From 8079617633ac9838b5388377a9c86ea75a981826 Mon Sep 17 00:00:00 2001 From: "David A. Madore" Date: Thu, 5 May 2011 17:54:44 +0200 Subject: Affine algebraic varieties over algebraically closed fields, morphisms. --- notes-geoalg-2011.tex | 429 +++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 427 insertions(+), 2 deletions(-) diff --git a/notes-geoalg-2011.tex b/notes-geoalg-2011.tex index 44a0bd7..1e46b5c 100644 --- a/notes-geoalg-2011.tex +++ b/notes-geoalg-2011.tex @@ -130,8 +130,8 @@ $(x_1,\ldots,x_n)$ : on dit que $I$ est un idéal \textbf{de type fini}. Si $I$ peut être engendré par un seul élément, $I = Ax$ (aussi noté $(x)$), on dit que $I$ est un idéal \textbf{principal}. -Idéal nul $(0) = \{0\}$. Idéal plein $A$ : un élément $x$ est -inversible ssi l'idéal $(x)$ qu'il engendre est $A$. +Idéal nul $(0) = \{0\}$. Idéal plein ou idéal unité $A$ : un élément +$x$ est inversible ssi l'idéal $(x)$ qu'il engendre est l'idéal unité. \smallbreak @@ -351,6 +351,431 @@ Si $A$ est un anneau et $\sigma_1,\ldots,\sigma_n \in A$, alors \end{prop} +% +% +% + +\section{Variétés algébriques affines sur un corps algé\-bri\-que\-ment clos} + +Dans cette section, $k$ sera un corps algébriquement clos. + +On appelle \textbf{espace affine de dimension $d$} sur $k$ +l'ensemble $k^d$ (on parle de droite ou plan affine lorsque $d=1,2$). +Il sera aussi parfois noté $\mathbb{A}^d$ ou $\mathbb{A}^d(k)$ pour +des raisons qui apparaîtront plus loin. + +% +\subsection{Correspondance entre fermés de Zariski et idéaux} + +\textbf{Comment associer une partie de $k^d$ à un idéal de + $k[t_1,\ldots,t_d]$ ?} + +Si $\mathscr{F}$ est une partie de $k[t_1,\ldots,t_d]$, on définit un +ensemble $Z(\mathscr{F}) = \{(x_1,\ldots,x_d) \in k^d :\penalty0 +(\forall f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$. + +Remarques évidentes : si $\mathscr{F} \subseteq \mathscr{F}'$ alors +$Z(\mathscr{F}) \supseteq Z(\mathscr{F}')$ (la fonction $Z$ est +« décroissante pour l'inclusion ») ; on a $Z(\mathscr{F}) = +\bigcap_{f\in \mathscr{F}} Z(f)$ (où $Z(f)$ est un racourci de +notation pour $Z(\{f\})$). Plus intéressant : si $I$ est l'idéal +engendré par $\mathscr{F}$ alors $Z(I) = Z(\mathscr{F})$. On peut +donc se contenter de regarder les $Z(I)$ avec $I$ idéal +de $k[t_1,\ldots,t_d]$. Encore un peu mieux : si $\surd I = \{f : +(\exists n)\,f^n\in I\}$ désigne le radical de l'idéal $I$, on a +$Z(\surd I) = Z(I)$ ; on peut donc se contenter de considérer les +$Z(I)$ avec $I$ idéal radical. + +On appellera \textbf{fermé de Zariski} dans $k^d$ une partie $E$ de la +forme $Z(\mathscr{F})$ pour une certaine partie $\mathscr{F}$ +de $k[t_1,\ldots,t_d]$, dont on a vu qu'on pouvait supposer qu'il +s'agit d'un idéal radical. + +Le vide est un fermé de Zariski ($Z(1) = \varnothing$) ; l'ensemble +$k^d$ tout entier est un fermé de Zariski ($Z(0) = k^d$). Tout +singleton est un fermé de Zariski : en effet, $Z(\mathfrak{m}_x) = +\{x\}$, où $\mathfrak{m}_x$ est l'idéal $(t_1-x_1,\ldots,t_d-x_d)$ ; +remarquer que $\mathfrak{m}_x$ est un idéal maximal, le quotient +$k[t_1,\ldots,t_d]/\mathfrak{m}_x$ s'identifiant à $k$ par la fonction +$f \mapsto f(x)$ d'évaluation en $x$. + +Si $(E_i)_{i\in \Lambda}$ sont des fermés de Zariski, alors +$\bigcap_{i\in \Lambda} E_i$ est un fermé de Zariski : plus +précisément, si $(I_i)_{i\in \Lambda}$ sont des idéaux +de $k[t_1,\ldots,t_d]$, alors $Z(\sum_{i\in\Lambda} I_i) = +\bigcap_{i\in\Lambda} Z(I_i)$. Si $E,E'$ sont des fermés de Zariski, +alors $E \cup E'$ est un fermé de Zariski : plus précisément, si +$I,I'$ sont des idéaux de $k[t_1,\ldots,t_d]$, alors $Z(I\cap I') = +Z(I) \cup Z(I')$ (l'inclusion $\supseteq$ est évidente ; pour l'autre +inclusion, si $x \in Z(I\cap I')$ mais $x \not\in Z(I)$, il existe +$f\in I$ tel que $f(x) \neq 0$, et alors pour tout $f' \in I'$ on a +$f(x)\,f'(x) = 0$ puisque $ff' \in I\cap I'$, donc $f'(x) = 0$, ce qui +prouve $x \in Z(I')$). + +\medbreak + +\textbf{Comment associer un idéal de $k[t_1,\ldots,t_d]$ à une partie + de $k^d$ ?} + +Réciproquement, si $E$ est une partie de $k^d$, on note +$\mathfrak{I}(E) = \{f\in k[t_1,\ldots,t_d] :\penalty0 (\forall +(x_1,\ldots,x_d)\in E)\, f(x_1,\ldots,x_d)=0\}$. Vérification +facile : c'est un idéal de $k[t_1,\ldots,t_d]$, et même un idéal +radical. Remarque évidente : si $E \subseteq E'$ alors +$\mathfrak{I}(E) \supseteq \mathfrak{I}(E')$ ; on a $\mathfrak{I}(E) = +\bigcap_{x\in E} \mathfrak{m}_x$ (où $\mathfrak{m}_x$ désigne l'idéal +maximal $\mathfrak{I}(\{x\})$ des polynômes s'annulant en $x$), et en +particulier $\mathfrak{I}(E) \neq k[t_1,\ldots,t_d]$ dès que $E \neq +\varnothing$. + +On a de façon triviale $\mathfrak{I}(\varnothing) = +k[t_1,\ldots,t_d]$. De façon moins évidente, si $k$ est infini (ce +qui est en particulier le cas lorsque $k$ est algébriquement clos), on +a $\mathfrak{I}(k^d) = (0)$ (démonstration par récurrence sur $d$, +laissée en exercice). + +\danger Sur un corps fini $\mathbb{F}_q$, on a +$\mathfrak{I}({\mathbb{F}_q}^d) \neq (0)$. Par exemple, si $t$ est +une des in\-dé\-ter\-mi\-nées, le polynôme $t^q-t$ s'annule en tout +point de ${\mathbb{F}_q}^d$. + +\medbreak + +\textbf{Le rapport entre ces deux fonctions} + +On a $E \subseteq Z(\mathscr{F})$ ssi $\mathscr{F} \subseteq +\mathfrak{I}(E)$, puisque les deux signifient « tout polynôme dans + $\mathscr{F}$ s'annule en tout point de $E$ ». + +En particulier, en appliquant cette remarque à $\mathscr{F} = +\mathfrak{I}(E)$, on a $E \subseteq Z(\mathfrak{I}(E))$ pour toute +partie $E$ de $k^d$ ; et en appliquant la remarque à $E = +Z(\mathscr{F})$, on a $\mathscr{F} \subseteq +\mathfrak{I}(Z(\mathscr{F}))$. De $E \subseteq Z(\mathfrak{I}(E))$ on +déduit $\mathfrak{I}(E) \supseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$ +(car $\mathfrak{I}$ est décroissante), mais par ailleurs +$\mathfrak{I}(E) \subseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$ en +appliquant l'autre inclusion à $\mathfrak{I}(E)$ : donc +$\mathfrak{I}(E) = \mathfrak{I}(Z(\mathfrak{I}(E)))$ pour toute partie +$E$ de $k^d$ ; de même, $Z(\mathscr{F}) = +Z(\mathfrak{I}(Z(\mathscr{F})))$ pour tout ensemble $\mathscr{F}$ de +polynômes. On a donc prouvé : + +\begin{prop} +Avec les notations ci-dessus : +\begin{itemize} +\item Une partie $E$ de $k^d$ vérifie $E = Z(\mathfrak{I}(E))$ si et + seulement si elle est de la forme $Z(\mathscr{F})$ pour un + certain $\mathscr{F}$ (=: c'est un fermé de Zariski), et dans ce cas + on peut prendre $\mathscr{F} = \mathfrak{I}(E)$, qui est un idéal + radical. +\item Une partie $I$ de $k[t_1,\ldots,t_d]$ vérifie $I = + \mathfrak{I}(Z(I))$ si et seulement si elle est de la forme + $\mathfrak{I}(E)$ pour un certain $E$, et dans ce cas on peut + prendre $E = Z(I)$, et $I$ est un idéal radical + de $k[t_1,\ldots,t_d]$. +\item Les fonctions $\mathfrak{I}$ et $Z$ se restreignent en des + bijections décroissantes réci\-proques entre l'ensemble des fermés + de Zariski $E$ de $k^d$ et l'ensemble des idéaux (radicaux) $I$ + de $k[t_1,\ldots,t_d]$ tels que $I = \mathfrak{I}(Z(I))$. +\end{itemize} +\end{prop} + +On va voir ci-dessous que les idéaux tels que $I = \mathfrak{I}(Z(I))$ +sont exactement (tous) les idéaux radicaux de $k[t_1,\ldots,t_d]$. + +\medbreak + +\textbf{Fermés irréductibles et idéaux premiers} + +On dit qu'un fermé de Zariski $E \subseteq k^d$ non vide est +\textbf{irréductible} lorsqu'on ne peut pas écrire $E = E' \cup E''$, +où $E',E''$ sont deux fermés de Zariski (forcément contenus +dans $E$...), sauf si $E'=E$ ou $E''=E$. + +\emph{Contre-exemple :} $Z(xy)$ (dans le plan $k^2$ de +coordonnées $x,y$) n'est pas ir\-ré\-duc\-tible, car $Z(xy) = \{(x,y) +\in k^2 : xy=0\} = \{(x,y) \in k^2 : +x=0\penalty0\ \textrm{ou}\penalty0\ y=0\} = Z(x) \cup Z(y)$ est +réunion de $Z(x)$ (l'axe des ordonnées) et $Z(y)$ (l'axe des +abscisses) qui sont tous tous les deux strictement plus petits +que $Z(xy)$. + +\begin{prop}\label{closed-irreducible-iff-prime-ideal} +Un fermé de Zariski $E \subseteq k^d$ est irréductible si, et +seulement si, l'idéal $\mathfrak{I}(E)$ est premier. +\end{prop} +\begin{proof} +Supposons $\mathfrak{I}(E)$ premier : on veut montrer que $E$ est +irréductible. Supposons $E = E' \cup E''$ comme ci-dessus (on a vu +que $E = Z(\mathfrak{I}(E))$, $E' = Z(\mathfrak{I}(E'))$ et $E'' = +Z(\mathfrak{I}(E''))$) : on veut montrer que $E' = E$ ou $E'' = E$. +Supposons le contraire, c'est-à-dire $\mathfrak{I}(E) \neq +\mathfrak{I}(E')$ et $\mathfrak{I}(E) \neq \mathfrak{I}(E'')$. Il +existe alors $f' \in \mathfrak{I}(E') \setminus \mathfrak{I}(E)$ et +$f'' \in \mathfrak{I}(E'') \setminus \mathfrak{I}(E)$. On a alors +$f'f'' \not\in \mathfrak{I}(E)$ car $\mathfrak{I}(E)$ est premier, et +pourtant $f'f''$ s'annule sur $E'$ et $E''$ donc sur $E$, une +contradiction. + +Réciproquement, supposons $E$ irréductible : on veut montrer que +$\mathfrak{I}(E)$ est premier. Soient $f',f''$ tels que $f'f'' \in +\mathfrak{I}(E)$ : posons $E' = Z(\mathfrak{I}(E) + (f'))$ et $E'' = +Z(\mathfrak{I}(E) + (f''))$. On a $E' \subseteq E$ et $E'' \subseteq +E$ puisque $E = Z(\mathfrak{I}(E))$, et en fait $E' = E \cap Z(f')$ et +$E'' = E \cap Z(f'')$ ; on a par ailleurs $E = E' \cup E''$ (car si $x +\in E$ alors $f'(x)\,f''(x) = 0$ donc soit $f'(x)=0$ soit $f''(x)=0$, +et dans le