%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}[subsection]
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newtheorem{defn}[comcnt]{Définition}
\newtheorem{prop}[comcnt]{Proposition}
\newtheorem{lem}[comcnt]{Lemme}
\newtheorem{thm}[comcnt]{Théorème}
\newtheorem{cor}[comcnt]{Corollaire}
\newtheorem{rmk}[comcnt]{Remarque}
\newtheorem{scho}[comcnt]{Scholie}
\newtheorem{exmps}[comcnt]{Exemples}
\newtheorem{princ}[comcnt]{Principe}
\newcommand{\limp}{\mathrel{\Rightarrow}}
\newcommand{\liff}{\mathrel{\Longleftrightarrow}}
\newcommand{\pgcd}{\operatorname{pgcd}}
\newcommand{\ppcm}{\operatorname{ppcm}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\Frob}{\operatorname{Frob}}
\newcommand{\Frac}{\operatorname{Frac}}
\newcommand{\Spec}{\operatorname{Spec}}
\renewcommand{\qedsymbol}{\smiley}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
%
%
\begin{document}
\title{\underline{Brouillon} de notes de cours\\de géométrie algébrique}
\author{David A. Madore}
\maketitle

\centerline{\textbf{MDI349}}

%
%
%

\section*{Conventions}

Sauf précision expresse du contraire, tous les anneaux considérés sont
commutatifs et ont un élément unité (noté $1$).

Si $k$ est un anneau, une \textbf{$k$-algèbre} (là aussi :
implicitement commutative) est la donnée d'un morphisme d'anneaux $k
\buildrel\varphi\over\to A$ (appelé \emph{morphisme structural} de
l'algèbre).  On peut multiplier un élément de $A$ par un élément
de $k$ avec : $c\cdot x = \varphi(c)\,x \in A$ (pour $c\in k$ et $x\in
A$).


%
%
%

\section{Introduction / motivations}

Qu'est-ce que la géométrie algébrique ?  En condensé :
\begin{itemize}
\item\textbf{But :} Étudier les solutions de systèmes d'équations
  polynomiales dans un corps ou un anneau quelconque, ou des objets
  apparentés.  (Étudier = étudier leur existence, les compter, les
  paramétrer, les relier, définir une structure dessus, etc.)
\item\textbf{Géométrie :} Voir de tels systèmes d'équations comme des
  objets géo\-mé\-triques, soit plongés dans un espace ambiant (espace
  affine, espace projectif), soit intrinsèques ; leur appliquer des
  concepts de géométrie (espace tangent, étude locale de singularités,
  etc.).
\item\textbf{Moyens :} L'étude locale de ces objets passe par les
  fonctions définies dessus, qui sont des anneaux tout à fait
  généraux, donc l'\emph{algèbre commutative} (étude des anneaux
  commutatifs et de leurs idéaux).
\end{itemize}

\smallbreak

Problèmes \emph{géométriques} = étude de solutions sur des corps
algébriquement clos (e.g., $\mathbb{C}$ : géométrie algébrique
complexe ; $\bar{\mathbb{F}}_p$) ou « presque » (e.g., $\mathbb{R}$ :
géométrie algébrique réelle).  Problèmes \emph{arithmétiques} = sur
des corps loin d'être algébriquement clos (e.g., $\mathbb{Q}$ :
géométrie arithmétique), ou des anneaux plus gé\-né\-raux
(e.g., $\mathbb{Z}$ : idem, « équations diophantiennes »).

Applications : cryptographie et codage (géométrie sur $\mathbb{F}_q$),
calcul formel, robotique (géométrie sur $\mathbb{R}$), analyse
complexe (géométrie sur $\mathbb{C}$), théorie des nombres
(sur $\mathbb{Q}$, corps de nombres...), etc.

\smallbreak

\textbf{Un exemple :} Pour tout anneau $k$, on définit $C(k) =
\{(x,y)\in k^2 : x^2+y^2 = 1\}$.  Interprétation géométrique : ceci
est un cercle !  Il est plongé dans le « plan affine » $\mathbb{A}^2$
défini par $\mathbb{A}^2(k) = k^2$ pour tout anneau $k$.

\begin{itemize}
\item Sur $\mathbb{R}$, les solutions forment effectivement un cercle,
  au sens naïf.
\item (Sur $\mathbb{C}$, les solutions dans $\mathbb{C}^2$ forment une
  surface, qui ressemblerait plutôt à une sphère privée de deux
  points.)
\item Sur $\mathbb{F}_q$, on peut compter les solutions : on peut
  montrer qu'il y en a $q-1$ ou $q+1$ selon que $q \equiv 1\pmod{4}$
  ou $q \equiv 3\pmod{4}$ (ou encore $q$ pour $q = 2^r$).
\item Sur $\mathbb{Q}$, il n'est pas complètement évident de trouver
  des solutions autres que $(\pm 1,0)$ et $(0,\pm 1)$.  Un exemple :
  $(\frac{4}{5},\frac{3}{5})$ (Pythagore, Euclide...).
\end{itemize}

Paramétrage des solutions :

\begin{center}
\begin{tikzpicture}[scale=3]
\draw[step=.2cm,help lines] (-1.25,-1.25) grid (1.25,1.25);
\draw[->] (-1.15,0) -- (1.15,0); \draw[->] (0,-1.15) -- (0,1.15);
\draw (0,0) circle (1cm);
\draw (1,-1.15) -- (1,1.15);
\coordinate (P) at (0.8,0.6);
\coordinate (Q) at (1,0.6666666667);
\draw (0.8,0) -- (P);
\draw (-1,0) -- node[sloped,auto] {$\scriptstyle\mathrm{pente}=t$} (Q);
\fill[black] (P) circle (.5pt);
\fill[black] (Q) circle (.5pt);
\fill[black] (-1,0) circle (.5pt);
\node[anchor=west] at (Q) {$\scriptstyle (1,2t)$};
\node[anchor=north east] at (-1,0) {$\scriptstyle (-1,0)$};
\node[anchor=east] at (P) {$\scriptstyle (\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$};
\end{tikzpicture}
\end{center}

Un petit calcul géométrique (cf. les formules exprimant
$\cos\theta,\sin\theta$ en fonction de $\tan\frac{\theta}{2}$),
valable sur tout corps $k$ de caractéristique $\neq 2$ (ou en fait
tout anneau dans lequel $2$ est inversible\footnote{C'est-à-dire, une
  $\mathbb{Z}[\frac{1}{2}]$-algèbre, où $\mathbb{Z}[\frac{1}{2}] =
  \{\frac{a}{2^r}:a\in\mathbb{Z},r\in\mathbb{N}\}$}), permet de
montrer que toute solution $(x,y) \in C(k)$ autre que $(-1,0)$ peut
s'écrire de la forme $(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$ avec $t
\in k$ (uniquement défini, et vérifiant $t^2\neq -1$).

\emph{Remarques :} (a) ceci correspond à un point
$(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}) \in C(k(t))$ où $k(t)$ est le
corps des fonctions rationnelles à une indéterminée sur $k$ ; (b) ceci
permet, par exemple, de trouver de nombreuses solutions
sur $\mathbb{Q}$, ou d'en trouver rapidement sur
$\mathbb{F}_q$ ($q$ impair) ; (c) on a, en fait, défini un
« morphisme » d'objets géométriques de la droite affine $\mathbb{A}^1$
vers le cercle $C$ (privé du point $(-1,0)$).

On peut aussi définir une structure de \emph{groupe} (abélien) sur les
points de $C(k)$ pour n'importe quel anneau $k$ : si $(x,y) \in C(k)$
et $(x',y') \in C(k)$, on définit leur composée $(x,y)\star (x',y') =
(x'',y'')$ par
\[
\left\{\begin{array}{c}
x'' = xx'-yy'\\
y'' = xy'+yx'\\
\end{array}\right.
\]
(cf. les formules exprimant
$\cos(\theta+\theta'),\sin(\theta+\theta')$ en fonction de
$\cos\theta,\sin\theta$ et $\cos\theta',\sin\theta'$).  Élément
neutre : $(1,0)$ ; inverse de $(x,y)$ : $(x,-y)$.

(Les fonctions trigonométriques, ``transcendantes'', servent à motiver
ces formules, mais les formules sont parfaitement valables sur
$\mathbb{F}_q$ bien que $\cos\theta,\sin\theta$ n'aient pas de sens !)

\emph{Remarque :} Tout élément $f$ de l'anneau
$\mathbb{R}[x,y]/(x^2+y^2-1)$ définit une fonction réelle sur le
cercle $C(\mathbb{R})$ : ces fonctions s'appellent « polynômes
  trigonométriques ».  Tout élément de l'anneau
$\mathbb{Z}[x,y]/(x^2+y^2-1)$ définit une fonction (à valeurs
dans $k$) sur \emph{n'importe quel} $C(k)$.  On verra aussi plus loin
qu'un élément de $C(k)$ peut se voir comme un morphisme d'anneaux
$\mathbb{Z}[x,y]/(x^2+y^2-1) \to k$.


%
%
%

\section{Prolégomènes d'algèbre commutative}

\subsection{Anneaux réduits, intègres}

Anneau \textbf{réduit} = anneau dans lequel $x^n = 0$ implique $x =
0$.  En général, un $x$ (dans un anneau $A$) tel que $x^n = 0$ pour un
certain $n \in \mathbb{N}$ s'appelle un élément \textbf{nilpotent}.

Anneau \textbf{intègre} = anneau non nul dans lequel $xy = 0$ implique
$x=0$ ou $y=0$ (remarque : la réciproque vaut dans tout anneau).  En
général, un $x$ (dans un anneau $A$) tel qu'il existe $y \neq 0$ tel
que $xy = 0$ s'appelle un \textbf{diviseur de zéro}.

Élément \textbf{inversible} (ou \emph{unité}) d'un anneau $A$ =
élément $x$ tel qu'il existe $y$ vérifiant $xy = 1$.  L'ensemble
$A^\times$ ou $\mathbb{G}_m(A)$ des tels éléments forme un
\emph{groupe}, appelé groupe multiplicatif des inversibles de $A$.  Un
\textbf{corps} est un anneau tel que $A^\times = A\setminus\{0\}$.

Un corps est un anneau intègre.  Un anneau intègre est un anneau
réduit.

\smallbreak

Idéal \textbf{maximal} d'un anneau $A$ = un idéal $\mathfrak{m} \neq
A$ tel que si $\mathfrak{m} \subseteq \mathfrak{m}'$ (avec
$\mathfrak{m}'$ un autre idéal) alors soit
$\mathfrak{m}'=\mathfrak{m}$ soit $\mathfrak{m}'=A$).  Propriété
équivalente : c'est un idéal $\mathfrak{m}$ tel que $A/\mathfrak{m}$
soit un corps.

Idéal \textbf{premier} d'un anneau $A$ = un idéal $\mathfrak{p} \neq
A$ tel que si $x,y\not\in\mathfrak{p}$ alors $xy \not\in
\mathfrak{p}$.  Propriété équivalente : c'est un idéal $\mathfrak{p}$
tel que $A/\mathfrak{p}$ soit intègre.

Idéal \textbf{radical} d'un anneau $A$ = un idéal $\mathfrak{r}$ tel
que si $x^n \in \mathfrak{r}$ alors $x \in \mathfrak{r}$.  Propriété
équivalente : c'est un idéal $\mathfrak{r}$ tel que $A/\mathfrak{r}$
soit réduit.

\emph{Exemples :} L'idéal $7\mathbb{Z}$ de $\mathbb{Z}$ est maximal
(le quotient $\mathbb{Z}/7\mathbb{Z}$ est un corps), donc \textit{a
  fortiori} premier et radical.  L'idéal $0$ de $\mathbb{Z}$ est
premier mais non maximal (le quotient $\mathbb{Z}/0\mathbb{Z} =
\mathbb{Z}$ est un anneau intègre mais non un corps).  L'idéal
$6\mathbb{Z}$ de $\mathbb{Z}$ est radical mais n'est pas premier.
L'idéal $9\mathbb{Z}$ de $\mathbb{Z}$ n'est pas radical.

\smallbreak

Un anneau est un corps ssi son idéal $(0)$ est maximal.  Un anneau est
intègre ssi son idéal $(0)$ est premier.  Un anneau est réduit ssi son
idéal $(0)$ est radical.

Un anneau est dit \textbf{local} lorsqu'il a un unique idéal maximal.
(En particulier, un corps est un anneau local.)  Le quotient d'un
anneau local par son idéal maximal s'appelle son \emph{corps
  résiduel}.  \emph{Exercice :} l'anneau $A$ des rationnels de la
forme $\frac{a}{b}$ avec $a,b \in \mathbb{Z}$ et $b$ impair est un
anneau local dont l'idéal maximal $\mathfrak{m}$ est formé des
$\frac{a}{b}$ avec $a$ pair.  (Quel est le corps résiduel ?)

