From c3c4abf46d6022aa78c40db1361e263e6962030f Mon Sep 17 00:00:00 2001
From: "David A. Madore" <david+git@madore.org>
Date: Wed, 13 Jun 2012 16:44:07 +0200
Subject: Notational clarifications + conditions for Picard group to be given
 by Galois invariants.

---
 notes-geoalg-2012.tex | 76 +++++++++++++++++++++++++++++----------------------
 1 file changed, 44 insertions(+), 32 deletions(-)

diff --git a/notes-geoalg-2012.tex b/notes-geoalg-2012.tex
index 20530c3..34c3675 100644
--- a/notes-geoalg-2012.tex
+++ b/notes-geoalg-2012.tex
@@ -3298,8 +3298,8 @@ absolu $\Gal(k)$ (ou, si on préfère, une combinaison linéaire formelle
 de « points fermés » de $C$, chacun étant vu comme la somme d'une
 orbite galoisienne).
 
-On appelle \textbf{degré} du diviseur $\sum n_P (P)$ l'entier $\sum
-n_P$.
+On appelle \textbf{degré} du diviseur $\sum_{P \in C} n_P \cdot (P)$
+l'entier $\sum_{P \in C} n_P$.
 \end{defn}
 
 Si $f \in k(C)$ n'est pas constant, on peut notamment considérer les diviseurs
@@ -3317,19 +3317,19 @@ corollaire \ref{principal-divisors-have-degree-zero} est que ces
 diviseurs ont degré respectivement $\deg f$, $\deg f$ et $0$.
 
 Plus généralement, si $h \colon C' \to C$ est un morphisme non
-constant entre courbes, et $D = \sum_P n_P (P)$ un diviseur sur $C$,
-on définit $h^*(D) = \sum_Q n_{h(Q)} e_Q (Q)$ qu'on appelle
-\textbf{image réciproque} (ou \textbf{tiré en arrière}) de $D$
-par $h$ : il est clair que le diviseur des zéros $f^*((0))$ défini
-ci-dessus est bien le tiré en arrière du diviseur $(0)$
-sur $\mathbb{P}^1$ par $f$ vu comme morphisme $C \to \mathbb{P}^1$.
-Il est évident que le tiré en arrière d'un diviseur principal est
-encore principal (en fait, $h^*(\divis(f)) = \divis(f\circ h)$).  On
-peut aussi définir l'\textbf{image directe} (ou \textbf{poussé en
-  avant}) par $h$ d'un diviseur $D' = \sum_Q n_Q (Q)$ sur $C'$ comme
-$h_*(D') = \sum_Q n_Q (h(Q))$ : il est aussi vrai, mais un chouïa
-moins évident, que l'image directe d'un diviseur principal est un
-diviseur principal.
+constant entre courbes, et $D = \sum_{P\in C} n_P \cdot (P)$ un
+diviseur sur $C$, on définit $h^*(D) = \sum_{Q\in C'} n_{h(Q)} e_Q
+\cdot (Q)$ qu'on appelle \textbf{image réciproque} (ou \textbf{tiré en
+  arrière}) de $D$ par $h$ : il est clair que le diviseur des zéros
+$f^*((0))$ défini ci-dessus est bien le tiré en arrière du
+diviseur $(0)$ sur $\mathbb{P}^1$ par $f$ vu comme morphisme $C \to
+\mathbb{P}^1$.  Il est évident que le tiré en arrière d'un diviseur
+principal est encore principal (en fait, $h^*(\divis(f)) =
+\divis(f\circ h)$).  On peut aussi définir l'\textbf{image directe}
+(ou \textbf{poussé en avant}) par $h$ d'un diviseur $D' = \sum_{Q\in
+  C'} n_Q \cdot (Q)$ sur $C'$ comme $h_*(D') = \sum_{Q\in C'} n_Q
+\cdot (h(Q))$ : il est aussi vrai, mais un chouïa moins évident, que
+l'image directe d'un diviseur principal est un diviseur principal.
 