premier cas $x \in E'$ et dans le second $x \in E''$). +Puisqu'on a supposé $E$ irréductible, on a, disons, $E' = E$, +c'est-à-dire $E \subseteq Z(f')$, ce qui signifie $f' \in +\mathfrak{I}(E)$. Ceci montre bien que $\mathfrak{I}(E)$ est premier. +\end{proof} + +% +\subsection{Le Nullstellensatz} + +(Nullstellensatz, littéralement, « théorème du lieu d'annulation », ou +« théorème des zéros de Hilbert ».) + +On rappelle que $k$ est algébriquement clos ! (Pour l'instant, cela +n'a pas beaucoup servi.) + +\begin{prop}[Nullstellensatz faible] +Soit $k$ un corps algébriquement clos. Si $I$ est un idéal de +$k[t_1,\ldots,t_d]$ tel que $Z(I) = \varnothing$, alors $I = +k[t_1,\ldots,t_d]$. +\end{prop} +\begin{proof}[Démonstration dans le cas particulier où $k$ est indénombrable.] +Supposons par contraposée $I \subsetneq k[t_1,\ldots,t_d]$. Alors il +existe un idéal maximal $\mathfrak{m}$ tel que $I \subseteq +\mathfrak{m}$, et on a $Z(\mathfrak{m}) \subseteq Z(I)$. On va +montrer $Z(\mathfrak{m}) \neq \varnothing$. + +Soit $K = k[t_1,\ldots,t_d]/\mathfrak{m}$. Il s'agit d'un corps, qui +est de dimension au plus dénombrable (=il a une famille génératrice +dénombrable, à savoir les images des monômes dans les $t_i$) sur $k$. +Mais $K$ ne peut pas contenir d'élément transcendant $\tau$ sur $k$ +car, $k$ ayant été supposé indénombrable, la famille des +$\frac{1}{\tau - x}$ pour $x\in k$ serait linéairement indépendante +(par décomposition en élément simples) dans $k(\tau)$ donc dans $K$. +Donc $K$ est algébrique sur $k$. Comme $k$ était supposé +algébriquement clos, on a en fait $K=k$. Les classes des +indéterminées $t_1,\ldots,t_d$ définissent alors des éléments +$x_1,\ldots,x_d \in k$, et pour tout $f \in \mathfrak{m}$, on a +$f(x_1,\ldots,x_d) = 0$. Autrement dit, $(x_1,\ldots,x_d) \in +Z(\mathfrak{m})$, ce qui conclut. +\end{proof} + +En fait, dans le cours de cette démonstration, on a montré (dans le +cas particulier où on s'est placé, mais c'est vrai en général) : +\begin{prop}[{idéaux maximaux de $k[t_1,\ldots,t_d]$}]\label{maximal-ideals-of-polynomial-algebras} +Soit $k$ un corps algé\-bri\-que\-ment clos. Tout idéal maximal +$\mathfrak{m}$ de $k[t_1,\ldots,t_d]$ est de la forme +$\mathfrak{m}_{(x_1,\ldots,x_d)} := \{f : f(x_1,\ldots,x_d) = 0\}$ +pour un certain $(x_1,\ldots,x_d) \in k^d$. +\end{prop} +\begin{proof} +En fait, on a prouvé que si $\mathfrak{m}$ est un idéal maximal, il +existe $(x_1,\ldots,x_d) \in k^d$ tels que $(x_1,\ldots,x_d) \in +Z(\mathfrak{m})$, ce qui donne $\mathfrak{m} \subseteq +\mathfrak{I}(\{(x_1,\ldots,x_d)\})$, mais par maximalité de +$\mathfrak{m}$ ceci est en fait une égalité. +\end{proof} + +En particulier, le corps quotient $k[t_1,\ldots,t_d]/\mathfrak{m}$ est +isomorphe à $k$, l'isomorphisme étant donnée par l'évaluation au point +$(x_1,\ldots,x_d)$ tel que ci-dessus. + +\begin{thm}[Nullstellensatz = théorème des zéros de Hilbert] +Soit $I$ un idéal de $k[t_1,\ldots,t_d]$ (toujours avec $k$ un corps +algébriquement clos) : alors $\mathfrak{I}(Z(I)) = \surd I$ (le +radical de $I$). +\end{thm} +\begin{proof} +On