\smallbreak

On admet le résultat ensembliste suivant :
\begin{lem}[principe maximal de Hausdorff]
Soit $\mathscr{F}$ un ensemble de parties d'un ensemble $A$.  On
suppose que $\mathscr{F}$ est non vide et que pour toute partie non
vide $\mathscr{T}$ de $\mathscr{F}$ totalement ordonnée par
l'inclusion (c'est-à-dire telle que pour $I,I' \in \mathscr{T}$ on a
soit $I \subseteq I'$ soit $I \supseteq I'$) la réunion $\bigcup_{I
  \in \mathscr{T}} I$ soit contenue dans un élément de $\mathscr{F}$.
Alors il existe dans $\mathscr{F}$ un élément $\mathfrak{M}$ maximal
pour l'inclusion (c'est-à-dire que si $I \supseteq \mathfrak{M}$ avec
$I \in \mathscr{F}$ alors $I=\mathfrak{M}$).
\end{lem}

\begin{prop}\label{existence-ideaux-maximaux}
Dans un anneau $A$, tout idéal strict (=autre que $A$) est inclus dans
un idéal maximal.
\end{prop}
\begin{proof}
Si $I$ est un idéal strict de $A$, on applique le principe maximal de
Hausdorff à $\mathscr{F}$ l'ensemble des idéaux stricts de $A$
contenant $I$.  Si $\mathscr{T}$ est une chaîne (=partie totalement
ordonnée pour l'inclusion) de tels idéaux, la réunion $\bigcup_{I \in
  \mathscr{T}} I$ en est encore un\footnote{La réunion de deux idéaux
  n'est généralement pas un idéal, car si $x\in I$ et $x' \in I'$, la
  somme $x+x'$ n'a pas de raison d'appartenir à $I\cup I'$.  En
  revanche, si $\mathscr{T}$ est une famille d'idéaux totalement
  ordonnée par l'inclusion, alors $\bigcup_{I \in \mathscr{T}} I$ est
  un idéal : si $x\in I$ et $x' \in I'$, où $I,I'\in \mathscr{T}$, on
  peut écrire soit $I \subseteq I'$ soit $I'\subseteq I$, et dans un
  cas comme dans l'autre on a $x+x' \in \bigcup_{I \in \mathscr{T}}
  I$.} (pour voir que la réunion est encore un idéal strict, remarquer
que $1$ n'y appartient pas).  Le principe maximal de Hausdorff permet
de conclure.
\end{proof}

\begin{prop}
Dans un anneau, l'ensemble des éléments nilpotents est un idéal :
c'est le plus petit idéal radical.  Cet idéal est précisément
l'intersection des idéaux premiers de l'anneau.  On l'appelle le
\textbf{nilradical} de l'anneau.
\end{prop}
\begin{proof}
L'ensemble des nilpotents est un idéal car si $x^n=0$ et $y^n=0$ alors
$(x+y)^{2n}=0$ en développant.  Il est inclus dans tout idéal radical,
et il est visiblement lui-même radical : c'est donc le plus petit
idéal radical.  Étant inclus dans tout idéal radical, il est \textit{a
  fortiori} inclus dans tout idéal premier.  Reste à montrer que si
$z$ est inclus dans tout idéal premier, alors $x$ est nilpotent.

Supposons que $z$ n'est pas nilpotent.  Considérons $\mathfrak{p}$ un
idéal maximal pour l'inclusion parmi les idéaux ne contenant aucun
$z^n$ : un tel idéal existe d'après le principe maximal de Hausdorff
(il existe un idéal ne contenant aucun $z^n$, à savoir $\{0\}$).
Montrons qu'il est premier : si $x,y \not \in \mathfrak{p}$, on veut
voir que $xy \not\in \mathfrak{p}$.  Par maximalité de $\mathfrak{p}$,
chacun des idéaux\footnote{On rappelle que si $I,J$ sont deux idéaux
  d'un anneau, l'ensemble $I + J = \{u+v : u\in I, v\in J\}$ est un
  idéal, c'est l'idéal engendré par $I\cup J$, c'est-à-dire, le plus
  petit idéal contenant $I$ et $J$ ; on l'appelle idéal somme de $I$
  et $J$.  Dans le cas particulier où $J = (x)$ est engendré par un
  élément, c'est donc l'idéal engendré par $I\cup\{x\}$.}
$\mathfrak{p}+(x)$ et $\mathfrak{p}+(y)$ doit rencontrer $\{z^n\}$,
c'est-à-dire qu'on doit pouvoir trouver deux éléments de la forme
$f+ax$ et $g+by$ avec $f,g\in\mathfrak{p}$ et $a,b\in A$, qui soient
des puissances de $z$ ; leur produit est alors aussi une puissance
de $z$, donc n'est pas dans $\mathfrak{p}$, donc $abxy
\not\in\mathfrak{p}$ (car les trois autres termes sont
dans $\mathfrak{p}$), et a plus forte raison $xy \not\in
\mathfrak{p}$.
\end{proof}

En appliquant ce résultat à $A/I$, on obtient :
\begin{prop}
Si $A$ est un anneau et $I$ un idéal de $A$, l'ensemble des éléments
tels que $z^n \in I$ pour un certain $n \in \mathbb{N}$ est un idéal :
c'est le plus petit idéal radical contenant $I$.  Cet idéal est
précisément l'intersection des idéaux premiers de $A$ contenant $I$.
On l'appelle le \textbf{radical} de l'idéal $I$ et on le note $\surd
I$.
\end{prop}

L'intersection des idéaux maximaux d'un anneau s'appelle le
\textbf{radical de Jacobson} de cet anneau : il est, en général,
strictement plus grand que le nilradical.

%
\subsection{Modules}

Un \textbf{module} $M$ sur un anneau $A$ est un groupe abélien muni
d'une multiplication externe $A \times M \to M$ vérifiant :
\begin{itemize}
\item $a(x+y) = ax + ay$
\item $1x = x$
\item $(ab)x = a(bx)$
\item $(a+b)x = ax + bx$
\end{itemize}
(Exercice : $a0 = 0$, $a(-x) = -(ax)$, $0x = x$, $(-a)x = -(ax)$...)

Un \textbf{sous-module} $M'$ d'un module $M$ est un sous-groupe $M'$
de $M$ tel que $ax \in M'$ dès que $x\in M'$ et $a\in A$.

Tout anneau est un module sur lui-même de façon évidente.  Un
sous-$A$-module de $A$ est la même chose qu'un idéal de $A$.  Si $B$
est une $A$-algèbre, c'est-à-dire si on se donne un morphisme
d'anneaux $A \buildrel\varphi\over\to B$, on peut voir $B$ comme un
$A$-module (par $a\cdot b = \varphi(a)\,b$).

Module de type fini = il existe une famille \emph{finie} $(x_i)$
d'éléments de $M$ qui engendre $M$ comme $A$-module, c'est-à-dire que
tout $x \in M$ peut s'écrire $\sum_i a_i x_i$ pour certains $a_i \in
A$.

Module libre = il existe une base $(x_i)$, c'est-à-dire une famille
(non né\-ces\-sairement finie) telle que tout $x \in M$ peut s'écrire
\emph{de façon unique} comme $\sum_i a_i x_i$ pour certains $a_i \in
A$ tous nuls sauf un nombre fini (de façon unique, c'est-à-dire que
$\sum_i a_i x_i = 0$ implique $a_i = 0$ pour tout $i$).

%
\subsection{Anneaux noethériens}

Anneau \textbf{noethérien} : c'est un anneau $A$ vérifiant les
proprités équivalentes suivantes :
\begin{itemize}
\item toute suite croissante pour l'inclusion $I_0 \subseteq I_1
  \subseteq I_2 \subseteq \cdots$ d'idéaux de $A$ stationne
  (c'est-à-dire est constante à partir d'un certain rang) ;
\item tout idéal $I$ de $A$ est de type fini : il existe une famille
  \emph{finie} $(x_i)$ d'éléments de $I$ qui engendre $I$ comme idéal
  (= comme $A$-module) (c'est-à-dire que tout $x \in I$ peut s'écrire
  $\sum_i a_i x_i$ pour certains $a_i \in A$) ;
\item plus précisément, si $I$ est l'idéal engendré par une famille
  $x_i$ d'éléments, on peut trouver une sous-famille finie des $x_i$
  qui engendre le même idéal $I$ ;
\item un sous-module d'un $A$-module de type fini est de type fini.
\end{itemize}

L'essentiel des anneaux utilisés en géométrie algébrique (en tout cas,
auxquels on aura affaire) sont noethériens.  L'anneau $\mathbb{Z}$ est
noethérien.  Tout corps est un anneau noethérien.  Tout quotient d'un
anneau noethérien est noethérien (attention : il n'est pas vrai qu'un
sous-anneau d'un anneau noethérien soit toujours noethérien).  Et
surtout :
\begin{prop}[théorème de la base de Hilbert]
Si $A$ est un anneau noethérien, alors l'anneau $A[t]$ des polynômes à
une indéterminée sur $A$ est noethérien.
\end{prop}
\begin{proof}
Soit $I \subseteq A[t]$ un idéal.  Supposons par l'absurde que $I$
n'est psa de type fini.  On construit par récurrence une suite
$f_0,f_1,f_2,\ldots$ d'éléments de $I$ comme suit.  Si
$f_0,\ldots,f_{r-1}$ ont déjà été choisis, comme l'idéal
$(f_0,\ldots,f_{r-1})$ qu'ils engendrent n'est pas $I$, on peut
choisir $f_r$ de plus petit degré possible parmi les éléments de $I$
non dans $(f_0,\ldots,f_{r-1})$.

Appelons $c_i$ le coefficient dominant de $f_i$.  Comme $A$ est
supposé noethérien, il existe $m$ tel que $c_0,\ldots,c_{m-1}$
engendrent l'idéal $J$ engendré par tous les $c_i$.  Montrons qu'en
fait $f_0,\ldots,f_{m-1}$ engendrent $I$ (ce qui constitue une
contradiction).

On peut écrire $c_m = a_0 c_0 + \cdots + a_{m-1} c_{m-1}$.  Par
ailleurs, le degré de $f_m$ est supérieur ou égal au degré de chacun
de $f_0,\ldots,f_{m-1}$ par minimalité de ces derniers.  On peut donc
construire le polynôme $g = \sum_{i=0}^{m-1} a_i f_i t^{\deg f_m -
  \deg f_i}$, qui a les mêmes degré et coefficient dominant que $f_m$,
et qui appartient à $(f_0,\ldots,f_{m-1})$.  Alors, $f_m - g$ est de
degré strictement plus petit que $f_m$, il appartient à $I$ mais pas
à $(f_0,\ldots,f_{m-1})$ : ceci contredit la minimalité dans le choix
de $f_m$.
\end{proof}

En itérant ce résultat, on voit que si $A$ est noethérien, alors
$A[t_1,\ldots,t_d]$ l'est pour tout $d\in\mathbb{N}$.  Comme un
quotient d'un anneau noethérien est encore noethérien :

\begin{defn}\label{algebre-de-type-fini}
Une $A$-algèbre $B$ est dite \textbf{de type fini} (comme $A$-algèbre)
lorsqu'il existe $x_1,\ldots,x_d \in B$ (qu'on dit \emph{engendrer}
$B$ comme $A$-algèbre) tel que tout élément de $B$ s'écrive
$f(x_1,\ldots,x_d)$ pour un certain polynôme $f \in
A[t_1,\ldots,t_d]$.
\end{defn}

\danger\textbf{Attention :} Cela ne signifie pas que $B$ soit de type
fini comme $A$-module.  Lorsque c'est le cas, on dit que $B$ est une
$A$-algèbre \emph{finie}, ce qui est plus fort car cela signifie que
$f$ serait de degré $1$.  (Par exemple, $k[t]$ est une $k$-algèbre de
type fini, engendrée par $t$, mais pas finie.)

