\forall f\in \mathscr{F})}\penalty100\, f(x) =
+ 0\}$ pour un certain ensemble $\mathscr{F}$ d'éléments
+ de $\mathcal{O}(X)$.
+\item En posant $\mathfrak{I}(E) := \{f\in \mathcal{O}(X) :\penalty0
+ {(\forall x\in E)}\penalty100\, f(x)=0\}$, les fonctions $I \mapsto
+ Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
+ réci\-proques, décroissantes pour l'inclusion, entre les idéaux
+ radicaux de $\mathcal{O}(X)$ d'une part, et les fermés de Zariski de
+ $X$ d'autre part : on a $\mathfrak{I}(Z(I)) = \surd I$ pour tout
+ idéal $I$ de $\mathcal{O}(X)$.
+\item Ces bijections mettent les \emph{points} (c'est-à-dire les
+ singletons) de $X$ en correspondance avec les idéaux maximaux de
+ $\mathcal{O}(X)$ (qui sont donc tous de la forme $\mathfrak{m}_x :=
+ \{f \in \mathcal{O}(X) : f(x)=0\}$ pour un $x\in X$) ; et les
+ \emph{fermés irréductibles} en correspondance avec les idéaux
+ premiers.
+\end{itemize}
+\end{prop}
+
+\begin{rmk}
+On a expliqué en \ref{section-note-morphismes} que les pour toute
+$k$-algèbre $A$, l'ensemble $\Hom_{k}(\mathcal{O}(X), A)$ des
+morphismes de $k$-algèbres de $\mathcal{O}(X)$ vers $A$ peut être vu
+comme l'ensemble $Z(I)(A) = \{(x_1,\ldots,x_d) \in A^d :\penalty0
+(\forall f \in I)\,f(x_1,\ldots,x_d) = 0\}$ des $d$-uplets
+$(x_1,\ldots,x_d)$ d'éléments de $A$ sur lesquels tout élément de $I$
+s'annule. On notera aussi simplement $X(A)$ pour cet ensemble.
+
+En particulier, les points de $X$ peuvent être identifiés avec les
+éléments de $\Hom_{k}(\mathcal{O}(X), k)$ (autrement dit, les
+morphismes $\mathcal{O}(X) \to k$ de $k$-algèbres), le point $x \in X$
+étant identifié avec le morphisme $f \mapsto f(x)$ d'évaluation
+en $x$. On peut donc noter $X(k)$ cet ensemble, et les appeler
+« $k$-points », pour insister. La classification des idéaux maximaux
+de $\mathcal{O}(X)$ signifie donc que tout idéal maximal
+de $\mathcal{O}(X)$ est l'ensemble des fonctions régulières s'annulant
+en un $k$-point de $X$.
+\end{rmk}
+
+%
+\subsection{Morphismes de variétés algébriques}
+
+On appelle provisoirement \textbf{variété algébrique affine}
+dans $k^d$ (toujours avec $k$ algébriquement clos) un fermé de Zariski
+$X$ de $k^d$. Pourquoi cette terminologie redondante ? Le terme
+« fermé de Zariski » insiste sur $X$ en tant que plongée dans l'espace
+affine $\mathbb{A}^d(k) := k^d$. Le terme de « variété algébrique
+ affine » insiste sur l'aspect intrinsèque de $X$, muni de ses
+propres fermés de Zariski et de ses propres fonctions régulières. On
+a vu ci-dessus comment associer à $X$ un anneau $\mathcal{O}(X)$ des
+fonctions régulières, et, pour chaque $k$-algèbre, on a identifié
+l'ensemble $X(A)$ des $A$-points de $X$ avec $\Hom_k(\mathcal{O}(X),
+A)$.
+
+On veut maintenant définir des morphismes entre ces variétés
+algébriques. Une fonction régulière doit être la même chose qu'un
+morphisme vers la droite affine. On définit donc :
+\begin{itemize}
+\item un morphisme de $X$ vers l'espace affine $\mathbb{A}^e$ de
+ dimension $e$ est la donnée de $e$ fonctions régulières sur $X$,
+ c'est-à-dire d'un $e$-uplet d'éléments de $\mathcal{O}(X)$,
+\item un morphisme de $X$ vers le fermé de Zariski $Y = Z(J)$ défini
+ dans l'espace affine $\mathbb{A}^e$ par un idéal $J =
+ (g_1,\ldots,g_r)$ est la donnée d'un $e$-uplet $(f_1,\ldots,f_e) \in
+ \mathcal{O}(X)^e$ comme ci-dessus, vérifiant de plus les contraintes
+ $g_j(f_1,\ldots,f_e) = 0$ pour tout $j$ (cela revient à demander
+ $g_j(f_1(x),\ldots,f_e(x)) = 0$ pour tout $j$ et tout $x\in X$) ;
+\item on dit qu'un tel morphisme envoie le point $x \in X$ sur le
+ point $(f_1(x),\ldots,f_e(x)) \in Y$ (c'est-à-dire, le point
+ $(f_1(x),\ldots,f_e(x)) \in k^e$, qui se trouve appartenir à $Y$) ;
+ en pariculier, il définit une fonction $X(k) \to Y(k)$, et plus
+ généralement $X(A) \to Y(A)$ pour toute $k$-algèbre $A$.
