diff options
-rw-r--r-- | notes-geoalg.tex | 103 |
1 files changed, 102 insertions, 1 deletions
diff --git a/notes-geoalg.tex b/notes-geoalg.tex index a89b31c..fbc1350 100644 --- a/notes-geoalg.tex +++ b/notes-geoalg.tex @@ -479,7 +479,7 @@ $A[t_1,\ldots,t_d]/I \buildrel\sim\over\to B$. On peut donc dire : une $A$-algèbre de type fini est un quotient de $A[t_1,\ldots,t_d]$ (pour un certain $d$). -\begin{cor} +\begin{cor}\label{algebre-de-type-fini-est-anneau-noetherien} Une algèbre de type fini sur un anneau noethérien, et en particulier sur un corps ou sur $\mathbb{Z}$, est un anneau noethérien. \end{cor} @@ -1269,6 +1269,15 @@ propriétés sont constitutives de la notion de \emph{topologie}, en l'occurrence la \textbf{topologie de Zariski} (sur l'ensemble $k^d$ ou $X(k)$). +\smallbreak + +Si $X'$ est un fermé de Zariski de $X$, alors les fermés et ouverts de +Zariski de $X'$ sont précisément les intersections avec $X'$ des +fermés et ouverts de Zariski de $X$. (On dit que la topologie de $X'$ +est \emph{induite} par celle de $X$.) + +\smallbreak + Si $I$ est engendré par les éléments $f_1,\ldots,f_r$, on peut écrire $U(I) = D(f_1) \cup \cdots \cup D(f_r)$ où $D(f_i) := U(\{f_i\})$ est l'ouvert où $f_i$ ne s'annule pas (les $D(f)$ s'appellent parfois @@ -1317,6 +1326,12 @@ F' \cup F''$ avec $F',F''$ fermés impose $F' = X$ ou $F'' = X$ ; de façon équivalente, cela signifie que tout ouvert non vide de $X$ est dense. +On dit que $X$ est \textbf{connexe} lorsque ($X$ est non vide et que) +$\varnothing$ et $X$ sont les seuls ensembles à la fois ouverts et +fermés dans $X$. (« Irréductible » est plus fort que « connexe », car +si $X$ est irréductible, tout ouvert non vide est dense, et en +particulier le seul ouvert fermé non vide est $X$ tout entier.) + On dit que $X$ est \textbf{quasi-compact} lorsque dès qu'on a une écriture $X = \bigcup_{i\in \Lambda} U_i$ avec $U_i$ ouverts (autrement dit, un recouvrement ouvert de $X$), il existe $\Xi @@ -1355,6 +1370,92 @@ topologie de Zariski. Plus généralement, on peut facilement montrer que les seuls fermés de Zariski de $\mathbb{A}^1(k)$ sont la droite $\mathbb{A}^1(k)$ tout entière et les parties \emph{finies}. +\medbreak + +\textbf{Composantes connexes.} + +\begin{prop} +Si $X$ est une variété algébrique affine, alors $X$ est connexe si et +seulement si les seuls éléments $e \in \mathcal{O}(X)$ vérifiant $e^2 += e$ (appelés \textbf{idempotents}) sont $0$ et $1$. +\end{prop} +\begin{proof} +Si $e^2=e$ avec $e \neq 0,1$, alors $e(1-e) = 0$. On a donc $X = Z(e) +\cup Z(1-e)$ ; et $Z(e) \cap Z(1-e) = \varnothing$ (car $e,1-e$ +engendrent l'idéal unité, si on veut). Donc $Z(e)$ et $Z(1-e)$ sont +deux fermés complémentaires l'un de l'autre, donc ils sont aussi +ouverts. Comme $e$ n'est pas nul, $Z(e)$ n'est pas $X$ tout entier, +et de même pour $Z(1-e)$ car $e \neq 1$ ; donc $Z(e)$ est un ouvert +fermé autre que $\varnothing$ et $X$, et $X$ n'est pas connexe. + +Réciproquement, supposons que $X'$ soit un ouvert fermé dans $X$ autre +que $\varnothing$ et $X$, et soit $X''$ son complémentaire, qui +vérifie les mêmes conditions. On peut écrire $X' = Z(I')$ et $X'' = +Z(I'')$ avec $I',I''$ deux idéaux radicaux stricts +de $\mathcal{O}(X)$. Puisque $X' \cap X'' = \varnothing$, on a $I' + +I'' = (1)$ (où $(1)$ désigne l'idéal unité, +c'est-à-dire $\mathcal{O}(X)$ tout entier) ; il existe donc $e \in I'$ +tel que $1-e \in I''$. Mais alors $e(1-e) \in I' \cap I''$, or $I' +\cap I'' = (0)$ car $X' \cup X'' = X$. On a donc $e^2 = e$, et $e +\neq 1$ car $e$ appartient à un idéal strict, et $e \neq 0$ car $1-e +\neq 1$. +\end{proof} + +On pourrait montrer : +\begin{prop} +Toute variété algébrique affine $X$ est réunion d'un nombre fini de +fermés connexes. De plus, il existe une écriture $X = \bigcup_{i=1}^n +X_i$ vérifiant $X_i \cap X_j = \varnothing$ pour $i \neq j$, et une +telle écriture est unique (à l'ordre des facteurs près) : les $X_i$ +s'appellent les \textbf{composantes connexes} de $X$. +\end{prop} + +\medbreak + +\textbf{Composantes irréductibles.} + +\begin{prop} +Toute variété algébrique affine $X$ est réunion d'un nombre fini de +fermés irréductibles. De plus, il existe une écriture $X = +\bigcup_{i=1}^n X_i$ vérifie $X_i \not\subseteq X_j$ pour $i \neq j$, +et une telle écriture est unique (à l'ordre des facteurs près) : les +$X_i$ s'appellent les \textbf{composantes irréductibles} de $X$. +\end{prop} +\begin{proof} +Montrons par l'absurde que $X$ est réunion d'un nombre fini de fermés +irréductibles : comme $X$ n'est pas lui-même irréductible, on peut +écrire $X = X_1 \cup X'_1$ avec $X_1$, $X'_1$ fermés stricts dans $X$, +et l'un d'entre eux ne doit pas être irréductible, disons $X_1$, donc +on peut écrire $X_1 = X_2 \cup X'_2$, et ainsi de suite. On obtient +ainsi une suite de fermés strictement décroissante pour l'inclusion $X +\supsetneq X_1 \supsetneq X_2 \supsetneq\cdots$, qui correspond à une +suite strictement croissante d'idéaux (radicaux) dans +$\mathcal{O}(X)$, ce qui est impossible car $\mathcal{O}(X)$ est +noethérien (cf. \ref{algebre-de-type-fini-est-anneau-noetherien}). + +On peut donc écrire $X = \bigcup_{i=1}^n X_i$, et quitte à jeter les +$X_i$ déjà inclus dans un autre $X_j$ (et à répéter le processus si +nécessaire), on peut supposer $X_i \not\subseteq X_j$ pour $i \neq j$. + +Montrons enfin l'unicité. Si $X = \bigcup_{i=1}^n X_i = +\bigcup_{j=1}^p Y_j$ sont deux telles écritures, on a $X_i = +\bigcup_{j=1}^p (X_i \cap Y_j)$. Comme $X_i$ est irréductible, l'un +des $X_i\cap Y_j$ doit être égal à $X_i$, c'est-à-dire $X_i \subseteq +Y_j$ ; par symétrie de l'argument, ce $Y_j$ est lui-même inclus dans +un $X_{i'}$, et comme $X_i \subseteq X_{i'}$, la condition sur la +décomposition donne $i'=i$, donc $Y_j = X_i$ et on a bien montré que +chaque $X_i$ est un des $Y_j$ et vice versa. +\end{proof} + +\textbf{Exemple :} $Z(xy) \subseteq \mathbb{A}^2$ a pour composantes +irréductibles $Z(x)$ et $Z(y)$. En revanche, il est connexe (=sa +seule composante connexe est lui-même) : en effet, si $U$ est un +ouvert fermé de $Z(xy)$, quitte à remplacer $U$ par son complémentaire +on peut supposer que $U$ contient $(0,0)$, et alors $U$ est un ouvert +fermé rencontrant $Z(x)$ et $Z(y)$ à la fois --- mais comme ceux-ci +sont irréductibles, et en particulier connexes, $U \cap Z(x) = Z(x)$ +et $U \cap Z(y) = Z(y)$, ce qui montre $U = Z(x,y)$. + % % |