 \begin{prop}
 Si $h \colon C' \to C$ est un morphisme non constant entre courbes,
@@ -3349,7 +3349,7 @@ cf. \ref{non-constant-morphisms-of-curves-are-surjective}).
 
 \begin{defn}
 On appelle \textbf{principal} un diviseur (de degré zéro) de la forme
-$\divis(f) := \sum_{P\in C} \ord_P(f)\, (P)$ pour une certaine
+$\divis(f) := \sum_{P\in C} \ord_P(f)\cdot (P)$ pour une certaine
 fonction $f \in k(C)$ non constante.  Les diviseurs principaux forment
 un sous-groupe du groupe des diviseurs (car $\divis(fg) =
 \divis(f)+\divis(g)$, cf. \ref{properties-valuation}) : on dit que
@@ -3362,10 +3362,10 @@ courbe $C$, noté $\Pic(C)$ (resp. $\Pic^0(C)$).
 \end{defn}
 
 \textbf{Exemple :} Sur $\mathbb{P}^1$, pour tout diviseur $\sum n_P
-(P)$ de degré zéro, on peut trouver une fraction rationnelle $\prod
-(t-P)^{n_P}$ qui a les ordres $n_P$ à ceux des points $P$ qui sont
-dans $\mathbb{A}^1$, et le degré à l'infini sera automatiquement le
-bon puisque $\sum n_P = 0$.  Ceci montre que \emph{tout diviseur de
+\cdot (P)$ de degré zéro, on peut trouver une fraction rationnelle
+$\prod (t-P)^{n_P}$ qui a les ordres $n_P$ à ceux des points $P$ qui
+sont dans $\mathbb{A}^1$, et le degré à l'infini sera automatiquement
+le bon puisque $\sum n_P = 0$.  Ceci montre que \emph{tout diviseur de
   degré zéro sur $\mathbb{P}^1$ est principal}, donc que
 $\Pic^0(\mathbb{P}^1) = 0$, et $\Pic(\mathbb{P}^1) = \mathbb{Z}$.
 
@@ -3375,7 +3375,8 @@ le noyau est $\Pic^0(C)$.  Si la courbe $C$ vérifie $C(k) \neq
 alors tout diviseur peut s'écrire comme somme de $n (P)$ et d'un
 diviseur de degré zéro, et il est facile de voir que $\Pic(C) =
 \Pic^0(C) \oplus \mathbb{Z}$ (où $\mathbb{Z}$ désigne
-$\mathbb{Z}\cdot(P)$, le groupe des diviseurs de la forme $n (P)$).
+$\mathbb{Z}\cdot(P)$, le groupe des diviseurs de la forme $n\cdot
+(P)$).
 
 \emph{Attention :} Pour une fois, le slogan « rationnel = fixe par
   Galois » n'est pas vérifié : quand $C$ est une courbe sur un corps
@@ -3385,10 +3386,20 @@ stables par Galois modulos ceux de la forme $\divis(f)$ avec $f \in
 k(C)$, et le groupe de Picard fixé par Galois noté $(\Pic
 C_{k^{\alg}})^{\Gal(k)}$, c'est-à-dire les classes des diviseurs $D$
 tels que $\sigma(D)$ soit linéairement équivalent à $D$
-(sur $k^{\alg}$) pour tout $\sigma \in \Gal(k)$.  Néanmoins, certains
-auteurs appellent (à tort) $\Pic C$ ce deuxième groupe (d'autres
-encore appellent $\Pic C$ tout le groupe de Picard géométrique $\Pic
-C_{k^{\alg}}$) : il faut donc faire attention à qui utilise quoi.
+(sur $k^{\alg}$) pour tout $\sigma \in \Gal(k)$.  (Un exemple de
+situation où il y a une différence est celui de la conique sans points
+$\{t_0^2 + t_1^2 + t_2^2 = 0\} \subset \mathbb{P}^2_{\mathbb{R}}$ :
+les diviseurs rationnels sont tous de degré pair, donc $\Pic C$ est le
+sous-groupe $2\mathbb{Z}$ si on identifie $\Pic C_{\mathbb{C}}$ à
+$\mathbb{Z}$ via le degré, sur lequel $\Gamma_{\mathbb{R}}$ opère
+trivialement.)  Certains auteurs appellent (à tort) $\Pic C$ ce
+deuxième groupe (d'autres encore appellent $\Pic C$ tout le groupe de
+Picard géométrique $\Pic C_{k^{\alg}}$) : il faut donc faire attention
+à qui utilise quoi.  Cependant, cette distinction ne doit pas nous
+inquiéter, parce qu'on peut montrer que $\Pic C$ coïncide bien avec le
+groupe $(\Pic C_{k^{\alg}})^{\Gal(k)}$ des invariants sous Galois
+lorsque $k$ est un corps fini \emph{ou bien} que $C(k) \neq
+\varnothing$ (=la courbe a un point rationnel).
 
