summaryrefslogtreecommitdiffstats
path: root/notes-geoalg-2011.tex
diff options
context:
space:
mode:
Diffstat (limited to 'notes-geoalg-2011.tex')
-rw-r--r--notes-geoalg-2011.tex429
1 files changed, 427 insertions, 2 deletions
diff --git a/notes-geoalg-2011.tex b/notes-geoalg-2011.tex
index 44a0bd7..1e46b5c 100644
--- a/notes-geoalg-2011.tex
+++ b/notes-geoalg-2011.tex
@@ -130,8 +130,8 @@ $(x_1,\ldots,x_n)$ : on dit que $I$ est un idéal \textbf{de type
fini}. Si $I$ peut être engendré par un seul élément, $I = Ax$
(aussi noté $(x)$), on dit que $I$ est un idéal \textbf{principal}.
-Idéal nul $(0) = \{0\}$. Idéal plein $A$ : un élément $x$ est
-inversible ssi l'idéal $(x)$ qu'il engendre est $A$.
+Idéal nul $(0) = \{0\}$. Idéal plein ou idéal unité $A$ : un élément
+$x$ est inversible ssi l'idéal $(x)$ qu'il engendre est l'idéal unité.
\smallbreak
@@ -351,6 +351,431 @@ Si $A$ est un anneau et $\sigma_1,\ldots,\sigma_n \in A$, alors
\end{prop}
+%
+%
+%
+
+\section{Variétés algébriques affines sur un corps algé\-bri\-que\-ment clos}
+
+Dans cette section, $k$ sera un corps algébriquement clos.
+
+On appelle \textbf{espace affine de dimension $d$} sur $k$
+l'ensemble $k^d$ (on parle de droite ou plan affine lorsque $d=1,2$).
+Il sera aussi parfois noté $\mathbb{A}^d$ ou $\mathbb{A}^d(k)$ pour
+des raisons qui apparaîtront plus loin.
+
+%
+\subsection{Correspondance entre fermés de Zariski et idéaux}
+
+\textbf{Comment associer une partie de $k^d$ à un idéal de
+ $k[t_1,\ldots,t_d]$ ?}
+
+Si $\mathscr{F}$ est une partie de $k[t_1,\ldots,t_d]$, on définit un
+ensemble $Z(\mathscr{F}) = \{(x_1,\ldots,x_d) \in k^d :\penalty0
+(\forall f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$.
+
+Remarques évidentes : si $\mathscr{F} \subseteq \mathscr{F}'$ alors
+$Z(\mathscr{F}) \supseteq Z(\mathscr{F}')$ (la fonction $Z$ est
+« décroissante pour l'inclusion ») ; on a $Z(\mathscr{F}) =
+\bigcap_{f\in \mathscr{F}} Z(f)$ (où $Z(f)$ est un racourci de
+notation pour $Z(\{f\})$). Plus intéressant : si $I$ est l'idéal
+engendré par $\mathscr{F}$ alors $Z(I) = Z(\mathscr{F})$. On peut
+donc se contenter de regarder les $Z(I)$ avec $I$ idéal
+de $k[t_1,\ldots,t_d]$. Encore un peu mieux : si $\surd I = \{f :
+(\exists n)\,f^n\in I\}$ désigne le radical de l'idéal $I$, on a
+$Z(\surd I) = Z(I)$ ; on peut donc se contenter de considérer les
+$Z(I)$ avec $I$ idéal radical.
+
+On appellera \textbf{fermé de Zariski} dans $k^d$ une partie $E$ de la
+forme $Z(\mathscr{F})$ pour une certaine partie $\mathscr{F}$
+de $k[t_1,\ldots,t_d]$, dont on a vu qu'on pouvait supposer qu'il
+s'agit d'un idéal radical.
+
+Le vide est un fermé de Zariski ($Z(1) = \varnothing$) ; l'ensemble
+$k^d$ tout entier est un fermé de Zariski ($Z(0) = k^d$). Tout
+singleton est un fermé de Zariski : en effet, $Z(\mathfrak{m}_x) =
+\{x\}$, où $\mathfrak{m}_x$ est l'idéal $(t_1-x_1,\ldots,t_d-x_d)$ ;
+remarquer que $\mathfrak{m}_x$ est un idéal maximal, le quotient
+$k[t_1,\ldots,t_d]/\mathfrak{m}_x$ s'identifiant à $k$ par la fonction
+$f \mapsto f(x)$ d'évaluation en $x$.