+\end{itemize}
+
+À ce moment-là, on doit se rappeler le lemme de Yoneda : se donner
+pour chaque $k$-algèbre $A$ une application $X(A) \to Y(A)$,
+c'est-à-dire $\Hom_k(\mathcal{O}(X),A) \to \Hom_k(\mathcal{O}(Y),A)$,
+quitte à vérifier des commutations aux morphismes $A \to A'$ qu'on
+passera sous silence, c'est la même chose que se donner un morphisme
+$\mathcal{O}(Y) \to \mathcal{O}(X)$. On peut donc définir tout
+simplement :
+
+\begin{center}
+Un morphisme de $k$-variétés affines $X \to Y$ est la même chose qu'un
+morphisme de $k$-algèbres $\mathcal{O}(Y) \to \mathcal{O}(X)$.
+\end{center}
+
+Concrètement, avec les notations ci-dessus, le morphisme
+$\mathcal{O}(Y) \to \mathcal{O}(X)$ serait celui qui envoie un élément
+$h \in \mathcal{O}(Y)$ sur $h(f_1,\ldots,f_e) \in \mathcal{O}(X)$.
+Réci\-pro\-quement, donné un morphisme $\varphi\colon \mathcal{O}(Y) \to
+\mathcal{O}(X)$ d'anneaux, le morphisme $X \to Y$ qui lui correspond
+est celui qui à un point $x \in X$ associe le $y \in Y$ défini par
+$h(y) = \varphi(h)(x)$ pour tout $h \in \mathcal{O}(Y)$.
+
+\smallbreak
+
+\textbf{Un exemple :} Considérons $C = Z(g)$ où $g = y^2 - x^3 \in
+k[x,y]$ (anneau des polynômes à deux indéterminées $x,y$ sur un corps
+algébriquement clos $k$), et $\mathbb{A}^1$ la droite affine sur $k$.
+On a $\mathcal{O}(C) = k[x,y]/(y^2-x^3)$ et $\mathcal{O}(\mathbb{A}^1)
+= k[t]$. On définit un morphisme $\mathbb{A}^1 \buildrel f\over\to C$
+par $t \mapsto (t^2,t^3)$ : ce morphisme correspond à un morphisme
+d'anneaux dans l'autre sens, $\mathcal{O}(C) \buildrel f^*\over\to
+\mathcal{O}(\mathbb{A}^1)$, donné par $x \mapsto t^2$ et $y \mapsto
+x^3$. Ce morphisme n'est pas un isomorphisme car $t$ n'est pas dans
+l'image de $f^*$. Ceci, bien que $\mathbb{A}^1(k) \to C(k)$ soit une
+bijection au niveau des $k$-points.
+
+%
+\subsection{Ouverts de Zariski et variétés quasi-affines}
+
+On appelle \textbf{ouvert de Zariski} dans $k^d$ (toujours avec $k$ un
+corps algébriquement clos) le complémentaire d'un fermé de Zariski.
+Autrement dit, si $I$ est un idéal de $k[t_1,\ldots,t_d]$, on définit
+$U(I) = \{(x_1,\ldots,x_d) \in k^d :\penalty0 (\forall f\in I)\,
+f(x_1,\ldots,x_d) \neq 0\}$ le complémentaire de $Z(I)$ : un ouvert de
+Zariski de $k^d$ est un ensemble de la forme $U(I)$. Si $I$ est
+engendré par les éléments $f_1,\ldots,f_r \in k[t_1,\ldots,t_d]$, on
+peut écrire $U(I) = D(f_1) \cup \cdots \cup D(f_r)$ où $D(f_i) :=
+U(\{f_i\})$ est l'ouvert où $f_i$ ne s'annule pas.
+
+
+%
+%
+%
+
+\section{TODO}
+
+Crash-course de théorie de Galois.
+
+Introduction à l'espace projectif.
+
+Un peu d'abstract nonsense.
+
+Bases de Gröbner.
+
+Courbes et corps de dimension $1$.
+
+
+%
+%
+%
+\end{document}