Dire que $B$ est une $A$-algèbre de type fini engendrée par
$x_1,\ldots,x_d$ signifie donc que le morphisme $\xi\colon
A[t_1,\ldots,t_d] \to B$ défini par $f \mapsto f(x_1,\ldots,x_d)$ est
\emph{surjectif}.  Par conséquent, si $I$ désigne le noyau de ce
morphisme (c'est-à-dire l'ensemble des $f \in A[t_1,\ldots,t_d]$ qui
s'annulent en $(x_1,\ldots,x_d)$) alors $\xi$ définit un isomorphisme
$A[t_1,\ldots,t_d]/I \buildrel\sim\over\to B$.  On peut donc dire :
une $A$-algèbre de type fini est un quotient de $A[t_1,\ldots,t_d]$
(pour un certain $d$).

\begin{cor}\label{algebre-de-type-fini-est-anneau-noetherien}
Une algèbre de type fini sur un anneau noethérien, et en particulier
sur un corps ou sur $\mathbb{Z}$, est un anneau noethérien.
\end{cor}

%
\subsection{Notes sur les morphismes}
\label{section-note-morphismes}

Si $A,B$ sont deux $k$-algèbres (où $k$ est un anneau), c'est-à-dire
qu'on se donne deux morphismes $\varphi_A \colon k\to A$ et $\varphi_B
\colon k\to B$, on note $\Hom_k(A,B)$ (ou bien
$\Hom_{k\traitdunion\mathrm{Alg}}(A,B)$ s'il y a
ambiguïté\footnote{Par exemple pour bien distinguer de l'ensemble
  $\Hom_{k\traitdunion\mathrm{Mod}}(A,B)$ des applications
  $k$-linéaires, ou morphismes de $k$-modules, entre $A$ et $B$ vus
  comme des $k$-modules.}) l'ensemble des morphismes de $k$-algèbres
$A\to B$, c'est-à-dire l'ensemble des morphismes d'anneaux
$A\buildrel\psi\over\to B$ « au-dessus de $k$ », ou faisant commuter
le diagramme :
\begin{center}
\begin{tikzpicture}[auto]
\matrix(diag)[matrix of math nodes,column sep=2.5em,row sep=5ex]{
A&&B\\&k&\\};
\draw[->] (diag-2-2) -- node{$\varphi_A$} (diag-1-1);
\draw[->] (diag-2-2) -- node[swap]{$\varphi_B$} (diag-1-3);
\draw[->] (diag-1-1) -- node{$\psi$} (diag-1-3);
\end{tikzpicture}
\end{center}

Remarque : une $\mathbb{Z}$-algèbre est la même chose qu'un anneau, et
un morphisme de $\mathbb{Z}$-algèbres qu'un morphisme d'anneaux.

\begin{prop}
\begin{itemize}
\item $\Hom_k(k,A)$ est un singleton pour toute $k$-algèbre $A$.
\item $\Hom_k(k[t],A)$ est en bijection avec $A$ en envoyant
  $\psi\colon k[t]\to A$ sur $\psi(t)$.
\item De même, $\Hom_k(k[t_1,\ldots,t_d],A)$ est en bijection avec
  l'ensemble $A^d$ (en envoyant $\psi$ sur
  $(\psi(t_1),\ldots,\psi(t_d))$).
\item Si $I$ est un idéal de $R$, alors $\Hom_k(R/I, A)$ est en
  bijection avec le sous-ensemble de $\Hom_k(R,A)$ formé des
  $\psi\colon R\to A$ qui s'annulent sur $I$ (la bijection envoyant
  $\hat\psi \colon R/I \to A$ sur $\psi \colon R\to A$ composé de
  $\hat\psi$ avec la surjection canonique $R \to R/I$).
\item (En particulier,) si $I = (f_1,\ldots,f_r)$ est un idéal de
  $k[t_1,\ldots,t_d]$ et si $R = k[t_1,\ldots,t_d]/I$, alors
  $\Hom_k(R, A)$ est en bijection avec l'ensemble $\{(x_1,\ldots,x_d)
  \in A^d :\penalty0 (\forall j)\,f_j(x_1,\ldots,x_d) = 0\}$ (noté
  $Z(I)(A)$).
\end{itemize}
\end{prop}

À titre d'exemple, dans l'introduction on avait posé $C(T) =
\{(x,y)\in T^2 : x^2+y^2 = 1\}$ pour tout anneau $T$.  Un élément de
$C(T)$ peut donc se voir comme un morphisme
$\mathbb{Z}[x,y]/(x^2+y^2-1) \to T$.

\textbf{Exercice :} Si on note $k[x,x^{-1}] = k[x,y]/(xy-1)$, à quoi
peut-on identifier l'ensemble $\Hom_k(k[x,x^{-1}], A)$ ?

\smallbreak

Si $\beta\colon B \to B'$, on définit une application
$\Hom_k(A,\beta)\colon \Hom_k(A,B) \to \Hom_k(A,B')$ par $\psi \mapsto
\beta\circ\psi$ ; si $\alpha \colon A' \to A$ (attention au sens de la
flèche !), on définit de même une application $\Hom_k(\alpha,B) \colon
\Hom_k(A,B) \to \Hom_k(A',B)$ par $\psi \mapsto \psi\circ\alpha$.  Ces
applications $\Hom_k(A,\beta)$ et $\Hom_k(\alpha,B)$ commutent au sens
où $\Hom_k(\alpha,B') \circ \Hom_k(A,\beta) = \Hom_k(A',\beta) \circ
\Hom_k(\alpha,B) \penalty0\colon \Hom_k(A,B) \to \Hom_k(A',B')$ (c'est
trivial : composer $\psi$ à droite par $\alpha$ puis à gauche
par $\beta$ revient à le composer à gauche par $\beta$ puis à droite
par $\alpha$).  De façon à peine moins triviale :

\begin{prop}[lemme de Yoneda]
Soient $B,B'$ deux $k$-algèbres.  On suppose que pour toute
$k$-algèbre $A$ on se donne une application $\beta_A\colon \Hom_k(A,B)
\to \Hom_k(A,B')$ telle que si $\alpha\colon A'\to A$ alors
$\Hom_k(\alpha,B') \circ \beta_A = \beta_{A'} \circ \Hom_k(\alpha,B)$.
Alors il existe un unique morphisme $\beta\colon B \to B'$ de
$k$-algèbres tel que $\beta_A = \Hom_k(A,\beta)$ pour toute
$k$-algèbre $A$.

Dans l'autre sens : si $A,A'$ sont deux $k$-algèbres, et si pour toute
$k$-algèbre $B$ on se donne une application $\alpha_B\colon
\Hom_k(A,B) \to \Hom_k(A',B)$ telle que $\alpha_{B'} \circ
\Hom_k(A,\beta) = \Hom_k(A',\beta) \circ \alpha_B$, alors il existe un
unique morphisme $\alpha\colon A'\to A$ de $k$-algèbres tel que
$\alpha_B = \Hom_k(\alpha,B)$ pour toute $k$-algèbre $B$.
\end{prop}
\begin{proof}
Prendre pour $\beta$ l'image de l'identité $\id_B$ par $\beta_B$, ou
pour $\alpha$ l'image de l'identité $\id_A$ par $\alpha_A$.
\end{proof}

%
\subsection{Localisation}

On dit qu'une partie $S$ d'un anneau $A$ est \emph{multiplicative}
lorsque $1\in S$ et $s,s'\in S \limp ss'\in S$.  Par exemple, le
complémentaire d'un idéal premier est, par définition,
multiplicative ; en particulier, dans un anneau intègre, l'ensemble
des éléments non nuls est une partie multiplicative.

Dans ces conditions, on construit un anneau noté $A[S^{-1}]$ (ou
$S^{-1}A$) de la façon suivante : ses éléments sont notés $a/s$ avec
$a\in A$ et $s \in S$, où on identifie\footnote{Ce racourci de langage
  signifie qu'on considère la relation d'équivalence $\sim$ sur
  $A\times S$ définie par $(a,s) \sim (a',s')$ lorsqu'il existe $t \in
  S$ tel que $t(a's-as') = 0$, on appelle $A[S^{-1}]$ le quotient
  $(A\times S)/\sim$, et on note $a/s$ la classe de $(a,s)$ pour cette
  relation ; il faudrait encore vérifier que toutes les opérations
  proposées ensuite sont bien définies.} $a/s = a'/s'$ lorsqu'il
existe $t \in S$ tel que $t(a's-as') = 0$.  L'addition est définie par
$(a/s)+(a'/s') = (a's+as')/(ss')$ (le zéro par $0/1$, l'opposé par
$-(a/s) = (-a)/s$) et la multiplication par $(a/s)\cdot (a'/s') =
(aa')/(ss')$ (l'unité par $1/1$).  Cet anneau est muni d'un morphisme
naturel $A \buildrel\iota\over\to A[S^{-1}]$ donné par $a \mapsto
a/1$.  On l'appelle le \textbf{localisé} de $A$ inversant la partie
multiplicative $S$.  Si $A$ est une $k$-algèbre (pour un certain
anneau $k$) alors $A[S^{-1}]$ est une $k$-algèbre de façon évidente
(en composant le morphisme structural $k\to A$ par le morphisme
naturel $A \to A[S^{-1}]$).

\begin{prop}\label{proprietes-localise}
\begin{itemize}
\item Le morphisme naturel $A \buildrel\iota\over\to A[S^{-1}]$ est
  injectif si et seulement si $S$ ne contient aucun diviseur de zéro.
  (Extrême inverse : si $S$ contient $0$, alors $A[S^{-1}]$ est
  l'anneau nul.)
\item Tout idéal $J$ de $A[S^{-1}]$ est de la forme $J = I[S^{-1}] :=
  \{a/s : a\in I,\penalty0 s \in S\}$ où $I$ est l'image réciproque
  dans $A$ (par le morphisme naturel $\iota\colon A \to A[S^{-1}]$) de
  l'idéal $J$ considéré.  Autrement dit, $J \mapsto \iota^{-1}(J)$
  définit une injection des idéaux de $A[S^{-1}]$ dans ceux de $A$.
\item Un idéal $I$ de $A$ est de la forme $\iota^{-1}(J)$ pour un
  idéal $J$ de $A[S^{-1}]$ (né\-ces\-sai\-rement $J = I[S^{-1}]$ d'après le
  point précédent) ssi aucun élément de $S$ n'est diviseur de zéro
  dans $A/I$.
\item En particulier, $\mathfrak{p} \mapsto \iota^{-1}(\mathfrak{p})$
  définit une bijection entre les idéaux premiers de $A[S^{-1}]$ et
  ceux de $A$ ne rencontrant pas $S$.
\item Si $A$ est une $k$-algèbre, $\Hom_k(A[S^{-1}],B)$ s'identifie,
  via $\Hom_k(\iota,B)\colon\penalty0 \Hom_k(A[S^{-1}],B) \to
  \Hom_k(A,B)$, au sous-ensemble de $\Hom_k(A,B)$ formé des morphismes
  $\psi\colon A\to B$ tels que $\psi(s)$ soit inversible pour
  tout $s\in S$.
\end{itemize}
\end{prop}

Cas particuliers importants : si $\mathfrak{p}$ est premier et $S =
A\setminus\mathfrak{p}$ est son com\-plé\-men\-taire, on note
$A_{\mathfrak{p}} = A[S^{-1}]$ ; c'est un anneau local (dont l'idéal
maximal est $\mathfrak{p}[S^{-1}] = \{a/s : a\in \mathfrak{p}, s
\not\in \mathfrak{p}\}$) : on l'appelle le localisé de $A$
\textbf{en} $\mathfrak{p}$.  Si $A$ est un anneau intègre et $S = A
\setminus\{0\}$ l'ensemble des éléments non nuls de $A$, on note
$\Frac(A) = A[S^{-1}]$ : c'est un corps, appelé \textbf{corps des
  fractions} de $A$.  Par exemple, $\Frac(\mathbb{Z}) = \mathbb{Q}$ et
$\Frac(k[t]) = k(t)$ pour $k$ un corps.

Toute partie $\Sigma$ de $A$ engendre une partie multiplicative $S$
(c'est l'intersection de toutes les parties multiplicatives
contenant $\Sigma$, ou simplement l'ensemble de tous les produits
possibles d'éléments de $\Sigma$) : on note généralement
$A[\Sigma^{-1}]$ pour $A[S^{-1}]$.  En particulier, lorsque $\Sigma$
est le singleton d'un élément $\sigma$, on note $A[\sigma^{-1}]$ ou
$A[\frac{1}{\sigma}]$.

%
\subsection{TODO}

Lemme de Nakayama ?

Produit tensoriel ?  (Sous quelle forme ?)


%
%
%

\section{Variétés algébriques affines sur un corps algé\-bri\-que\-ment clos}

Pour le moment, $k$ est un corps, qui sera bientôt algébriquement
clos.

%
\subsection{Une question d'idéaux maximaux}

On commence par une remarque : si $x = (x_1,\ldots,x_d)$ est un point
de $k^d$, on dispose d'un \emph{morphisme d'évaluation en $x$},
$k[t_1,\ldots,t_d] \to k$, donné par $f \mapsto f(x_1,\ldots,x_d)$
(pour $f$ un polynôme à $d$ indéterminées), qui à $f$ associe sa
valeur en $d$.  Ce morphisme est évidemment surjectif (tout $c \in k$
est l'image du polynôme constant $c$).  Si on appelle $\mathfrak{m}_x$
son noyau, c'est-à-dire, l'ensemble (donc l'idéal) des polynômes $f$
s'annulant en $x$, alors l'évaluation définit un isomorphisme
$k[t_1,\ldots,t_d]/\mathfrak{m}_x \buildrel\sim\over\to k$.  Par
conséquent, $\mathfrak{m}_x$ est un idéal \emph{maximal}
de $k[t_1,\ldots,t_d]$.  Notons que $\mathfrak{m}_x$ est l'idéal
$(t_1-x_1,\ldots,t_d-x_d)$ engendré par tous les $t_i - x_i$.

Si $k$ n'est pas algébriquement clos, il n'est pas vrai que tout idéal
maximal de $k[t_1,\ldots,t_d]$ soit de la forme $\mathfrak{m}_x$ pour
un certain $x \in k^d$ (par exemple, si $k = \mathbb{R}$, l'idéal
qu'on pourrait noter $\mathfrak{m}_{\{\pm i\}}$ de $\mathbb{R}[t]$ et
formé des $f \in \mathbb{R}[t]$ tels que $f(i) = 0$, ou, de façon
équivalente, $f(-i) = 0$, c'est-à-dire l'idéal engendré par $t^2+1$,
n'est pas de cette forme, et d'ailleurs le quotient
$\mathbb{R}[t]/(t^2+1)$ est isomorphe à $\mathbb{C}$ et pas
à $\mathbb{R}$).  En revanche, si $k$ \emph{est} algébriquement clos,
on va voir ci-dessous que tout idéal maximal de $k[t_1,\ldots,t_d]$
est l'idéal $\mathfrak{m}_x$ des polynômes s'annulant en un certain
point $x$.