+
+Si $(E_i)_{i\in \Lambda}$ sont des fermés de Zariski, alors
+$\bigcap_{i\in \Lambda} E_i$ est un fermé de Zariski : plus
+précisément, si $(I_i)_{i\in \Lambda}$ sont des idéaux
+de $k[t_1,\ldots,t_d]$, alors $Z(\sum_{i\in\Lambda} I_i) =
+\bigcap_{i\in\Lambda} Z(I_i)$. Si $E,E'$ sont des fermés de Zariski,
+alors $E \cup E'$ est un fermé de Zariski : plus précisément, si
+$I,I'$ sont des idéaux de $k[t_1,\ldots,t_d]$, alors $Z(I\cap I') =
+Z(I) \cup Z(I')$ (l'inclusion $\supseteq$ est évidente ; pour l'autre
+inclusion, si $x \in Z(I\cap I')$ mais $x \not\in Z(I)$, il existe
+$f\in I$ tel que $f(x) \neq 0$, et alors pour tout $f' \in I'$ on a
+$f(x)\,f'(x) = 0$ puisque $ff' \in I\cap I'$, donc $f'(x) = 0$, ce qui
+prouve $x \in Z(I')$).
+
+\medbreak
+
+\textbf{Comment associer un idéal de $k[t_1,\ldots,t_d]$ à une partie
+ de $k^d$ ?}
+
+Réciproquement, si $E$ est une partie de $k^d$, on note
+$\mathfrak{I}(E) = \{f\in k[t_1,\ldots,t_d] :\penalty0 (\forall
+(x_1,\ldots,x_d)\in E)\, f(x_1,\ldots,x_d)=0\}$. Vérification
+facile : c'est un idéal de $k[t_1,\ldots,t_d]$, et même un idéal
+radical. Remarque évidente : si $E \subseteq E'$ alors
+$\mathfrak{I}(E) \supseteq \mathfrak{I}(E')$ ; on a $\mathfrak{I}(E) =
+\bigcap_{x\in E} \mathfrak{m}_x$ (où $\mathfrak{m}_x$ désigne l'idéal
+maximal $\mathfrak{I}(\{x\})$ des polynômes s'annulant en $x$), et en
+particulier $\mathfrak{I}(E) \neq k[t_1,\ldots,t_d]$ dès que $E \neq
+\varnothing$.
+
+On a de façon triviale $\mathfrak{I}(\varnothing) =
+k[t_1,\ldots,t_d]$. De façon moins évidente, si $k$ est infini (ce
+qui est en particulier le cas lorsque $k$ est algébriquement clos), on
+a $\mathfrak{I}(k^d) = (0)$ (démonstration par récurrence sur $d$,
+laissée en exercice).
+
+\danger Sur un corps fini $\mathbb{F}_q$, on a
+$\mathfrak{I}({\mathbb{F}_q}^d) \neq (0)$. Par exemple, si $t$ est
+une des in\-dé\-ter\-mi\-nées, le polynôme $t^q-t$ s'annule en tout
+point de ${\mathbb{F}_q}^d$.
+
+\medbreak
+
+\textbf{Le rapport entre ces deux fonctions}
+
+On a $E \subseteq Z(\mathscr{F})$ ssi $\mathscr{F} \subseteq
+\mathfrak{I}(E)$, puisque les deux signifient « tout polynôme dans
+ $\mathscr{F}$ s'annule en tout point de $E$ ».
+
+En particulier, en appliquant cette remarque à $\mathscr{F} =
+\mathfrak{I}(E)$, on a $E \subseteq Z(\mathfrak{I}(E))$ pour toute
+partie $E$ de $k^d$ ; et en appliquant la remarque à $E =
+Z(\mathscr{F})$, on a $\mathscr{F} \subseteq
+\mathfrak{I}(Z(\mathscr{F}))$. De $E \subseteq Z(\mathfrak{I}(E))$ on
+déduit $\mathfrak{I}(E) \supseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$
+(car $\mathfrak{I}$ est décroissante), mais par ailleurs
+$\mathfrak{I}(E) \subseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$ en
+appliquant l'autre inclusion à $\mathfrak{I}(E)$ : donc
+$\mathfrak{I}(E) = \mathfrak{I}(Z(\mathfrak{I}(E)))$ pour toute partie
+$E$ de $k^d$ ; de même, $Z(\mathscr{F}) =
+Z(\mathfrak{I}(Z(\mathscr{F})))$ pour tout ensemble $\mathscr{F}$ de
+polynômes. On a donc prouvé :
+
+\begin{prop}
+Avec les notations ci-dessus :
+\begin{itemize}
+\item Une partie $E$ de $k^d$ vérifie $E = Z(\mathfrak{I}(E))$ si et
+ seulement si elle est de la forme $Z(\mathscr{F})$ pour un
+ certain $\mathscr{F}$ (=: c'est un fermé de Zariski), et dans ce cas
+ on peut prendre $\mathscr{F} = \mathfrak{I}(E)$, qui est un idéal
+ radical.