sait que $\surd I \subseteq \mathfrak{I}(Z(I))$ et il s'agit de +montrer la réciproque. Soit $f \in \mathfrak{I}(Z(I))$ : on veut +prouver $f\in \surd I$. On vérifie facilement que ceci revient à +montrer que l'idéal $I[\frac{1}{f}]$ +de $k[t_1,\ldots,t_d,\frac{1}{f}]$ est l'idéal unité. Or +$k[t_1,\ldots,t_d,\frac{1}{f}] = k[t_1,\ldots,t_d,z]/(zf-1)$ +d'après \ref{localization-inverting-one-element}. Soit $J$ l'idéal +engendré par $I$ et $zf-1$ dans $k[t_1,\ldots,t_d,z]$ : on voit que +$Z(J) = \varnothing$ (dans $k^{d+1}$), car on ne peut pas avoir +simultanément $f(x_1,\ldots,x_d) = 0$ et $z\,f(x_1,\ldots,x_d) = 1$, +donc le Nullstellensatz faible entraîne $J = k[t_1,\ldots,t_d,z]$ : +ceci donne $I[\frac{1}{f}] = k[t_1,\ldots,t_d,\frac{1}{f}]$. +\end{proof} + +\begin{scho} +Si $k$ est un corps algébriquement clos, les fonctions $I \mapsto +Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections +réci\-proques, décroissantes pour l'inclusion, entre les idéaux radicaux +de $k[t_1,\ldots,t_d]$ d'une part, et les fermés de Zariski de $k^d$ +d'autre part. + +Ces bijections mettent les \emph{points} (c'est-à-dire les singletons) +de $k^d$ en correspondance avec les idéaux maximaux de +$k[t_1,\ldots,t_d]$ (ils ont tous pour quotient $k$), et les +\emph{fermés irréductibles} en correspondance avec les idéaux +premiers. +\end{scho} + +% +\subsection{L'anneau d'un fermé de Zariski} + +Si $X$ est un fermé de Zariski dans $k^d$ avec $k$ algébriquement +clos, on a vu qu'il existe un unique idéal radical $I$ +de $k[t_1,\ldots,t_d]$, à savoir l'idéal $I = \mathfrak{I}(X)$ des +polynômes s'annulant sur $X$, tel que $X = Z(I)$. Le quotient +$k[t_1,\ldots,t_d] / I$ (qui est donc un anneau réduit, et intègre ssi +$X$ est irréductible) s'appelle l'\emph{anneau des fonctions + régulières} sur $X$ et se note $\mathcal{O}(X)$. + +Pourquoi fonctions régulières ? On peut considérer un élément $f \in +\mathcal{O}(X)$ comme une fonction $X \to k$ de la façon suivante : si +$\tilde f \in k[t_1,\ldots,t_d]$ est un représentant de $f$ +(modulo $I$) et si $x = (x_1,\ldots,x_d) \in X$, la valeur de $\tilde +f(x_1,\ldots,x_d)$ ne dépend pas du choix de $\tilde f$ représentant +$f$ puisque tout élément de $I$ s'annule en $x$ ; on peut donc appeler +$f(x)$ cette valeur. Inversement, un $f \in \mathcal{O}(X)$ est +complètement déterminé par sa valeur sur chaque point $x$ de $X$ +(rappel : $k$ est algébriquement clos ici, et c'est important !) ; en +effet, si $f$ s'annule en tout $x \in X$, tout élément de +$k[t_1,\ldots,t_d]$ représentant $f$ s'annule en tout $x \in X$, +c'est-à-dire appartient à $\mathfrak{I}(X)$, ce qui signifie justement +$f = 0$ dans $\mathcal{O}(X)$. Moralité : on peut bien considérer les +éléments de $\mathcal{O}(X)$ comme des fonctions. Ces fonctions sont, +tout simplement, \emph{les restrictions à $X$ des fonctions + polynomiales sur l'espace affine $\mathbb{A}^d$}. + +Dans le cas où $X = \mathbb{A}^d = k^d$ tout entier (donc $I = (0)$), +évidemment, $\mathcal{O}(\mathbb{A}^d) = k[t_1,\ldots,t_d]$. + +On définit un \textbf{fermé de Zariski de $X$} comme un fermé de +Zariski de $k^d$ qui se trouve être inclus dans $X$. La bonne +nouvelle est que la correspondance entre fermés de Zariski de $k^d$ et +idéaux de $k[t_1,\ldots,t_d]$ se généralise presque mot pour mot à une +correspondance entre fermés de Zariski de $X$ et idéaux +de $\mathcal{O}(X)$ : + +\begin{prop} +Avec les notations ci-dessus : +\begin{itemize} +\item Tout fermé de Zariski de $X$ est de la forme $Z(\mathscr{F}) := + \{x\in X :\penalty0 {(\forall f\in \mathscr{F})}\penalty100\, f(x) = + 0\}$ pour un certain ensemble $\mathscr{F}$ d'éléments + de $\mathcal{O}(X)$. +\item En posant $\mathfrak{I}(E) := \{f\in \mathcal{O}(X) :\penalty0 + {(\forall x\in E)}\penalty100\, f(x)=0\}$, les fonctions $I \mapsto + Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections + réci\-proques, décroissantes pour l'inclusion, entre les idéaux + radicaux de $\mathcal{O}(X)$ d'une part, et les fermés de Zariski de + $X$ d'autre part : on a $\mathfrak{I}(Z(I)) = \surd I$ pour tout + idéal $I$ de $\mathcal{O}(X)$. +\item Ces bijections mettent les \emph{points} (c'est-à-dire les + singletons) de $X$ en correspondance avec les idéaux maximaux de + $\mathcal{O}(X)$ (qui sont donc tous de la forme $\mathfrak{m}_x := + \{f \in \mathcal{O}(X) : f(x)=0\}$ pour un $x\in X$) ; et les + \emph{fermés irréductibles} en correspondance avec les idéaux + premiers. +\end{itemize} +\end{prop} + +\smallbreak + +Soulignons en particulier que si $X'$ est un fermé de Zariski de $X$ +(disons défini comme $X' = Z(I)$ où $I$ est un idéal radical +de $\mathcal{O}(X)$), alors la surjection canonique $\mathcal{O}(X) +\to \mathcal{O}(X)/I$ est un morphisme d'anneaux $\mathcal{O}(X) \to +\mathcal{O}(X')$ qu'il faut interpréter comme envoyant une fonction +régulière $f$ sur $X$ sur sa \emph{restriction} à $X'$, parfois +notée $f|_{X'}$. + +% +\subsection{Variétés algébriques affines, morphismes} + +On appelle provisoirement \textbf{variété algébrique affine} +dans $k^d$ (toujours avec $k$ algébriquement clos) un fermé de Zariski +$X$ de $k^d$. Pourquoi cette terminologie redondante ? Le terme +« fermé de Zariski » insiste sur $X$ en tant que plongée dans l'espace +affine $\mathbb{A}^d$. Le terme de « variété algébrique affine » +insiste sur l'aspect intrinsèque de $X$, muni de ses propres fermés de +Zariski et de ses propres fonctions régulières, qu'on va maintenant +présenter. On a vu ci-dessus comment associer à $X$ un anneau +$\mathcal{O}(X)$ des fonctions régulières, qui coïncide avec +l'ensemble des fonctions $X \to k$ qui sont restrictions de fonctions +polynomiales sur $k^d$. + +On appelle \textbf{morphisme de variétés algébriques affines} entre un +fermé de Zariski $X \subseteq k^d$ et un fermé de Zariski $Y \subseteq +k^e$ une application $X \to Y$ telle que chacune des $e$ coordonnées à +l'arrivée soit une fonction régulière sur $X$. Autrement dit, il +s'agit de la donnée de $e$ éléments $f_1,\ldots,f_e$ de +$\mathcal{O}(X)$ tels que $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout $x +\in X$. +\begin{prop} +Si $X = Z(I) \subseteq k^d$ et $Y = Z(J) \subseteq k^e$, et si +$(f_1,\ldots,f_e) \in \mathcal{O}(X)$, alors $f = (f_1,\ldots,f_e)$ +définit un morphisme $X\to Y$ (autrement dit $(f_1(x),\ldots,f_e(x)) +\in Y$ pour tout $x \in X$) \emph{si et seulement si} +$h(f_1,\ldots,f_e) = 0$ (vu comme élément de $\mathcal{O}(X)$) pour +tout $h \in J$. +\end{prop} +\begin{proof} +Il y a équivalence entre : +\begin{itemize} +\item $h(f_1,\ldots,f_e) = 0$ dans $\mathcal{O}(Y)$ pour tout $h \in J$, +\item $h(f_1(x),\ldots,f_e(x)) = 0$ pour tout $h \in J$ et $x \in X$, et +\item $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout $x \in X$. +\end{itemize} +(L'équivalence entre les deux premières affirmations vient du fait que +pour $g\in \mathcal{O}(X)$, ici $g = h(f_1,\ldots,f_e)$, on a $g=0$ si +et seulement si $g(x)=0$ pour tout $x\in X$. L'équivalence entre les +deux dernières vient du fait que $(y_1,\ldots,y_e) \in Y$ si et +seulement si $h(y_1,\ldots,y_e) = 0$ pour tout $h \in J$ par +définition de $Y = Z(J)$.) +\end{proof} + +Remarquons en particulier que les fonctions régulières sur $X$ +(c'est-à-dire les éléments de $\mathcal{O}(X)$) peuvent se voir comme +des morphismes $X \to \mathbb{A}^1$ de $X$ vers la droite affine. + +Remarquons par ailleurs que les morphismes de variétés algébriques se +composent : donnés deux morphismes $X \to Y$ et $Y \to Z$, on peut +définir un morphisme $X \to Z$ en composant les applications. + +Lorsque $f \colon X \to Y$ est un morphisme comme ci-dessus, on +définit $f^* \colon \mathcal{O}(Y) \to \mathcal{O}(X)$ de la façon +suivante : si $h \in \mathcal{O}(Y)$ est une fonction régulière vue +comme un morphisme $Y \to \mathbb{A}^1$, on définit $f^*(h) \in +\mathcal{O}(X)$ comme la fonction régulière donnée par le morphisme +composé $h\circ f \colon X \to \mathbb{A}^1$. (Autrement dit, $f^*$ +est l'application de composition à droite par $f$.) + +\begin{prop} +Si $X \subseteq \mathbb{A}^d$ et $Y \subseteq \mathbb{A}^e$ sont deux +variétés algébriques affines, la correspondance $f \mapsto f^*$ +définie ci-dessus définit une bijection entre les morphismes $X \to Y$ +de variétés algébriques affines et les morphismes $\mathcal{O}(Y) \to +\mathcal{O}(X)$ de $k$-algèbres. +\end{prop} +\begin{proof} +Si les indéterminées $u_1,\ldots,u_e$ sont les $e$ coordonnées sur +$\mathbb{A}^e$, alors les classes de $u_1,\ldots,u_e$ définissent des +éléments de $\mathcal{O}(Y)$ : si $f \colon X \to Y$ est un morphisme +de variétés algébriques, alors les fonctions $f_1,\ldots,f_e \in +\mathcal{O}(X)$ le définissant sont simplement les images par $f^*$ de +ces éléments. Ceci montre que $f^*$ permet de retrouver $f$ (la +correspondance $f \mapsto f^*$ est injective). Et si $\psi \colon +\mathcal{O}(Y) \to \mathcal{O}(X)$ est un morphisme quelconque, alors +en définissant $f_1,\ldots,f_e$ comme les images de $u_1,\ldots,u_e +\in \mathcal{O}(Y)$ par $\psi$, on a $h(f_1,\ldots,f_e) = 0$ dans +$\mathcal{O}(Y)$ pour tout $h \in J$ (puisque $h(u_1,\ldots,u_e) = 0$ +dans $\mathcal{O}(Y)$) donc $f_1,\ldots,f_e$ définissent bien un +morphisme $X \to Y$. +\end{proof} + + % % -- cgit v1.2.3