%
\subsection{Correspondance entre fermés de Zariski et idéaux}

\textbf{Comment associer une partie de $k^d$ à un idéal de
  $k[t_1,\ldots,t_d]$ ?}

Si $\mathscr{F}$ est une partie de $k[t_1,\ldots,t_d]$, on définit un
ensemble $Z(\mathscr{F}) = \{(x_1,\ldots,x_d) \in k^d :\penalty0
(\forall f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$ (on devrait
plutôt noter $Z(\mathscr{F})(k)$, surtout si $k$
n'est pas algébriquement clos, mais il le sera bientôt).  Plus
généralement, pour toute $k$-algèbre $A$, on définit
$Z(\mathscr{F})(A) = \{(x_1,\ldots,x_d) \in A^d :\penalty0 (\forall
f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$.

Remarques évidentes : si $\mathscr{F} \subseteq \mathscr{F}'$ alors
$Z(\mathscr{F}) \supseteq Z(\mathscr{F}')$ (la fonction $Z$ est
« décroissante pour l'inclusion ») ; on a $Z(\mathscr{F}) = \bigcap_{f\in
  \mathscr{F}} Z(f)$ (où $Z(f)$ est un racourci de notation pour
$Z(\{f\})$).  Plus intéressant : si $I$ est l'idéal engendré par
$\mathscr{F}$ alors $Z(I) = Z(\mathscr{F})$.  On peut donc se
contenter de regarder les $Z(I)$ avec $I$ idéal
de $k[t_1,\ldots,t_d]$.  Encore un peu mieux : si $\surd I = \{f :
(\exists n)\,f^n\in I\}$ désigne le radical de l'idéal $I$, on a
$Z(\surd I) = Z(I)$ ; on peut donc se contenter de considérer les
$Z(I)$ avec $I$ idéal radical.

On appellera \textbf{fermé de Zariski} dans $k^d$ une partie $E$ de
$k^d$ vérifiant le premier point, c'est-à-dire de la forme
$Z(\mathscr{F})$ pour une certaine partie $\mathscr{F}$
de $k[t_1,\ldots,t_d]$, dont on a vu qu'on pouvait supposer qu'il
s'agit d'un idéal radical.

Le vide est un fermé de Zariski ($Z(1) = \varnothing$) ; l'ensemble
$k^d$ tout entier est un fermé de Zariski ($Z(0) = k^d$) ; tout
singleton est un fermé de Zariski ($Z(\mathfrak{m}_x) = \{x\}$, par
exemple en voyant $\mathfrak{m}_x$ comme $(t_1-x_1,\ldots,t_d-x_d)$).
Si $(E_i)_{i\in \Lambda}$ sont des fermés de Zariski, alors
$\bigcap_{i\in \Lambda} E_i$ est un fermé de Zariski : plus
précisément, si $(I_i)_{i\in \Lambda}$ sont des idéaux
de $k[t_1,\ldots,t_d]$, alors $Z(\sum_{i\in\Lambda} I_i) =
\bigcap_{i\in\Lambda} Z(I_i)$.  Si $E,E'$ sont des fermés de Zariski,
alors $E \cup E'$ est un fermé de Zariski : plus précisément, si
$I,I'$ sont des idéaux de $k[t_1,\ldots,t_d]$, alors $Z(I\cap I') =
Z(I) \cup Z(I')$ (l'inclusion $\supseteq$ est évidente ; pour l'autre
inclusion, si $x \in Z(I\cap I')$ mais $x \not\in Z(I)$, il existe
$f\in I$ tel que $f(x) \neq 0$, et alors pour tout $f' \in I'$ on a
$f(x)\,f'(x) = 0$ puisque $ff' \in I\cap I'$, donc $f'(x) = 0$, ce qui
prouve $x \in Z(I')$).

\medbreak

\textbf{Comment associer un idéal de $k[t_1,\ldots,t_d]$ à une partie
  de $k^d$ ?}

Réciproquement, si $E$ est une partie de $k^d$, on note
$\mathfrak{I}(E) = \{f\in k[t_1,\ldots,t_d] :\penalty0 (\forall
(x_1,\ldots,x_d)\in E)\, f(x_1,\ldots,x_d)=0\}$.  Vérification
facile : c'est un idéal de $k[t_1,\ldots,t_d]$, et même un idéal
radical.  Remarque évidente : si $E \subseteq E'$ alors
$\mathfrak{I}(E) \supseteq \mathfrak{I}(E')$ ; on a $\mathfrak{I}(E) =
\bigcap_{x\in E} \mathfrak{m}_x$ (où $\mathfrak{m}_x$ désigne l'idéal
maximal $\mathfrak{I}(\{x\})$ des polynômes s'annulant en $x$), et en
particulier $\mathfrak{I}(E) \neq k[t_1,\ldots,t_d]$ dès que $E \neq
\varnothing$.

On a de façon triviale $\mathfrak{I}(\varnothing) =
k[t_1,\ldots,t_d]$.  De façon moins évidente, si $k$ est infini (ce
qui est en particulier le cas lorsque $k$ est algébriquement clos), on
a $\mathfrak{I}(k^d) = (0)$ (démonstration par récurrence sur $d$,
laissée en exercice).

\danger Sur un corps fini $\mathbb{F}_q$, on a
$\mathfrak{I}({\mathbb{F}_q}^d) \neq (0)$.  Par exemple, si $t$ est
une des in\-dé\-ter\-mi\-nées, le polynôme $t^q-t$ s'annule en tout
point de ${\mathbb{F}_q}^d$.

\medbreak

\textbf{Le rapport entre ces deux fonctions}

On a $E \subseteq Z(\mathscr{F})$ ssi $\mathscr{F} \subseteq
\mathfrak{I}(E)$ (les deux signifiant « tout polynôme dans
  $\mathscr{F}$ s'annule en tout point de $E$ »).  En particulier, en
appliquant ceci à $\mathscr{F} = \mathfrak{I}(E)$, on a $E \subseteq
Z(\mathfrak{I}(E))$ pour toute partie $E$ de $k^d$ ; et en
l'appliquant à $E = Z(\mathscr{F})$, on a $\mathscr{F} \subseteq
\mathfrak{I}(Z(\mathscr{F}))$.  De $E \subseteq Z(\mathfrak{I}(E))$ on
déduit $\mathfrak{I}(E) \supseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$
(car $\mathfrak{I}$ est décroissante), mais par ailleurs
$\mathfrak{I}(E) \subseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$ en
appliquant l'autre inclusion à $\mathfrak{I}(E)$ : donc
$\mathfrak{I}(E) = \mathfrak{I}(Z(\mathfrak{I}(E)))$ pour toute partie
$E$ de $k^d$ ; de même, $Z(\mathscr{F}) =
Z(\mathfrak{I}(Z(\mathscr{F})))$ pour tout ensemble $\mathscr{F}$ de
polynômes.  On a donc prouvé :

\begin{prop}
Avec les notations ci-dessus :
\begin{itemize}
\item Une partie $E$ de $k^d$ vérifie $E = Z(\mathfrak{I}(E))$ si et
  seulement si elle est de la forme $Z(\mathscr{F})$ pour un
  certain $\mathscr{F}$ (=: c'est un fermé de Zariski), et dans ce cas
  on peut prendre $\mathscr{F} = \mathfrak{I}(E)$, qui est un idéal
  radical.
\item Une partie $I$ de $k[t_1,\ldots,t_d]$ vérifie $I =
  \mathfrak{I}(Z(I))$ si et seulement si elle est de la forme
  $\mathfrak{I}(E)$ pour un certain $E$, et dans ce cas on peut
  prendre $E = Z(I)$, et $I$ est un idéal radical
  de $k[t_1,\ldots,t_d]$.
\item Les fonctions $\mathfrak{I}$ et $Z$ se restreignent en des
  bijections décroissantes réci\-proques entre l'ensemble des parties
  $E$ de $k^d$ vérifiant le premier point ci-dessus et l'ensemble des
  idéaux radicaux $I$ de $k[t_1,\ldots,t_d]$ vérifiant le second.
\end{itemize}
\end{prop}

On a appelé \textbf{fermé de Zariski} une partie $E$ de $k^d$
vérifiant le premier point, c'est-à-dire de la forme $Z(\mathscr{F})$
pour une certaine partie $\mathscr{F}$ de $k[t_1,\ldots,t_d]$ : on a
vu qu'on pouvait supposer qu'il s'agit d'un idéal radical, et on vient
de voir qu'on peut écrire précisément $E = Z(I)$ où $I =
\mathfrak{I}(E)$.  (On ne donne pas de nom particulier aux idéaux
vérifiant le second point (=être dans l'image de la
fonction $\mathfrak{I}$), mais on va voir que pour $k$ algébriquement
clos il s'agit de tous les idéaux radicaux.)

\medbreak

\textbf{Fermés irréductibles et idéaux premiers}

On dit qu'un fermé de Zariski $E \subseteq k^d$ non vide est
\textbf{irréductible} lorsqu'on ne peut pas écrire $E = E' \cup E''$,
où $E',E''$ sont deux fermés de Zariski (forcément contenus
dans $E$...), sauf si $E'=E$ ou $E''=E$.

\emph{Contre-exemple :} $Z(xy)$ (dans le plan $k^2$ de
coordonnées $x,y$) n'est pas ir\-ré\-duc\-tible, car $Z(xy) = \{(x,y)
\in k^2 : xy=0\} = \{(x,y) \in k^2 :
x=0\penalty0\ \textrm{ou}\penalty0\ y=0\} = Z(x) \cup Z(y)$ est
réunion de $Z(x)$ (l'axe des ordonnées) et $Z(y)$ (l'axe des
abscisses) qui sont tous tous les deux strictement plus petits
que $Z(xy)$.

\begin{prop}\label{ferme-irreductible-ssi-ideal-premier}
Un fermé de Zariski $E \subseteq k^d$ est irréductible si, et
seulement si, l'idéal $\mathfrak{I}(E)$ est premier.
\end{prop}
\begin{proof}
Supposons $\mathfrak{I}(E)$ premier : on veut montrer que $E$ est
irréductible.  Supposons $E = E' \cup E''$ comme ci-dessus (on a vu
que $E = Z(\mathfrak{I}(E))$, $E' = Z(\mathfrak{I}(E'))$ et $E'' =
Z(\mathfrak{I}(E''))$) : on veut montrer que $E' = E$ ou $E'' = E$.
Supposons le contraire, c'est-à-dire $\mathfrak{I}(E) \neq
\mathfrak{I}(E')$ et $\mathfrak{I}(E) \neq \mathfrak{I}(E'')$.  Il
existe alors $f' \in \mathfrak{I}(E') \setminus \mathfrak{I}(E)$ et
$f'' \in \mathfrak{I}(E'') \setminus \mathfrak{I}(E)$.  On a alors
$f'f'' \not\in \mathfrak{I}(E)$ car $\mathfrak{I}(E)$ est premier, et
pourtant $f'f''$ s'annule sur $E'$ et $E''$ donc sur $E$, une
contradiction.

Réciproquement, supposons $E$ irréductible : on veut montrer que
$\mathfrak{I}(E)$ est premier.  Soient $f',f''$ tels que $f'f'' \in
\mathfrak{I}(E)$ : posons $E' = Z(\mathfrak{I}(E) + (f'))$ et $E'' =
Z(\mathfrak{I}(E) + (f''))$.  On a $E' \subseteq E$ et $E'' \subseteq
E$ puisque $E = Z(\mathfrak{I}(E))$, et en fait $E' = E \cap Z(f')$ et
$E'' = E \cap Z(f'')$ ; on a par ailleurs $E = E' \cup E''$ (car si $x
\in E$ alors $f'(x)\,f''(x) = 0$ donc soit $f'(x)=0$ soit $f''(x)=0$,
et dans le premier cas $x \in E'$ et dans le second $x \in E''$).
Puisqu'on a supposé $E$ irréductible, on a, disons, $E' = E$,
c'est-à-dire $E \subseteq Z(f')$, ce qui signifie $f' \in
\mathfrak{I}(E)$.  Ceci montre bien que $\mathfrak{I}(E)$ est premier.
\end{proof}

%
\subsection{Le Nullstellensatz}

(Nullstellensatz, littéralement, « théorème du lieu d'annulation », ou
« théorème des zéros de Hilbert ».)

On suppose maintenant que $k$ est algébriquement clos !

\begin{prop}[Nullstellensatz faible]
Soit $k$ un corps algébriquement clos.  Si $I$ est un idéal de
$k[t_1,\ldots,t_d]$ tel que $Z(I) = \varnothing$, alors $I =
k[t_1,\ldots,t_d]$.
\end{prop}
\begin{proof}[Démonstration dans le cas particulier où $k$ est indénombrable.]
Supposons par contraposée $I \subsetneq k[t_1,\ldots,t_d]$.  Alors il
existe un idéal maximal $\mathfrak{m}$ tel que $I \subseteq
\mathfrak{m}$, et on a $Z(\mathfrak{m}) \subseteq Z(I)$.  On va
montrer $Z(\mathfrak{m}) \neq \varnothing$.