+\item Une partie $I$ de $k[t_1,\ldots,t_d]$ vérifie $I =
+ \mathfrak{I}(Z(I))$ si et seulement si elle est de la forme
+ $\mathfrak{I}(E)$ pour un certain $E$, et dans ce cas on peut
+ prendre $E = Z(I)$, et $I$ est un idéal radical
+ de $k[t_1,\ldots,t_d]$.
+\item Les fonctions $\mathfrak{I}$ et $Z$ se restreignent en des
+ bijections décroissantes réci\-proques entre l'ensemble des fermés
+ de Zariski $E$ de $k^d$ et l'ensemble des idéaux (radicaux) $I$
+ de $k[t_1,\ldots,t_d]$ tels que $I = \mathfrak{I}(Z(I))$.
+\end{itemize}
+\end{prop}
+
+On va voir ci-dessous que les idéaux tels que $I = \mathfrak{I}(Z(I))$
+sont exactement (tous) les idéaux radicaux de $k[t_1,\ldots,t_d]$.
+
+\medbreak
+
+\textbf{Fermés irréductibles et idéaux premiers}
+
+On dit qu'un fermé de Zariski $E \subseteq k^d$ non vide est
+\textbf{irréductible} lorsqu'on ne peut pas écrire $E = E' \cup E''$,
+où $E',E''$ sont deux fermés de Zariski (forcément contenus
+dans $E$...), sauf si $E'=E$ ou $E''=E$.
+
+\emph{Contre-exemple :} $Z(xy)$ (dans le plan $k^2$ de
+coordonnées $x,y$) n'est pas ir\-ré\-duc\-tible, car $Z(xy) = \{(x,y)
+\in k^2 : xy=0\} = \{(x,y) \in k^2 :
+x=0\penalty0\ \textrm{ou}\penalty0\ y=0\} = Z(x) \cup Z(y)$ est
+réunion de $Z(x)$ (l'axe des ordonnées) et $Z(y)$ (l'axe des
+abscisses) qui sont tous tous les deux strictement plus petits
+que $Z(xy)$.
+
+\begin{prop}\label{closed-irreducible-iff-prime-ideal}
+Un fermé de Zariski $E \subseteq k^d$ est irréductible si, et
+seulement si, l'idéal $\mathfrak{I}(E)$ est premier.
+\end{prop}
+\begin{proof}
+Supposons $\mathfrak{I}(E)$ premier : on veut montrer que $E$ est
+irréductible. Supposons $E = E' \cup E''$ comme ci-dessus (on a vu
+que $E = Z(\mathfrak{I}(E))$, $E' = Z(\mathfrak{I}(E'))$ et $E'' =
+Z(\mathfrak{I}(E''))$) : on veut montrer que $E' = E$ ou $E'' = E$.
+Supposons le contraire, c'est-à-dire $\mathfrak{I}(E) \neq
+\mathfrak{I}(E')$ et $\mathfrak{I}(E) \neq \mathfrak{I}(E'')$. Il
+existe alors $f' \in \mathfrak{I}(E') \setminus \mathfrak{I}(E)$ et
+$f'' \in \mathfrak{I}(E'') \setminus \mathfrak{I}(E)$. On a alors
+$f'f'' \not\in \mathfrak{I}(E)$ car $\mathfrak{I}(E)$ est premier, et
+pourtant $f'f''$ s'annule sur $E'$ et $E''$ donc sur $E$, une
+contradiction.
