%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it? \documentclass[12pt,a4paper]{article} \usepackage[francais]{babel} \usepackage[utf8]{inputenc} \usepackage{times} % A tribute to the worthy AMS: \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} % \usepackage{mathrsfs} \usepackage{wasysym} \usepackage{url} % \usepackage{graphics} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{tikz} % \theoremstyle{definition} \newtheorem{comcnt}{Tout}[subsection] \newcommand\thingy{% \refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} } \newtheorem{defn}[comcnt]{Définition} \newtheorem{prop}[comcnt]{Proposition} \newtheorem{lem}[comcnt]{Lemme} \newtheorem{thm}[comcnt]{Théorème} \newtheorem{cor}[comcnt]{Corollaire} \newtheorem{rmk}[comcnt]{Remarque} \newtheorem{exmps}[comcnt]{Exemples} \newcommand{\limp}{\mathrel{\Rightarrow}} \newcommand{\liff}{\mathrel{\Longleftrightarrow}} \newcommand{\pgcd}{\operatorname{pgcd}} \newcommand{\ppcm}{\operatorname{ppcm}} \newcommand{\signe}{\operatorname{signe}} \newcommand{\tee}{\mathbin{\top}} \newcommand{\Frob}{\operatorname{Frob}} \renewcommand{\qedsymbol}{\smiley} \DeclareUnicodeCharacter{00A0}{~} % % % \begin{document} \title{\underline{Brouillon} de notes de cours\\de géométrie algébrique} \author{David A. Madore} \maketitle \centerline{\textbf{MDI349}} % % % \section*{Conventions} Sauf précision expresse du contraire, tous les anneaux considérés sont commutatifs et ont un élément unité (noté $1$). Si $k$ est un anneau, une \emph{$k$-algèbre} (là aussi : implicitement commutative) est la donnée d'un morphisme d'anneaux $k \buildrel\varphi\over\to A$. On peut multiplier un élément de $A$ par un élément de $k$ avec : $c\cdot x = \varphi(c)\,x \in A$ (pour $c\in k$ et $x\in A$). % % % \section{Introduction / motivations} Qu'est-ce que la géométrie algébrique ? En condensé : \begin{itemize} \item\textbf{But :} Étudier les solutions de systèmes d'équations polynomiales dans un corps ou un anneau quelconque, ou des objets apparentés. (Étudier = étudier leur existence, les compter, les paramétrer, les relier, définir une structure dessus, etc.) \item\textbf{Géométrie :} Voir de tels systèmes d'équations comme des objets géo\-mé\-triques, soit plongés dans un espace ambiant (espace affine, espace projectif), soit intrinsèques ; leur appliquer des concepts de géométrie (espace tangent, étude locale de singularités, etc.). \item\textbf{Moyens :} L'étude locale de ces objets passe par les fonctions définies dessus, qui sont des anneaux tout à fait généraux, donc l'\emph{algèbre commutative} (étude des anneaux commutatifs et de leurs idéaux). \end{itemize} \smallbreak Problèmes \emph{géométriques} = étude de solutions sur des corps algébriquement clos (e.g., $\mathbb{C}$ : géométrie algébrique complexe ; $\bar{\mathbb{F}}_p$) ou « presque » (e.g., $\mathbb{R}$ : géométrie algébrique réelle). Problèmes \emph{arithmétiques} = sur des corps loin d'être algébriquement clos (e.g., $\mathbb{Q}$ : géométrie arithmétique), ou des anneaux plus gé\-né\-raux (e.g., $\mathbb{Z}$ : idem, « équations diophantiennes »). Applications : cryptographie et codage (géométrie sur $\mathbb{F}_q$), calcul formel, robotique (géométrie sur $\mathbb{R}$), analyse complexe (géométrie sur $\mathbb{C}$), théorie des nombres (sur $\mathbb{Q}$, corps de nombres...), etc. \smallbreak \textbf{Un exemple :} Pour tout anneau $k$, on définit $C(k) = \{(x,y)\in k^2 : x^2+y^2 = 1\}$. Interprétation géométrique : ceci est un cercle ! Il est plongé dans le « plan affine » $\mathbb{A}^2$ défini par $\mathbb{A}^2(k) = k^2$ pour tout anneau $k$. \begin{itemize} \item Sur $\mathbb{R}$, les solutions forment effectivement un cercle, au sens naïf. \item (Sur $\mathbb{C}$, les solutions dans $\mathbb{C}^2$ forment une surface, qui ressemblerait plutôt à une sphère privée de deux points.) \item Sur $\mathbb{F}_q$, on peut compter les solutions : on peut montrer qu'il y en a $q-1$ ou $q+1$ selon que $q \equiv 1\pmod{4}$ ou $q \equiv 3\pmod{4}$ (ou encore $q$ pour $q = 2^r$). \item Sur $\mathbb{Q}$, il n'est pas complètement évident de trouver des solutions autres que $(\pm 1,0)$ et $(0,\pm 1)$. Un exemple : $(\frac{4}{5},\frac{3}{5})$ (Pythagore, Euclide...). \end{itemize} Paramétrage des solutions : \begin{center} \begin{tikzpicture}[scale=3] \draw[step=.2cm,help lines] (-1.25,-1.25) grid (1.25,1.25); \draw[->] (-1.15,0) -- (1.15,0); \draw[->] (0,-1.15) -- (0,1.15); \draw (0,0) circle (1cm); \draw (1,-1.15) -- (1,1.15); \coordinate (P) at (0.8,0.6); \coordinate (Q) at (1,0.6666666667); \draw (0.8,0) -- (P); \draw (-1,0) -- node[sloped,auto] {$\scriptstyle\mathrm{pente}=t$} (Q); \fill[black,opacity=.5] (P) circle (.5pt); \fill[black,opacity=.5] (Q) circle (.5pt); \fill[black,opacity=.5] (-1,0) circle (.5pt); \node[anchor=west] at (Q) {$\scriptstyle (1,2t)$}; \node[anchor=north east] at (-1,0) {$\scriptstyle (-1,0)$}; \node[anchor=east] at (P) {$\scriptstyle (\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$}; \end{tikzpicture} \end{center} Un petit calcul géométrique (cf. les formules exprimant $\cos\theta,\sin\theta$ en fonction de $\tan\frac{\theta}{2}$), valable sur tout corps $k$ de caractéristique $\neq 2$ (ou en fait tout anneau dans lequel $2$ est inversible\footnote{C'est-à-dire, une $\mathbb{Z}[\frac{1}{2}]$-algèbre, où $\mathbb{Z}[\frac{1}{2}] = \{\frac{a}{2^r}:a\in\mathbb{Z},r\in\mathbb{N}\}$}), permet de montrer que toute solution $(x,y) \in C(k)$ autre que $(-1,0)$ peut s'écrire de la forme $(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$ avec $t \in k$ (uniquement défini). \emph{Remarques :} (a) ceci correspond à un point $(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}) \in C(k(t))$ où $k(t)$ est le corps des fonctions rationnelles à une indéterminée sur $k$ ; (b) ceci permet, par exemple, de trouver de nombreuses solutions sur $\mathbb{Q}$, ou d'en trouver rapidement sur $\mathbb{F}_q$ ($q$ impair) ; (c) on a, en fait, défini un « morphisme » d'objets géométriques de la droite affine $\mathbb{A}^1$ vers le cercle $C$ (privé du point $(-1,0)$). On peut aussi définir une structure de \emph{groupe} (abélien) sur les points de $C(k)$ pour n'importe quel anneau $k$ : si $(x,y) \in C(k)$ et $(x',y') \in C(k)$, on définit leur composée $(x,y)\star (x',y') = (x'',y'')$ par \[ \left\{\begin{array}{c} x'' = xx'-yy'\\ y'' = xy'+yx'\\ \end{array}\right. \] (cf. les formules exprimant $\cos(\theta+\theta'),\sin(\theta+\theta')$ en fonction de $\cos\theta,\sin\theta$ et $\cos\theta',\sin\theta'$). Élément neutre : $(1,0)$ ; inverse de $(x,y)$ : $(x,-y)$. (Les fonctions trigonométriques, ``transcendantes'', servent à motiver ces formules, mais les formules sont parfaitement valables sur $\mathbb{F}_q$ bien que $\cos\theta,\sin\theta$ n'aient pas de sens !) % % % \section{TODO} Prolégomènes d'algèbre commutative (localisation...). Crash-course de théorie de Galois. Géométrie algébrique affine facile (idéaux de $k[x_1,\ldots,x_n]$ avec $k$ alg\textsuperscript{t} clos, Nullsellensatz). Introduction à l'espace projectif. Un peu d'abstract nonsense. Bases de Gröbner. Courbes et corps de dimension $1$. % % % \end{document}