Soit $K = k[t_1,\ldots,t_d]/\mathfrak{m}$.  Il s'agit d'un corps, qui
est de dimension au plus dénombrable (=il a une famille génératrice
dénombrable, à savoir les images des monômes dans les $t_i$) sur $k$.
Mais $K$ ne peut pas contenir d'élément transcendant $\tau$ sur $k$
car, $k$ ayant été supposé indénombrable, la famille des
$\frac{1}{\tau - x}$ pour $x\in k$ serait linéairement indépendante
(par décomposition en élément simples) dans $k(\tau)$ donc dans $K$.
Donc $K$ est algébrique sur $k$.  Comme $k$ était supposé
algébriquement clos, on a en fait $K=k$.  Les classes des
indéterminées $t_1,\ldots,t_d$ définissent alors des éléments
$x_1,\ldots,x_d \in k$, et pour tout $f \in \mathfrak{m}$, on a
$f(x_1,\ldots,x_d) = 0$.  Autrement dit, $(x_1,\ldots,x_d) \in
Z(\mathfrak{m})$, ce qui conclut.
\end{proof}

En fait, dans le cours de cette démonstration, on a montré (dans le
cas particulier où on s'est placé, mais c'est vrai en général) :
\begin{prop}[{idéaux maximaux de $k[t_1,\ldots,t_d]$}]\label{ideaux-maximaux-des-algebres-de-polynomes}
Soit $k$ un corps algé\-bri\-que\-ment clos.  Tout idéal maximal
$\mathfrak{m}$ de $k[t_1,\ldots,t_d]$ est de la forme
$\mathfrak{m}_{(x_1,\ldots,x_d)} := \{f : f(x_1,\ldots,x_d) = 0\}$
pour un certain $(x_1,\ldots,x_d) \in k^d$.
\end{prop}
\begin{proof}
En fait, on a prouvé que si $\mathfrak{m}$ est un idéal maximal, il
existe $(x_1,\ldots,x_d) \in k^d$ tels que $(x_1,\ldots,x_d) \in
Z(\mathfrak{m})$, ce qui donne $\mathfrak{m} \subseteq
\mathfrak{I}(\{(x_1,\ldots,x_d)\})$, mais par maximalité de
$\mathfrak{m}$ ceci est en fait une égalité.
\end{proof}

En particulier, le corps quotient $k[t_1,\ldots,t_d]/\mathfrak{m}$ est
isomorphe à $k$, l'isomorphisme étant donnée par l'évaluation au point
$(x_1,\ldots,x_d)$ tel que ci-dessus.

\begin{thm}[Nullstellensatz = théorème des zéros de Hilbert]
Soit $I$ un idéal de $k[t_1,\ldots,t_d]$ (toujours avec $k$ un corps
algébriquement clos) : alors $\mathfrak{I}(Z(I)) = \surd I$ (le
radical de $I$).
\end{thm}
\begin{proof}
On sait que $\surd I \subseteq \mathfrak{I}(Z(I))$ et il s'agit de
montrer la réciproque.  Soit $f \in \mathfrak{I}(Z(I))$ : on veut
prouver $f\in I$.  On vérifie facilement que ceci revient à montrer
que l'idéal $I[\frac{1}{f}]$ de $k[t_1,\ldots,t_d,\frac{1}{f}]$ est
l'idéal unité.  Or $k[t_1,\ldots,t_d,\frac{1}{f}] =
k[t_1,\ldots,t_d,z]/(zf-1)$.  Soit $J$ l'idéal engendré par $I$ et
$zf-1$ dans $k[t_1,\ldots,t_d,z]$ : on voit que $Z(J) = \varnothing$
(dans $k^{d+1}$), donc le Nullstellensatz faible entraîne $J =
k[t_1,\ldots,t_d,z]$ : ceci donne $I[\frac{1}{f}] =
k[t_1,\ldots,t_d,\frac{1}{f}]$.
\end{proof}

\begin{scho}
Si $k$ est un corps algébriquement clos, les fonctions $I \mapsto
Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
réci\-proques, décroissantes pour l'inclusion, entre les idéaux radicaux
de $k[t_1,\ldots,t_d]$ d'une part, et les fermés de Zariski de $k^d$
d'autre part.

Ces bijections mettent les \emph{points} (c'est-à-dire les singletons)
de $k^d$ en correspondance avec les idéaux maximaux de
$k[t_1,\ldots,t_d]$ (ils ont tous pour quotient $k$), et les
\emph{fermés irréductibles} en correspondance avec les idéaux
premiers.
\end{scho}

%
\subsection{L'anneau d'un fermé de Zariski}

Si $X$ est un fermé de Zariski dans $k^d$ avec $k$ algébriquement
clos, on a vu qu'il existe un unique idéal radical $I$
de $k[t_1,\ldots,t_d]$, à savoir l'idéal $I = \mathfrak{I}(X)$ des
polynômes s'annulant sur $X$, tel que $X = Z(I)$.  Le quotient
$k[t_1,\ldots,t_d] / I$ (qui est donc un anneau réduit, et intègre ssi
$X$ est irréductible) s'appelle l'\emph{anneau des fonctions
  régulières} sur $X$ et se note $\mathcal{O}(X)$.

Pourquoi fonctions régulières ?  On peut considérer un élément $f \in
\mathcal{O}(X)$ comme une fonction $X \to k$ de la façon suivante : si
$\tilde f \in k[t_1,\ldots,t_d]$ est un représentant de $f$
(modulo $I$) et si $x = (x_1,\ldots,x_d) \in X$, la valeur de $\tilde
f(x_1,\ldots,x_d)$ ne dépend pas du choix de $\tilde f$ représentant
$f$ puisque tout élément de $I$ s'annule en $x$ ; on peut donc appeler
$f(x)$ cette valeur.  Inversement, un $f \in \mathcal{O}(X)$ est
complètement déterminé par sa valeur sur chaque point $x$ de $X$
(rappel : $k$ est algébriquement clos ici, et c'est important !) ; en
effet, si $f$ s'annule en tout $x \in X$, tout élément de
$k[t_1,\ldots,t_d]$ représentant $f$ s'annule en tout $x \in X$,
c'est-à-dire appartient à $\mathfrak{I}(X)$, ce qui signifie justement
$f = 0$ dans $\mathcal{O}(X)$.  Moralité : on peut bien considérer les
éléments de $\mathcal{O}(X)$ comme des fonctions.  Ces fonctions sont,
tout simplement, les restrictions à $X$ des fonctions polynomiales
sur $k^d$.

Dans le cas où $X = k^d$ tout entier (donc $I = (0)$), évidemment,
$\mathcal{O}(X) = k[t_1,\ldots,t_d]$.

On définit un fermé de Zariski de $X$ comme un fermé de Zariski
de $k^d$ qui se trouve être inclus dans $X$.  La bonne nouvelle est
que la correspondance entre fermés de Zariski de $k^d$ et idéaux de
$k[t_1,\ldots,t_d]$ se généralise presque mot pour mot à une
correspondance entre fermés de Zariski de $X$ et idéaux
de $\mathcal{O}(X)$ :

\begin{prop}
Avec les notations ci-dessus :
\begin{itemize}
\item Tout fermé de Zariski de $X$ est de la forme $Z(\mathscr{F}) :=
  \{x\in X :\penalty0 {(\forall f\in \mathscr{F})}\penalty100\, f(x) =
  0\}$ pour un certain ensemble $\mathscr{F}$ d'éléments
  de $\mathcal{O}(X)$.
\item En posant $\mathfrak{I}(E) := \{f\in \mathcal{O}(X) :\penalty0
  {(\forall x\in E)}\penalty100\, f(x)=0\}$, les fonctions $I \mapsto
  Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
  réci\-proques, décroissantes pour l'inclusion, entre les idéaux
  radicaux de $\mathcal{O}(X)$ d'une part, et les fermés de Zariski de
  $X$ d'autre part : on a $\mathfrak{I}(Z(I)) = \surd I$ pour tout
  idéal $I$ de $\mathcal{O}(X)$.
\item Ces bijections mettent les \emph{points} (c'est-à-dire les
  singletons) de $X$ en correspondance avec les idéaux maximaux de
  $\mathcal{O}(X)$ (qui sont donc tous de la forme $\mathfrak{m}_x :=
  \{f \in \mathcal{O}(X) : f(x)=0\}$ pour un $x\in X$) ; et les
  \emph{fermés irréductibles} en correspondance avec les idéaux
  premiers.
\end{itemize}
\end{prop}

\smallbreak

Soulignons en particulier que si $X'$ est un fermé de Zariski de $X$
(disons défini comme $X' = Z(I)$ où $I$ est un idéal
de $\mathcal{O}(X)$), alors la surjection canonique $\mathcal{O}(X)
\to \mathcal{O}(X)/I$ est un morphisme d'anneaux $\mathcal{O}(X) \to
\mathcal{O}(X')$ qu'il faut interpréter comme envoyant une fonction
régulière $f$ sur $X$ sur sa \emph{restriction} à $X'$, parfois
notée $f|_{X'}$.

%
\subsection{Points à valeurs dans une $k$-algèbre}

On reprend la même situation : $I$ est un idéal radical de
$k[t_1,\ldots,t_d]$ et $X = Z(I)$ est le fermé de Zariski qu'il
définit (et $\mathcal{O}(X) = k[t_1,\ldots,t_d] / I$ l'anneau des
fonctions régulières sur $X$.

On a pour l'instant considéré $X$ comme un sous-ensemble de $k^d$,
mais on souhaite changer progressivement de point de vue ; notamment,
l'ensemble pré\-cé\-dem\-ment noté $X$ aura de plus en plus tendance à être
noté $X(k)$, en appliquant la définition suivante :

Pour toute $k$-algèbre $A$, on note $X(A)$ ou $Z(I)(A)$ (et on appelle
ensemble des \textbf{$A$-points} de $X$) l'ensemble
$\{(x_1,\ldots,x_d) \in A^d :\penalty0 (\forall f \in I)\,
f(x_1,\ldots,x_d) = 0\}$ des points de $A^d$ vérifiant les équations
définissant $X$.  L'ensemble $X(k)$ est donc celui qu'on a
pré\-cé\-dem\-ment considéré sous le nom de $X$.

Le cas particulier de l'espace affine tout entier (soit $I = (0)$)
sera noté $\mathbb{A}^d$ (normalement on devrait écrire
$\mathbb{A}^d_k$, mais c'est rarement important) : ainsi,
$\mathbb{A}^d(A) = A^d$ pour toute $k$-algèbre $A$.

Si $A \buildrel\varphi\over\to A'$ est un morphisme de $k$-algèbres,
on a une application $X(\varphi) \colon X(A) \to X(A')$ qui à
$(x_1,\ldots,x_d) \in X(A)$ associe
$(\varphi(x_1),\ldots,\varphi(x_d)) \in X(A')$.  (Par ailleurs,
$X(\psi\circ\varphi) = X(\psi)\circ X(\varphi)$.)  On aura de plus en
plus tendance à considérer que $X$ ``est'' la donnée de ces ensembles
$X(A)$ pour toute $k$-algèbre $A$ et de ces applications $X(\varphi)$
pour tout morphisme de $k$-algèbres $\varphi$ : la collection de ces
données s'appelle le \textbf{foncteur des points} de $X$.

\begin{rmk}
D'après ce qu'on a expliqué en \ref{section-note-morphismes}, pour
toute $k$-algèbre $A$, l'ensemble $\Hom_{k}(\mathcal{O}(X), A)$ des
morphismes de $k$-algèbres de $\mathcal{O}(X)$ vers $A$ est en
bijection avec $X(A)$ (la bijection envoyant un morphisme $\psi\colon
\mathcal{O}(X) \to A$ sur le $d$-uplet $(\psi(t_1),\ldots,\psi(t_d))$
où $t_1,\ldots,t_d$ sont les classes des indéterminées dans le
quotient $\mathcal{O}(X) = k[t_1,\ldots,t_d]/I$).  On aura tendance à
utiliser cette bijection tacitement, et à considérer que les éléments
de $X(A)$ ``sont'' des morphismes d'anneaux $\mathcal{O}(X) \to A$.

En particulier, les $k$-points de $X$ (c'est-à-dire l'ensemble
précédemment noté $X$ et maintenant de préférence $X(k)$) peuvent être
identifiés avec les éléments de $\Hom_{k}(\mathcal{O}(X), k)$, le
point $x \in X$ étant identifié avec le morphisme $f \mapsto f(x)$
d'évaluation en $x$.  La classification des idéaux maximaux
de $\mathcal{O}(X)$ signifie donc que (pour $k$ algébriquement clos,
insistons !) tout idéal maximal de $\mathcal{O}(X)$ est l'ensemble des
fonctions régulières s'annulant en un $k$-point de $X$.
\end{rmk}

%
\subsection{Morphismes de variétés algébriques}

On appelle provisoirement \textbf{variété algébrique affine}
dans $k^d$ (toujours avec $k$ algébriquement clos) un fermé de Zariski
$X$ de $k^d$.  Pourquoi cette terminologie redondante ?  Le terme
« fermé de Zariski » insiste sur $X$ en tant que plongée dans l'espace
affine $\mathbb{A}^d$.  Le terme de « variété algébrique affine »
insiste sur l'aspect intrinsèque de $X$, muni de ses propres fermés de
Zariski et de ses propres fonctions régulières, qu'on va maintenant
présenter.  On a vu ci-dessus comment associer à $X$ un anneau
$\mathcal{O}(X)$ des fonctions régulières, et, pour chaque
$k$-algèbre, on a identifié l'ensemble $X(A)$ des $A$-points de $X$
avec $\Hom_k(\mathcal{O}(X), A)$.