+
+Réciproquement, supposons $E$ irréductible : on veut montrer que
+$\mathfrak{I}(E)$ est premier. Soient $f',f''$ tels que $f'f'' \in
+\mathfrak{I}(E)$ : posons $E' = Z(\mathfrak{I}(E) + (f'))$ et $E'' =
+Z(\mathfrak{I}(E) + (f''))$. On a $E' \subseteq E$ et $E'' \subseteq
+E$ puisque $E = Z(\mathfrak{I}(E))$, et en fait $E' = E \cap Z(f')$ et
+$E'' = E \cap Z(f'')$ ; on a par ailleurs $E = E' \cup E''$ (car si $x
+\in E$ alors $f'(x)\,f''(x) = 0$ donc soit $f'(x)=0$ soit $f''(x)=0$,
+et dans le premier cas $x \in E'$ et dans le second $x \in E''$).
+Puisqu'on a supposé $E$ irréductible, on a, disons, $E' = E$,
+c'est-à-dire $E \subseteq Z(f')$, ce qui signifie $f' \in
+\mathfrak{I}(E)$. Ceci montre bien que $\mathfrak{I}(E)$ est premier.
+\end{proof}
+
+%
+\subsection{Le Nullstellensatz}
+
+(Nullstellensatz, littéralement, « théorème du lieu d'annulation », ou
+« théorème des zéros de Hilbert ».)
+
+On rappelle que $k$ est algébriquement clos ! (Pour l'instant, cela
+n'a pas beaucoup servi.)
+
+\begin{prop}[Nullstellensatz faible]
+Soit $k$ un corps algébriquement clos. Si $I$ est un idéal de
+$k[t_1,\ldots,t_d]$ tel que $Z(I) = \varnothing$, alors $I =
+k[t_1,\ldots,t_d]$.
+\end{prop}
+\begin{proof}[Démonstration dans le cas particulier où $k$ est indénombrable.]
+Supposons par contraposée $I \subsetneq k[t_1,\ldots,t_d]$. Alors il
+existe un idéal maximal $\mathfrak{m}$ tel que $I \subseteq
+\mathfrak{m}$, et on a $Z(\mathfrak{m}) \subseteq Z(I)$. On va
+montrer $Z(\mathfrak{m}) \neq \varnothing$.
+
+Soit $K = k[t_1,\ldots,t_d]/\mathfrak{m}$. Il s'agit d'un corps, qui
+est de dimension au plus dénombrable (=il a une famille génératrice
+dénombrable, à savoir les images des monômes dans les $t_i$) sur $k$.
+Mais $K$ ne peut pas contenir d'élément transcendant $\tau$ sur $k$
+car, $k$ ayant été supposé indénombrable, la famille des
+$\frac{1}{\tau - x}$ pour $x\in k$ serait linéairement indépendante
+(par décomposition en élément simples) dans $k(\tau)$ donc dans $K$.
+Donc $K$ est algébrique sur $k$. Comme $k$ était supposé
+algébriquement clos, on a en fait $K=k$. Les classes des
+indéterminées $t_1,\ldots,t_d$ définissent alors des éléments
+$x_1,\ldots,x_d \in k$, et pour tout $f \in \mathfrak{m}$, on a
+$f(x_1,\ldots,x_d) = 0$. Autrement dit, $(x_1,\ldots,x_d) \in
+Z(\mathfrak{m})$, ce qui conclut.
+\end{proof}
+
+En fait, dans le cours de cette démonstration, on a montré (dans le
+cas particulier où on s'est placé, mais c'est vrai en général) :
+\begin{prop}[{idéaux maximaux de $k[t_1,\ldots,t_d]$}]\label{maximal-ideals-of-polynomial-algebras}
+Soit $k$ un corps algé\-bri\-que\-ment clos. Tout idéal maximal
+$\mathfrak{m}$ de $k[t_1,\ldots,t_d]$ est de la forme
+$\mathfrak{m}_{(x_1,\ldots,x_d)} := \{f : f(x_1,\ldots,x_d) = 0\}$
+pour un certain $(x_1,\ldots,x_d) \in k^d$.
+\end{prop}
+\begin{proof}
+En fait, on a prouvé que si $\mathfrak{m}$ est un idéal maximal, il
+existe $(x_1,\ldots,x_d) \in k^d$ tels que $(x_1,\ldots,x_d) \in
+Z(\mathfrak{m})$, ce qui donne $\mathfrak{m} \subseteq
+\mathfrak{I}(\{(x_1,\ldots,x_d)\})$, mais par maximalité de
+$\mathfrak{m}$ ceci est en fait une égalité.