 
 
@@ -3453,8 +3464,8 @@ où $t \in k(C)$ est tel que $\ord_P(t) = 1$ (=est une uniformisante
 en $P$).  Cette définition ne dépend pas du choix de $t$.
 
 Si $\omega \neq 0$, le diviseur $\divis(\omega) := \sum_P
-\ord_P(\omega) (P)$ s'appelle \textbf{diviseur canonique} de la forme
-différentielle $\omega$.
+\ord_P(\omega)\cdot (P)$ s'appelle \textbf{diviseur canonique} de la
+forme différentielle $\omega$.
 \end{defn}
 
 La définition de $\ord_P(\omega)$ ne dépend pas du choix de $t$, car
@@ -3516,10 +3527,10 @@ Ceci signifie que la classe canonique $K$ sur $C$ est \emph{nulle}.
 \begin{defn}
 Un diviseur $D$ sur une courbe $C$ est dit \textbf{effectif}, noté $D
 \geq 0$, lorsque $D$ est combinaison de points à coefficients
-positifs : $D = \sum n_P (P)$ avec $n_P \geq 0$ pour tout $P$.
+positifs : $D = \sum n_P\cdot (P)$ avec $n_P \geq 0$ pour tout $P$.
 
-Si $D = \sum n_P (P)$ est un diviseur (non nécessairement effectif)
-sur une courbe $C$, on note $\mathscr{L}(D)$ ou parfois
+Si $D = \sum n_P\cdot (P)$ est un diviseur (non nécessairement
+effectif) sur une courbe $C$, on note $\mathscr{L}(D)$ ou parfois
 $\mathcal{O}(D)$ le $k$-espace vectoriel $\{f \in k(C) : \divis(f)+D
 \geq 0\}$ des fonctions rationnelles sur $C$ vérifiant $\ord_P(f) \geq
 -n_P$ pour tout point $P$ de $C$.  (S'il faut lui donner un nom, c'est
@@ -3661,8 +3672,9 @@ morphisme non-constant de courbes, alors l'image réciproque par $f$ de
 tout ouvert affine de $C_0$ est affine.
 
 Soit $P$ un point du complémentaire de $U$ : le théorème de
-Riemann-Roch, et notamment le corollaire \ref{degree-of-canonical-divisor}, montre que si $n$
-est assez grand, alors $l(n(P)) > 1$, autrement dit, il existe une
+Riemann-Roch, et notamment le
+corollaire \ref{degree-of-canonical-divisor}, montre que si $n$ est
+assez grand, alors $l(n\cdot (P)) > 1$, autrement dit, il existe une
 fonction $f \in k(C)$ non constante et régulière partout sauf en $P$
 (où elle ne peut pas être régulière).  En considérant $f$ comme un
 morphisme $C \to \mathbb{P}^1$, on voit alors que $U' := C
-- 
cgit v1.2.3