On veut maintenant définir des morphismes entre ces variétés
algébriques.  Une fonction régulière doit être la même chose qu'un
morphisme vers la droite affine.  On définit donc :
\begin{itemize}
\item un morphisme [de $k$-variétés algébriques affines] $f$ de $X$
  vers l'espace affine $\mathbb{A}^e$ de dimension $e$ est la donnée
  de $e$ fonctions régulières sur $X$, c'est-à-dire d'un $e$-uplet
  d'éléments de $\mathcal{O}(X)$,
\item un morphisme [de $k$-variétés algébriques affines] $f$ de $X$
  vers le fermé de Zariski $Y = Z(J)$ défini dans l'espace
  affine $\mathbb{A}^e$ par un idéal $J = (g_1,\ldots,g_r)$ est la
  donnée d'un $e$-uplet $(f_1,\ldots,f_e) \in \mathcal{O}(X)^e$ comme
  ci-dessus, vérifiant de plus les contraintes $g_j(f_1,\ldots,f_e) =
  0$ pour tout $j$ (cela revient à demander $g_j(f_1(x),\ldots,f_e(x))
  = 0$ pour tout $j$ et tout $x\in X$) ;
\item on dit qu'un morphisme comme ci-dessus envoie le point $x \in X$
  sur le point $(f_1(x),\ldots,f_e(x)) \in Y$ (c'est-à-dire, le point
  $(f_1(x),\ldots,f_e(x)) \in k^e$, qui se trouve appartenir à $Y$) ;
  en pariculier, il définit une fonction $X(k) \to Y(k)$, et plus
  généralement $X(A) \to Y(A)$ pour toute $k$-algèbre $A$ ;
\item d'après ce qu'on a dit sur les fonctions régulières (un $f \in
  \mathcal{O}(X)$ est déterminé par ses valeurs sur $X(k)$, $k$ étant
  algébriquement clos), un morphisme $f \colon X\to Y$ est déterminé
  par ses valeurs sur $X(k)$ (toujours : $k$ étant algébriquement
  clos) ;
\item on définit la composée d'un morphisme $f \colon X \to Y$ comme
  ci-dessus (représenté par $f_1,\ldots,f_e \in \mathcal{O}(X)$ si $Y
  \subseteq \mathbb{A}^e$) et d'un morphisme $g \colon Y \to Z$
  (représenté par $g_1,\ldots,g_s \in \mathcal{O}(Y)$ si $Z \subseteq
  \mathbb{A}^s$) de la façon suivante : si $\tilde g_1,\ldots,\tilde
  g_s \in k[u_1,\ldots,u_e]$ relèvent $g_1,\ldots,g_s$, on représente
  $g\circ f$ par les éléments $\tilde g_1(f_1,\ldots,f_e), \ldots,
  \penalty-100 \tilde g_s(f_1,\ldots,f_e) \penalty-50 \in
  \mathcal{O}(X)$ ; on a, heureusement, $(g\circ f)(x) = g(f(x))$ pour
  tout $x \in X(k)$ (ou même tout $x \in X(A)$).
\end{itemize}

Pour dire les choses autrement, un morphisme $X \to \mathbb{A}^e$ est
la donnée d'un $e$-uplet d'éléments de $\mathcal{O}(X)$, c'est-à-dire
un élément de $\mathbb{A}^e(\mathcal{O}(X))$, et un morphise $X \to Y$
où $Y = Z(g_1,\ldots,g_r)$ est la donné d'un élément de
$Y(\mathcal{O}(X))$.  Ceci est encore équivalent à un morphisme de
$k$-algèbres $f^* \colon \mathcal{O}(Y) \to \mathcal{O}(X)$, d'où la
philosophie suivante :

\begin{center}
Un morphisme de $k$-variétés algébriques affines $f\colon X \to Y$ est
``la même chose'' qu'un morphisme de $k$-algèbres $f^*\colon
\mathcal{O}(Y) \to \mathcal{O}(X)$.
\end{center}

Concrètement, avec les notations ci-dessus, le morphisme
$\mathcal{O}(Y) \buildrel f^*\over \to \mathcal{O}(X)$ serait celui
qui envoie un élément $h \in \mathcal{O}(Y)$ sur $h(f_1,\ldots,f_e)
\in \mathcal{O}(X)$.  Réciproquement, donné un morphisme
$\varphi\colon \mathcal{O}(Y) \to \mathcal{O}(X)$ d'anneaux, le
morphisme $X \to Y$ qui lui correspond est celui qui à un point $x \in
X$ associe le $y \in Y$ défini par $h(y) = \varphi(h)(x)$ pour tout $h
\in \mathcal{O}(Y)$.

\smallbreak

Il faut bien se rendre compte que le meme objet --- un morphisme $f
\colon X \to Y$ de $k$-variétés algébriques --- peut être représenté
par différentes données plus ou moins équivalentes :
\begin{itemize}
\item ($Y$ étant plongé dans $\mathbb{A}^e$ comme
  $Z(g_1,\ldots,g_r)$,) $e$ éléments de $\mathcal{O}(X)$ vérifiant les
  équations $g_j(f_1,\ldots,f_e) = 0$ pour tout $j$,
\item ($Y$ étant plongé dans $\mathbb{A}^e$ comme $Z(g_1,\ldots,g_r)$,
  et $X$ dans $\mathbb{A}^d$ comme $Z(I)$,) $e$ éléments $\tilde
  f_1,\ldots,\tilde f_e \in k[t_1,\ldots,t_d]$, vus modulo $I$,
  définissant une fonction polynomiale $\mathbb{A}^d \to \mathbb{A}^e$
  telle qu'il se trouve que $g_j(\tilde f_1,\ldots,\tilde f_e) \in I$
  pour tout $j$,
\item ($Y$ étant plongé dans $\mathbb{A}^e$ comme $Z(g_1,\ldots,g_r)$,
  et $X$ dans $\mathbb{A}^d$ comme $Z(I)$, et en utilisant le fait que
  $k$ est algébriquement clos,) une fonction de $X(k)$ vers $Y(k)$ qui
  se trouve être la restriction d'une fonction polynomiale $k^d \to
  k^e$ (c'est-à-dire donnée par $x \mapsto \tilde f_1(x),\ldots,\tilde
  f_e(x)$ pour certains $\tilde f_1,\ldots,\tilde f_e \in
  k[t_1,\ldots,t_d]$) qui se trouve avoir envoyer $X(k)$ dans $Y(k)$,
\item un élément de $Y(\mathcal{O}(X))$,
\item un morphisme d'anneaux $\mathcal{O}(Y) \to \mathcal{O}(X)$,
\item pour chaque $k$-algèbre $A$, une application $X(A) \buildrel
  f(A)\over\to Y(A)$ telle que : si $A \buildrel\psi\over\to A'$ est
  un morphisme de $k$-algèbres, alors les deux composées $X(A)
  \buildrel X(\psi)\over\to X(A') \buildrel f(A')\over\to Y(A')$ et
  $X(A) \buildrel f(A)\over\to Y(A) \buildrel Y(\psi)\over\to Y(A')$
  coïncident (cf. lemme de Yoneda).
\end{itemize}
On aura tendance à confondre silencieusement tout ou partie de ces
objets.  Par ailleurs, on a tendance à appeler $x \mapsto
(f_1(x),\ldots,f_e(x))$ le morphisme, comme s'il s'agissait simplement
d'une application (il faut considérer ça comme une application de
$X(k)$ vers $Y(k)$ définissant le morphisme ou, mieux, de $X(A)$ vers
$Y(A)$ pour toute $k$-algèbre $A$).

Certaines de ces présentations ne se généraliseront pas (si $k$ n'est
pas algébriquement clos, si la variété n'est plus affine...) : la
dernière est, de ce point de vue, la plus robuste.

\emph{Remarque :} Un morphisme $X \to \mathbb{A}^1$ est la même chose
qu'une fonction régulière sur $X$ (c'était le point de départ, mais il
est bon d'insister là-dessus).

\smallbreak

\textbf{Exemples :} Considérons la courbe d'équation $y^2 = x^3$,
c'est-à-dire $C = Z(g)$ où $g = y^2 - x^3 \in k[x,y]$ (anneau des
polynômes à deux indéterminées $x,y$ sur un corps algébriquement
clos $k$), et $\mathbb{A}^1$ la droite affine sur $k$.  On a
$\mathcal{O}(C) = k[x,y]/(y^2-x^3)$ et $\mathcal{O}(\mathbb{A}^1) =
k[t]$.  On définit un morphisme $\mathbb{A}^1 \buildrel f\over\to C$
par $t \mapsto (t^2,t^3)$ : ce morphisme correspond à un morphisme
d'anneaux dans l'autre sens, $\mathcal{O}(C) \buildrel f^*\over\to
\mathcal{O}(\mathbb{A}^1)$, donné par $x \mapsto t^2$ et $y \mapsto
x^3$.  Ce morphisme n'est pas un isomorphisme car $t$ n'est pas dans
l'image de $f^*$.  Ceci, bien que $\mathbb{A}^1(k) \to C(k)$ soit une
bijection au niveau des $k$-points.

Considérons la courbe $C^\sharp$ (la « cubique gauche » affine)
d'équations $y = z^3$ et $x = z^2$, c'est-à-dire $C^\sharp =
Z(x-z^2,\penalty-100 y-z^3)$.  On a un morphisme $\mathbb{A}^1 \to
C^\sharp$ envoyant $t$ sur $(t^2, t^3, t)$ : cette fois, ce morphisme
est un isomorphisme, et sa réciproque est donnée par $(x,y,z) \mapsto
z$.  L'anneau $\mathcal{O}(C^\sharp) = k[x,y,z]/(x-z^2,\penalty-100
y-z^3)$ est isomorphe à $k[t]$.  Par ailleurs, le morphisme
$\mathbb{A}^1 \to C$ décrit au paragraphe précédent peut être vu comme
la composée de l'isomorphisme $\mathbb{A}^1 \to C^\sharp$ et de la
projection $C^\sharp \to C$ décrite par $(x,y,z) \mapsto (x,y)$.

\smallbreak

Si $X'$ est un fermé de Zariski de $X$, on a expliqué qu'il y avait
naturellement un morphisme d'anneaux $\mathcal{O}(X) \to
\mathcal{O}(X')$ (consistant à restreindre à $X'$ une fonction
régulière sur $X$) : le morphisme de variétés algébriques $X' \to X$
qui lui est associé est tout simplement le morphisme d'inclusion de
$X'$ dans $X$, qu'on appelle \textbf{immersion fermée} ou
\textbf{plongement} de la sous-variété fermée $X'$ dans $X$.

De façon très liée, si $f \colon X\to Y$ est un morphisme de
$k$-variétés on peut, dans ce contexte, définir la restriction de $f$
à $X'$ (parfois notée $f|_{X'}$) comme la composée $X' \to X \to Y$ où
$X' \to X$ est l'immersion de $X'$ dans $X$ ; si on voit $f$ comme
défini par $e$ fonctions régulières sur $X$ (c'est-à-dire $Y$ plongé
dans $\mathbb{A}^e$), les fonctions définissant $f|_{X'}$ sont
simplement $f_1|_{X'},\ldots,f_e|_{X'}$.

\medbreak

\textbf{Variétés algébriques affines abstraites, et le spectre d'une
  algèbre.}

\textbf{Note :} On considère que deux variétés algébriques (affines)
sont « la même » lorsqu'elle sont isomorphes, alors que deux fermés de
Zariski sont « le même » lorsqu'ils sont égaux dans le $\mathbb{A}^d$
dans lequel ils vivent.  Par exemple, la cubique gauche $C^\sharp$
décrite ci-dessus, en tant que fermé de Zariski, n'est pas une droite,
mais en tant que variété algébrique affine c'est juste $\mathbb{A}^1$
puisqu'on a montré qu'elle lui était isomorphe.  Ou, si on préfère, un
fermé de Zariski de $\mathbb{A}^d$ est la donnée d'une variété
algébrique affine \emph{plus} un plongement de celle-ci
dans $\mathbb{A}^d$.