+\end{proof}
+
+En particulier, le corps quotient $k[t_1,\ldots,t_d]/\mathfrak{m}$ est
+isomorphe à $k$, l'isomorphisme étant donnée par l'évaluation au point
+$(x_1,\ldots,x_d)$ tel que ci-dessus.
+
+\begin{thm}[Nullstellensatz = théorème des zéros de Hilbert]
+Soit $I$ un idéal de $k[t_1,\ldots,t_d]$ (toujours avec $k$ un corps
+algébriquement clos) : alors $\mathfrak{I}(Z(I)) = \surd I$ (le
+radical de $I$).
+\end{thm}
+\begin{proof}
+On sait que $\surd I \subseteq \mathfrak{I}(Z(I))$ et il s'agit de
+montrer la réciproque. Soit $f \in \mathfrak{I}(Z(I))$ : on veut
+prouver $f\in \surd I$. On vérifie facilement que ceci revient à
+montrer que l'idéal $I[\frac{1}{f}]$
+de $k[t_1,\ldots,t_d,\frac{1}{f}]$ est l'idéal unité. Or
+$k[t_1,\ldots,t_d,\frac{1}{f}] = k[t_1,\ldots,t_d,z]/(zf-1)$
+d'après \ref{localization-inverting-one-element}. Soit $J$ l'idéal
+engendré par $I$ et $zf-1$ dans $k[t_1,\ldots,t_d,z]$ : on voit que
+$Z(J) = \varnothing$ (dans $k^{d+1}$), car on ne peut pas avoir
+simultanément $f(x_1,\ldots,x_d) = 0$ et $z\,f(x_1,\ldots,x_d) = 1$,
+donc le Nullstellensatz faible entraîne $J = k[t_1,\ldots,t_d,z]$ :
+ceci donne $I[\frac{1}{f}] = k[t_1,\ldots,t_d,\frac{1}{f}]$.
+\end{proof}
+
+\begin{scho}
+Si $k$ est un corps algébriquement clos, les fonctions $I \mapsto
+Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
+réci\-proques, décroissantes pour l'inclusion, entre les idéaux radicaux
+de $k[t_1,\ldots,t_d]$ d'une part, et les fermés de Zariski de $k^d$
+d'autre part.
+
+Ces bijections mettent les \emph{points} (c'est-à-dire les singletons)
+de $k^d$ en correspondance avec les idéaux maximaux de
+$k[t_1,\ldots,t_d]$ (ils ont tous pour quotient $k$), et les
+\emph{fermés irréductibles} en correspondance avec les idéaux
+premiers.
+\end{scho}
+
+%
+\subsection{L'anneau d'un fermé de Zariski}
+
+Si $X$ est un fermé de Zariski dans $k^d$ avec $k$ algébriquement
+clos, on a vu qu'il existe un unique idéal radical $I$
+de $k[t_1,\ldots,t_d]$, à savoir l'idéal $I = \mathfrak{I}(X)$ des
+polynômes s'annulant sur $X$, tel que $X = Z(I)$. Le quotient
+$k[t_1,\ldots,t_d] / I$ (qui est donc un anneau réduit, et intègre ssi
+$X$ est irréductible) s'appelle l'\emph{anneau des fonctions
+ régulières} sur $X$ et se note $\mathcal{O}(X)$.
+
+Pourquoi fonctions régulières ? On peut considérer un élément $f \in
+\mathcal{O}(X)$ comme une fonction $X \to k$ de la façon suivante : si
+$\tilde f \in k[t_1,\ldots,t_d]$ est un représentant de $f$
+(modulo $I$) et si $x = (x_1,\ldots,x_d) \in X$, la valeur de $\tilde
+f(x_1,\ldots,x_d)$ ne dépend pas du choix de $\tilde f$ représentant
+$f$ puisque tout élément de $I$ s'annule en $x$ ; on peut donc appeler
+$f(x)$ cette valeur. Inversement, un $f \in \mathcal{O}(X)$ est
+complètement déterminé par sa valeur sur chaque point $x$ de $X$
+(rappel : $k$ est algébriquement clos ici, et c'est important !) ; en
+effet, si $f$ s'annule en tout $x \in X$, tout élément de
+$k[t_1,\ldots,t_d]$ représentant $f$ s'annule en tout $x \in X$,
+c'est-à-dire appartient à $\mathfrak{I}(X)$, ce qui signifie justement
+$f = 0$ dans $\mathcal{O}(X)$. Moralité : on peut bien considérer les
+éléments de $\mathcal{O}(X)$ comme des fonctions. Ces fonctions sont,
+tout simplement, \emph{les restrictions à $X$ des fonctions
+ polynomiales sur l'espace affine $\mathbb{A}^d$}.
+
+Dans le cas où $X = \mathbb{A}^d = k^d$ tout entier (donc $I = (0)$),
+évidemment, $\mathcal{O}(\mathbb{A}^d) = k[t_1,\ldots,t_d]$.
+
+On définit un \textbf{fermé de Zariski de $X$} comme un fermé de
+Zariski de $k^d$ qui se trouve être inclus dans $X$. La bonne
+nouvelle est que la correspondance entre fermés de Zariski de $k^d$ et
+idéaux de $k[t_1,\ldots,t_d]$ se généralise presque mot pour mot à une
+correspondance entre fermés de Zariski de $X$ et idéaux
+de $\mathcal{O}(X)$ :
+
+\begin{prop}
+Avec les notations ci-dessus :
+\begin{itemize}
+\item Tout fermé de Zariski de $X$ est de la forme $Z(\mathscr{F}) :=
+ \{x\in X :\penalty0 {(\forall f\in \mathscr{F})}\penalty100\, f(x) =
+ 0\}$ pour un certain ensemble $\mathscr{F}$ d'éléments
+ de $\mathcal{O}(X)$.
+\item En posant $\mathfrak{I}(E) := \{f\in \mathcal{O}(X) :\penalty0
+ {(\forall x\in E)}\penalty100\, f(x)=0\}$, les fonctions $I \mapsto
+ Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
+ réci\-proques, décroissantes pour l'inclusion, entre les idéaux
+ radicaux de $\mathcal{O}(X)$ d'une part, et les fermés de Zariski de
+ $X$ d'autre part : on a $\mathfrak{I}(Z(I)) = \surd I$ pour tout
+ idéal $I$ de $\mathcal{O}(X)$.
+\item Ces bijections mettent les \emph{points} (c'est-à-dire les
+ singletons) de $X$ en correspondance avec les idéaux maximaux de
+ $\mathcal{O}(X)$ (qui sont donc tous de la forme $\mathfrak{m}_x :=
+ \{f \in \mathcal{O}(X) : f(x)=0\}$ pour un $x\in X$) ; et les
+ \emph{fermés irréductibles} en correspondance avec les idéaux
+ premiers.
+\end{itemize}
+\end{prop}
+
+\smallbreak
+
+Soulignons en particulier que si $X'$ est un fermé de Zariski de $X$
+(disons défini comme $X' = Z(I)$ où $I$ est un idéal radical
+de $\mathcal{O}(X)$), alors la surjection canonique $\mathcal{O}(X)
+\to \mathcal{O}(X)/I$ est un morphisme d'anneaux $\mathcal{O}(X) \to
+\mathcal{O}(X')$ qu'il faut interpréter comme envoyant une fonction
+régulière $f$ sur $X$ sur sa \emph{restriction} à $X'$, parfois
+notée $f|_{X'}$.
+
+%
+\subsection{Variétés algébriques affines, morphismes}
+
+On appelle provisoirement \textbf{variété algébrique affine}
+dans $k^d$ (toujours avec $k$ algébriquement clos) un fermé de Zariski
+$X$ de $k^d$. Pourquoi cette terminologie redondante ? Le terme
+« fermé de Zariski » insiste sur $X$ en tant que plongée dans l'espace
+affine $\mathbb{A}^d$. Le terme de « variété algébrique affine »
+insiste sur l'aspect intrinsèque de $X$, muni de ses propres fermés de
+Zariski et de ses propres fonctions régulières, qu'on va maintenant
+présenter. On a vu ci-dessus comment associer à $X$ un anneau
+$\mathcal{O}(X)$ des fonctions régulières, qui coïncide avec
+l'ensemble des fonctions $X \to k$ qui sont restrictions de fonctions
+polynomiales sur $k^d$.
+
+On appelle \textbf{morphisme de variétés algébriques affines} entre un
+fermé de Zariski $X \subseteq k^d$ et un fermé de Zariski $Y \subseteq
+k^e$ une application $X \to Y$ telle que chacune des $e$ coordonnées à
+l'arrivée soit une fonction régulière sur $X$. Autrement dit, il
+s'agit de la donnée de $e$ éléments $f_1,\ldots,f_e$ de
+$\mathcal{O}(X)$ tels que $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout $x
+\in X$.