Dans cette optique, si $R$ est une $k$-algèbre de type fini (on
rappelle, cf. \ref{algebre-de-type-fini}, que cela signifie que $R$
est engendrée en tant qu'algèbre par un nombre fini d'éléments
$x_1,\ldots,x_d$, autrement dit que $R$ peut se voir comme le quotient
de $k[t_1,\ldots,t_d]$ par un idéal $(f_1,\ldots,f_r)$ de ce dernier)
et si $R$ est réduite, alors on peut voir $R$ comme l'anneau
$\mathcal{O}(X)$ pour une certaine variété algébrique $X$, à savoir le
$X = Z(f_1,\ldots,f_r)$ défini par les équations
$f_1=0,\ldots,\penalty-100 f_r=0$ dans $\mathbb{A}^d$.  Cette variété
est unique en ce sens que toutes les variétés $X$ telles que
$\mathcal{O}(X) = R$ sont isomorphes (puisque leurs $\mathcal{O}(X)$
sont isomorphes, justement).  On peut donc donner un nom à $X$ : c'est
le \textbf{spectre} de $R$, noté $\Spec R$.  (Par exemple, $\Spec k[t]
= \mathbb{A}^1_k$ et plus généralement $\Spec k[t_1,\ldots,t_d] =
\mathbb{A}^d_k$.  Et bien sûr, $\Spec k$ est vu comme un point, ou,
pour être plus explicite, un $k$-point.)

(\emph{Avertissement 1 :} Tout le monde est d'accord sur l'identité de
$\Spec R$ en tant qu'objet géométrique, en l'occurrence, une variété
algébrique affine ; par exemple, $\Spec k[x,y]/(x^2+y^2-1)$ est
indubitablement une vision idéalisée du « cercle unité ».  Néanmoins,
il existe différentes façons de formaliser la notion de variété
algébrique : comme nous nous sommes placés sur $k$ un corps
algébriquement clos, nous avons vu $\Spec R$ plutôt comme l'ensemble
des idéaux maximaux de $R$ ; une description qui marche mieux en
général, et qu'on retrouve souvent, consiste à formaliser $\Spec R$
comme l'ensemble des idéaux \emph{premiers} de $R$ ; enfin, une autre
description, tout à fait générale, consiste à voir $\Spec R$ par ce
qu'on a appelé son foncteur des points, c'est-à-dire la donnée pour
chaque $k$-algèbre $A$ de l'ensemble $(\Spec R)(A) = \Hom_k(R,A)$, et
pour chaque morphisme de $k$-algèbres $\varphi\colon A \to A'$, de
l'application $(\Spec R)(\varphi) \colon \Hom_k(R,A) \to \Hom_k(R,A')$
qui s'en déduit.)

(\emph{Avertissement 2 :} Les gens savants n'ont pas peur de définir
$\Spec R$ même si $R$ n'est pas réduite, c'est-à-dire, a des
nilpotents.  Il faut imaginer, par exemple, que si $R = k[\varepsilon]
:= k[t]/(t^2)$, alors $\Spec R$ est un point « un peu épaissi », ou
entouré d'un « flou infinitésimal », comparé à $\Spec k$ qui est un
point sans ornement de ce genre.  Ce point de vue rend plus difficile
la vision géométrique des choses, mais a des avantages considérables,
par exemple qu'un morphisme $\Spec k[\varepsilon] \to X$ peut se voir
comme un vecteur tangent à $X$.)

%
\subsection{La topologie de Zariski}

On appelle \textbf{ouvert de Zariski} dans $k^d$ (toujours avec $k$ un
corps algébriquement clos) le complémentaire d'un fermé de Zariski.
Autrement dit, si $I$ est un idéal de $k[t_1,\ldots,t_d]$, on définit
$U(I) = \{(x_1,\ldots,x_d) \in k^d :\penalty0 (\forall f\in I)\,
f(x_1,\ldots,x_d) \neq 0\}$ le complémentaire de $Z(I)$ : un ouvert de
Zariski de $k^d$ est un ensemble de la forme $U(I)$.  Plus
généralement, si $X$ est une variété algébrique affine, si $I$ est un
idéal de $\mathcal{O}(X)$, on définit $U(I) = \{(x_1,\ldots,x_d) \in X
:\penalty0 (\forall f\in I)\, f(x_1,\ldots,x_d) \neq 0\}$ le
complémentaire de $Z(I)$ : on appelle ces ensembles ouverts de Zariski
de $X$.  (Pour l'instant, on les voit comme des ensembles de
$k$-points, on verra plus loin comment définir leurs $A$-points, leurs
morphismes, etc.)

Étant donné qu'une intersection quelconque ou une réunion finie de
fermés sont des fermés, dualement, \emph{une réunion quelconque ou une
  intersection finie d'ouverts sont des ouverts} (par ailleurs,
l'ensemble vide et l'ensemble plein sont des ouverts) --- ces
propriétés sont constitutives de la notion de \emph{topologie}, en
l'occurrence la \textbf{topologie de Zariski} (sur l'ensemble $k^d$ ou
$X(k)$).

\smallbreak

Si $X'$ est un fermé de Zariski de $X$, alors les fermés et ouverts de
Zariski de $X'$ sont précisément les intersections avec $X'$ des
fermés et ouverts de Zariski de $X$.  (On dit que la topologie de $X'$
est \emph{induite} par celle de $X$.)

\smallbreak

Si $I$ est engendré par les éléments $f_1,\ldots,f_r$, on peut écrire
$U(I) = D(f_1) \cup \cdots \cup D(f_r)$ où $D(f_i) := U(\{f_i\})$ est
l'ouvert où $f_i$ ne s'annule pas.  Les $D(f)$ s'appellent parfois
\emph{ouverts principaux}, on verra plus loin pourquoi il est utile de
les distinguer ; ceci montre qu'ils forment une \emph{base d'ouverts}
(un ensemble d'ouverts est dit former une base d'ouverts pour une
topologie lorsque tout ouvert est une réunion d'une sous-famille
d'entre eux).

\begin{prop}\label{recouvrement-par-ouverts-principaux}
Si $X$ est une variété algébrique affine et $f_i \in \mathcal{O}(X)$
(pour $i \in \Lambda$ disons), alors $\bigcup_{i\in\Lambda} D(f_i) =
X$ si et seulement si les $f_i$ engendrent l'idéal unité
dans $\mathcal{O}(X)$ (c'est-à-dire ssi il existe des $g_i$, tous nuls
sauf un nombre fini, tels que $\sum_{i\in\Lambda} g_i f_i = 1$).
\end{prop}
\begin{proof}
Dire $\bigcup_{i\in\Lambda} D(f_i) = X$ équivaut à
$\bigcap_{i\in\Lambda} Z(f_i) = \varnothing$, c'est-à-dire encore
$Z(\{f_i\}) = \varnothing$, soit encore $Z(I) = \varnothing$ où $I$
est l'idéal engendré par les $f_i$, et l'énoncé découle du
Nullstellensatz faible.
\end{proof}

On aura besoin pour la suite de remarquer que $D(f) \cap D(f') =
D(ff')$.

\smallbreak

Un peu de vocabulaire de topologie : dans ce qui suit, on suppose que
$X$ est un ensemble muni d'une topologie (c'est-à-dire un ensemble de
parties de $X$ dites « ouvertes » contenant $\varnothing$ et $X$ et
telles qu'une réunion quelconque ou une intersection finie d'ouverts
sont des ouverts), sachant qu'on s'intéresse évidemment au cas de la
topologie de Zariski.

Si $x \in U \subseteq V$ avec $U$ ouvert (et $V$ une partie quelconque
de $X$), on dit que $V$ est un \textbf{voisinage} de $x$.  (Un
voisinage ouvert de $x$ est donc tout simplement la même chose qu'un
ouvert contenant $x$.)

Si $E \subseteq X$ est une partie quelconque, l'intersection de tous
les fermés (=complémentaires des ouverts) contenant $E$, c'est-à-dire
le plus petit fermé contenant $E$, s'appelle \textbf{adhérence}
de $E$, parfois notée $\overline{E}$.  Il s'agit de l'ensemble des $x
\in X$ tels que tout voisinage de $x$ rencontre $E$.  Lorsque
l'adhérence de $E$ est $X$ tout entier, on dit que $E$ est
\textbf{dense} dans $X$.

On dit que $X$ est \textbf{irréductible} lorsque toute écriture $X =
F' \cup F''$ avec $F',F''$ fermés impose $F' = X$ ou $F'' = X$ ; de
façon équivalente, cela signifie que tout ouvert non vide de $X$ est
dense.

On dit que $X$ est \textbf{connexe} lorsque ($X$ est non vide et que)
$\varnothing$ et $X$ sont les seuls ensembles à la fois ouverts et
fermés dans $X$.  (« Irréductible » est plus fort que « connexe », car
si $X$ est irréductible, tout ouvert non vide est dense, et en
particulier le seul ouvert fermé non vide est $X$ tout entier.)

On dit que $X$ est \textbf{quasi-compact} lorsque dès qu'on a une
écriture $X = \bigcup_{i\in \Lambda} U_i$ avec $U_i$ ouverts
(autrement dit, un recouvrement ouvert de $X$), il existe $\Xi
\subseteq \Lambda$ fini tel que $X = \bigcup_{i\in\Xi} U_i$.

\smallbreak

Dans le cas de la topologie de Zariski sur une variété algébrique
affine $X$ sur un corps algébriquement clos $k$ (c'est-à-dire,
sur $X(k)$) :
\begin{itemize}
\item $X$ est irréductible ssi $\mathcal{O}(X)$ est intègre
  (cf. \ref{ferme-irreductible-ssi-ideal-premier}),
\item $X$ est toujours quasi-compact (découle
  de \ref{recouvrement-par-ouverts-principaux} : si $f_i$ engendrent
  l'idéal unité, un sous-ensemble fini d'entre eux l'engendrent ---
  même sans utiliser le caractère noethérien de l'anneau),
\item l'adhérence de Zariski d'une partie $E \subseteq X(k)$ est
  $Z(\mathfrak{I}(E))$ (en effet, ceci est un fermé de Zariski
  contenant $E$, et si $Z(J) \supseteq E$ est un autre fermé de
  Zariski contenant $E$ alors on a vu $J \subseteq \mathfrak{I}(E)$
  donc $Z(J) \supseteq Z(\mathfrak{I}(E))$ --- ceci montre que
  $Z(\mathfrak{I}(E))$ est bien le plus petit pour l'inclusion fermé
  de Zariski contenant $E$).
\end{itemize}

Exemple (idiot) : On suppose $k$ de caractéristique zéro, disons $k =
\mathbb{C}$ ; quelle est l'adhérence de Zariski de $\mathbb{Z}$ dans
$\mathbb{A}^1(k)$ ?  Réponse : L'ensemble $\mathfrak{I}(\mathbb{Z})$
des polynômes s'annulant en chaque point de $\mathbb{Z}$ est réduit
à $(0)$ puisqu'un polynôme en une variable ne peut avoir qu'un nombre
fini de racines ; donc l'adhérence de Zariski de $\mathbb{Z}$ est
$Z(\mathfrak{I}(\mathbb{Z})) = \mathbb{A}^1(k)$ tout entier,
c'est-à-dire que $\mathbb{Z}$ est dense dans la droite affine pour la
topologie de Zariski.  Plus généralement, on peut facilement montrer
que les seuls fermés de Zariski de $\mathbb{A}^1(k)$ sont la droite
$\mathbb{A}^1(k)$ tout entière et les parties \emph{finies}.

\medbreak

\textbf{Composantes connexes.}

\begin{prop}
Si $X$ est une variété algébrique affine, alors $X$ est connexe si et
seulement si les seuls éléments $e \in \mathcal{O}(X)$ vérifiant $e^2
= e$ (appelés \textbf{idempotents}) sont $0$ et $1$.
\end{prop}
\begin{proof}
Si $e^2=e$ avec $e \neq 0,1$, alors $e(1-e) = 0$.  On a donc $X = Z(e)
\cup Z(1-e)$ ; et $Z(e) \cap Z(1-e) = \varnothing$ (car $e,1-e$
engendrent l'idéal unité, si on veut).  Donc $Z(e)$ et $Z(1-e)$ sont
deux fermés complémentaires l'un de l'autre, donc ils sont aussi
ouverts.  Comme $e$ n'est pas nul, $Z(e)$ n'est pas $X$ tout entier,
et de même pour $Z(1-e)$ car $e \neq 1$ ; donc $Z(e)$ est un ouvert
fermé autre que $\varnothing$ et $X$, et $X$ n'est pas connexe.