+\begin{prop}
+Si $X = Z(I) \subseteq k^d$ et $Y = Z(J) \subseteq k^e$, et si
+$(f_1,\ldots,f_e) \in \mathcal{O}(X)$, alors $f = (f_1,\ldots,f_e)$
+définit un morphisme $X\to Y$ (autrement dit $(f_1(x),\ldots,f_e(x))
+\in Y$ pour tout $x \in X$) \emph{si et seulement si}
+$h(f_1,\ldots,f_e) = 0$ (vu comme élément de $\mathcal{O}(X)$) pour
+tout $h \in J$.
+\end{prop}
+\begin{proof}
+Il y a équivalence entre :
+\begin{itemize}
+\item $h(f_1,\ldots,f_e) = 0$ dans $\mathcal{O}(Y)$ pour tout $h \in J$,
+\item $h(f_1(x),\ldots,f_e(x)) = 0$ pour tout $h \in J$ et $x \in X$, et
+\item $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout $x \in X$.
+\end{itemize}
+(L'équivalence entre les deux premières affirmations vient du fait que
+pour $g\in \mathcal{O}(X)$, ici $g = h(f_1,\ldots,f_e)$, on a $g=0$ si
+et seulement si $g(x)=0$ pour tout $x\in X$. L'équivalence entre les
+deux dernières vient du fait que $(y_1,\ldots,y_e) \in Y$ si et
+seulement si $h(y_1,\ldots,y_e) = 0$ pour tout $h \in J$ par
+définition de $Y = Z(J)$.)
+\end{proof}
+
+Remarquons en particulier que les fonctions régulières sur $X$
+(c'est-à-dire les éléments de $\mathcal{O}(X)$) peuvent se voir comme
+des morphismes $X \to \mathbb{A}^1$ de $X$ vers la droite affine.
+
+Remarquons par ailleurs que les morphismes de variétés algébriques se
+composent : donnés deux morphismes $X \to Y$ et $Y \to Z$, on peut
+définir un morphisme $X \to Z$ en composant les applications.
+
+Lorsque $f \colon X \to Y$ est un morphisme comme ci-dessus, on
+définit $f^* \colon \mathcal{O}(Y) \to \mathcal{O}(X)$ de la façon
+suivante : si $h \in \mathcal{O}(Y)$ est une fonction régulière vue
+comme un morphisme $Y \to \mathbb{A}^1$, on définit $f^*(h) \in
+\mathcal{O}(X)$ comme la fonction régulière donnée par le morphisme
+composé $h\circ f \colon X \to \mathbb{A}^1$. (Autrement dit, $f^*$
+est l'application de composition à droite par $f$.)
+
+\begin{prop}
+Si $X \subseteq \mathbb{A}^d$ et $Y \subseteq \mathbb{A}^e$ sont deux
+variétés algébriques affines, la correspondance $f \mapsto f^*$
+définie ci-dessus définit une bijection entre les morphismes $X \to Y$
+de variétés algébriques affines et les morphismes $\mathcal{O}(Y) \to
+\mathcal{O}(X)$ de $k$-algèbres.
+\end{prop}
+\begin{proof}
+Si les indéterminées $u_1,\ldots,u_e$ sont les $e$ coordonnées sur
+$\mathbb{A}^e$, alors les classes de $u_1,\ldots,u_e$ définissent des
+éléments de $\mathcal{O}(Y)$ : si $f \colon X \to Y$ est un morphisme
+de variétés algébriques, alors les fonctions $f_1,\ldots,f_e \in
+\mathcal{O}(X)$ le définissant sont simplement les images par $f^*$ de
+ces éléments. Ceci montre que $f^*$ permet de retrouver $f$ (la
+correspondance $f \mapsto f^*$ est injective). Et si $\psi \colon
+\mathcal{O}(Y) \to \mathcal{O}(X)$ est un morphisme quelconque, alors
+en définissant $f_1,\ldots,f_e$ comme les images de $u_1,\ldots,u_e
+\in \mathcal{O}(Y)$ par $\psi$, on a $h(f_1,\ldots,f_e) = 0$ dans
+$\mathcal{O}(Y)$ pour tout $h \in J$ (puisque $h(u_1,\ldots,u_e) = 0$
+dans $\mathcal{O}(Y)$) donc $f_1,\ldots,f_e$ définissent bien un
+morphisme $X \to Y$.
+\end{proof}
+
+
%
%