Réciproquement, supposons que $X'$ soit un ouvert fermé dans $X$ autre
que $\varnothing$ et $X$, et soit $X''$ son complémentaire, qui
vérifie les mêmes conditions.  On peut écrire $X' = Z(I')$ et $X'' =
Z(I'')$ avec $I',I''$ deux idéaux radicaux stricts
de $\mathcal{O}(X)$.  Puisque $X' \cap X'' = \varnothing$, on a $I' +
I'' = (1)$ (où $(1)$ désigne l'idéal unité,
c'est-à-dire $\mathcal{O}(X)$ tout entier) ; il existe donc $e \in I'$
tel que $1-e \in I''$.  Mais alors $e(1-e) \in I' \cap I''$, or $I'
\cap I'' = (0)$ car $X' \cup X'' = X$.  On a donc $e^2 = e$, et $e
\neq 1$ car $e$ appartient à un idéal strict, et $e \neq 0$ car $1-e
\neq 1$.
\end{proof}

On pourrait montrer :
\begin{prop}
Toute variété algébrique affine $X$ est réunion d'un nombre fini de
fermés connexes.  De plus, il existe une écriture $X = \bigcup_{i=1}^n
X_i$ vérifiant $X_i \cap X_j = \varnothing$ pour $i \neq j$, et une
telle écriture est unique (à l'ordre des facteurs près) : les $X_i$
s'appellent les \textbf{composantes connexes} de $X$.
\end{prop}

\medbreak

\textbf{Composantes irréductibles.}

\begin{prop}
Toute variété algébrique affine $X$ est réunion d'un nombre fini de
fermés irréductibles.  De plus, il existe une écriture $X =
\bigcup_{i=1}^n X_i$ vérifie $X_i \not\subseteq X_j$ pour $i \neq j$,
et une telle écriture est unique (à l'ordre des facteurs près) : les
$X_i$ s'appellent les \textbf{composantes irréductibles} de $X$.
\end{prop}
\begin{proof}
Montrons par l'absurde que $X$ est réunion d'un nombre fini de fermés
irréductibles : comme $X$ n'est pas lui-même irréductible, on peut
écrire $X = X_1 \cup X'_1$ avec $X_1$, $X'_1$ fermés stricts dans $X$,
et l'un d'entre eux ne doit pas être irréductible, disons $X_1$, donc
on peut écrire $X_1 = X_2 \cup X'_2$, et ainsi de suite.  On obtient
ainsi une suite de fermés strictement décroissante pour l'inclusion $X
\supsetneq X_1 \supsetneq X_2 \supsetneq\cdots$, qui correspond à une
suite strictement croissante d'idéaux (radicaux) dans
$\mathcal{O}(X)$, ce qui est impossible car $\mathcal{O}(X)$ est
noethérien (cf. \ref{algebre-de-type-fini-est-anneau-noetherien}).

On peut donc écrire $X = \bigcup_{i=1}^n X_i$, et quitte à jeter les
$X_i$ déjà inclus dans un autre $X_j$ (et à répéter le processus si
nécessaire), on peut supposer $X_i \not\subseteq X_j$ pour $i \neq j$.

Montrons enfin l'unicité.  Si $X = \bigcup_{i=1}^n X_i =
\bigcup_{j=1}^p Y_j$ sont deux telles écritures, on a $X_i =
\bigcup_{j=1}^p (X_i \cap Y_j)$.  Comme $X_i$ est irréductible, l'un
des $X_i\cap Y_j$ doit être égal à $X_i$, c'est-à-dire $X_i \subseteq
Y_j$ ; par symétrie de l'argument, ce $Y_j$ est lui-même inclus dans
un $X_{i'}$, et comme $X_i \subseteq X_{i'}$, la condition sur la
décomposition donne $i'=i$, donc $Y_j = X_i$ et on a bien montré que
chaque $X_i$ est un des $Y_j$ et vice versa.
\end{proof}

\textbf{Exemple :} $Z(xy) \subseteq \mathbb{A}^2$ a pour composantes
irréductibles $Z(x)$ et $Z(y)$.  En revanche, il est connexe (=sa
seule composante connexe est lui-même) : en effet, si $U$ est un
ouvert fermé de $Z(xy)$, quitte à remplacer $U$ par son complémentaire
on peut supposer que $U$ contient $(0,0)$, et alors $U$ est un ouvert
fermé rencontrant $Z(x)$ et $Z(y)$ à la fois --- mais comme ceux-ci
sont irréductibles, et en particulier connexes, $U \cap Z(x) = Z(x)$
et $U \cap Z(y) = Z(y)$, ce qui montre $U = Z(x,y)$.

%
\subsection{Structure de variété d'un ouvert principal}

Pour l'instant, on n'a appelé « variété » qu'un fermé de Zariski.  On
voudrait étendre le terme de sorte qu'au moins les \emph{ouverts} de
Zariski deviennent des variétés.  Pour l'instant, on va regarder le
cas d'un ouvert principal $D(f) = \{x : f(x) \neq 0\}$ : on souhaite
définir, si possible en motivant intuitivement, ce que seront les
fonctions régulières sur $D(f)$ et les morphismes depuis et
vers $D(f)$.

\smallbreak

\textbf{Motivation.} Partons de l'exemple le plus simple : $U = D(t) =
\{t : t\neq 0\}$, le complémentaire de l'origine dans $\mathbb{A}^1$.
On sait qu'un morphisme $X \buildrel f\over\to \mathbb{A}^1$ (si $X$
est une variété algébrique affine) est la même chose qu'une fonction
régulière sur $X$, c'est-à-dire, un élément $f$ de $\mathcal{O}(X)$.
Que doit être un morphisme $X \buildrel f\over\to U$ ?  Certainement
on veut pouvoir le voir (en composant par l'inclusion $U \to
\mathbb{A}^1$) comme une sorte particulière de morphismes $X \buildrel
f\over\to \mathbb{A}^1$, donc de fonctions régulières sur $X$ :
essentiellement, celles qui « évitent zéro » (ou « ne prennent pas la
  valeur zéro »).  Or dire que $f(x) \neq 0$ pour tout $x \in X(k)$
(pour $k$ algébriquement clos !) signifie $f \not\in \mathfrak{m}_x$
pour tout idéal maximal $\mathfrak{m}_x$ (on sait d'après les
résultats autour du Nullstellensatz
(cf. \ref{ideaux-maximaux-des-algebres-de-polynomes}) que tout idéal
maximal de $\mathcal{O}(X)$ est de la forme $\mathfrak{m}_x := \{f :
f(x) = 0\}$) ; or dire qu'un élément $f$ d'un anneau n'appartient à
\emph{aucun} idéal maximal signifie qu'il n'appartient à aucun idéal
strict (cf. \ref{existence-ideaux-maximaux}), donc que l'idéal qu'il
engendre est l'idéal unité, c'est-à-dire que $f$ est
\emph{inversible}.  \underline{Moralité :} les morphismes $X \to U$
devraient être les éléments inversibles de $\mathcal{O}(X)$.

A contrario, quels devraient être les fonctions régulières sur $U$ ?
On veut au moins avoir l'inclusion $U \to \mathbb{A}^1$, qui
déterminerait une fonction régulière $t$ sur $U$, et plus généralement
tout élément de $k[t]$, comme il détermine un morphisme $\mathbb{A}^1
\to \mathbb{A}^1$, devrait déterminer une fonction régulière sur $U$.
Mais il y a plus : d'après ce qu'on a dit ci-dessus, si on souhaite
que $U$ se comporte comme une variété algébrique affine, l'identité $U
\to U$, c'est-à-dire l'élément $t$, devrait être un élément
\emph{inversible} de $\mathcal{O}(U)$.  Il faut donc trouver une façon
de rendre $t$ inversible : or on en a trouvé une, c'est la
localisation.  On va donc poser $\mathcal{O}(U) = k[t][\frac{1}{t}] =:
k[t,t^{-1}]$, l'anneau des fractions rationnelles de la forme
$\frac{f}{t^s}$ avec $f \in k[t]$ et $s\in \mathbb{N}$.  Cet anneau
est d'ailleurs isomorphe (via $t \mapsto x$ et $t^{-1} \mapsto y$) à
$k[x,y]/(xy-1)$, l'anneau de l'hyperbole d'équation $xy=1$ : or il
semble naturel de considérer $U$ (la droite privée d'un point) comme
la projection $(x,y) \mapsto x$ de cette hyperbole $Z(xy-1)$.  Ceci
est cohérent avec ce qu'on a décidé ci-dessus : les morphismes
$k[t,t^{-1}] \to A$, pour toute $k$-algèbre $A$, s'identifient aux
éléments inversibles de $A$.

Toute cette motivation semble justifier d'identifier l'ouvert $U =
D(t) = \{t : t\neq 0\}$ de $\mathbb{A}^1$ avec la variété algébrique
affine $\Spec k[t,t^{-1}]$ associée à l'anneau $k[t,t{^-1}]$.

Plus généralement, on voudrait adopter le :
\begin{princ}
Si $f \in \mathcal{O}(X)$, avec $X$ une variété algébrique affine, on
considérera $D(f)$ lui-même comme la variété algébrique affine $\Spec
\mathcal{O}(X)[\frac{1}{f}]$, associé à l'anneau
$\mathcal{O}(X)[\frac{1}{f}]$ localisé de $\mathcal{O}(X)$
inversant $f$.
\end{princ}

(Noter que $R[\frac{1}{f}] = R[z]/(zf-1)$ de façon générale.)

Pour justifier que le principe ci-dessus est sensé, on a besoin d'un
certains nombre de vérifications de routine, notamment :
\begin{prop}
Si $f \in \mathcal{O}(X)$, avec $X$ une variété algébrique affine sur
un corps algébriquement clos $k$, et si $\iota\colon \mathcal{O}(X)
\to \mathcal{O}(X)[\frac{1}{f}],\penalty-100\; h \mapsto \frac{h}{1}$
désigne le morphisme naturel vers le localisé :
\begin{itemize}
\item les idéaux maximaux (resp. premiers)
  de $\mathcal{O}(X)[\frac{1}{f}]$ sont en bijection avec les idéaux
  maximaux de $\mathcal{O}(X)$ ne contenant pas $f$
  (cf. \ref{proprietes-localise}) ; et si $\psi \colon D(f) \to \Spec
  \mathcal{O}(X)[\frac{1}{f}]$ désigne cette bijection, envoyant un
  point $x$ de $D(f) \subseteq X$, vu comme idéal maximal
  $\mathfrak{m}_x$ de $\mathcal{O}(X)$ ne contenant pas $f$, sur le
  point $\psi(x)$ défini par l'idéal maximal
  $\iota^{-1}(\mathfrak{m}_x)$, alors :
\item $\psi$ met en bijection les ouverts de Zariski de $X$ contenus
  dans $D(f)$ avec les ouverts de Zariski de $X' := \Spec
  \mathcal{O}(X)[\frac{1}{f}]$, et les ouverts principaux contenus
  dans $D(f)$ (c'est-à-dire les $D(gf) = D(g)\cap D(f)$) avec les
  ouverts principaux de $X'$ (et précisément $D(gf)$ avec
  $D(\iota(g))$), et
\item si $h \in \mathcal{O}(X)$ et $x \in D(f)$, alors $h(x)$ coïncide
  avec $\iota(h)(\psi(x))$ (vus comme éléments de $k$).
\end{itemize}
\end{prop}

De ce principe découlent :
\begin{defn}
Si $f \in \mathcal{O}(X)$, avec $X$ une variété algébrique affine,
l'anneau des fonctions régulières sur $D(f)$ sera par définition
$\mathcal{O}(X)[\frac{1}{f}]$.  Si $A$ est une $k$-algèbre, l'ensemble
$D(f)(A)$ des $A$-points de $D(f)$ sera le sous-ensemble de $X(A)$
formé des $x \in X(A)$ tels que $f(x) \in A$ soit inversible.

Si $f \in \mathcal{O}(X)$, avec $X$ une variété algébrique affine, et
$Y$ est une variété algébrique affine, un morphisme $D(f) \to Y$ sera
identifié à la donnée d'un élément de $Y(\mathcal{O}(X)[\frac{1}{f}])$
ou d'un morphisme de $k$-algèbres $\mathcal{O}(Y) \to
\mathcal{O}(X)[\frac{1}{f}]$ (c'est-à-dire, concrètement, si $Y$ est
vu plongé comme un fermé de Zariski de $\mathbb{A}^e$, comme $e$
éléments de $\mathcal{O}(X)[\frac{1}{f}]$ vérifiant les équations
de $Y$).

Si $g \in \mathcal{O}(Y)$, avec $Y$ une variété algébrique affine, et
$X$ est une variété algébrique affine, un morphisme $X \to D(g)$ sera
identifié à la donnée d'un morphisme $h\colon X \to Y$ tel que
l'élément $h^*(g) \in \mathcal{O}(X)$ (c'est-à-dire la composée de
$h\colon X\to Y$ avec $g \in \mathcal{O}(Y)$ vu comme un morphisme $Y
\to \mathbb{A}^1$) soit inversible.

Si $f \in \mathcal{O}(X)$, avec $X$ une variété algébrique affine, et
si $g \in \mathcal{O}(Y)$, avec $Y$ une variété algébrique affine, un
morphisme $D(f) \to D(g)$ sera identifié à la donnée d'un élément $h$
de $Y(\mathcal{O}(X)[\frac{1}{f}])$ (ou d'un morphisme $h^* \colon
\mathcal{O}(Y) \to \mathcal{O}(X)[\frac{1}{f}]$ de $k$-algèbres) tel
que $h^*(g)$ soit inversible, ou, ce qui revient encore au même, un
morphisme $\mathcal{O}(Y)[\frac{1}{g}] \to
\mathcal{O}(X)[\frac{1}{f}]$ de $k$-algèbres.
\end{defn}

De nouveau, il existe beaucoup de façons de voir la même donnée !


%
%
%

\section{TODO}

Un peu d'abstract nonsense : pourquoi on voit les choses à travers
leurs points à valeurs dans un anneau quelconque.

Introduction à l'espace projectif.  Variétés quasiprojectives sur un
corps algébriquement clos.

Crash-course de théorie de Galois.  Variétés sur un corps pas
algébriquement clos.

Bases de Gröbner.

Courbes et corps de dimension $1$.  But : arriver à Riemann-Roch.


%
%
%
\end{document}