summaryrefslogtreecommitdiffstats
path: root/notes-geoalg-2011.tex
blob: 1e46b5ca3a79a0e5ea9bf7edf475ca4f3ba502a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}[subsection]
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newtheorem{defn}[comcnt]{Définition}
\newtheorem{prop}[comcnt]{Proposition}
\newtheorem{lem}[comcnt]{Lemme}
\newtheorem{thm}[comcnt]{Théorème}
\newtheorem{cor}[comcnt]{Corollaire}
\newtheorem{rmk}[comcnt]{Remarque}
\newtheorem{scho}[comcnt]{Scholie}
\newtheorem{algo}[comcnt]{Algorithme}
\newtheorem{exmps}[comcnt]{Exemples}
\newtheorem{princ}[comcnt]{Principe}
\newcommand{\limp}{\mathrel{\Rightarrow}}
\newcommand{\liff}{\mathrel{\Longleftrightarrow}}
\newcommand{\pgcd}{\operatorname{pgcd}}
\newcommand{\ppcm}{\operatorname{ppcm}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\Frob}{\operatorname{Frob}}
\newcommand{\Frac}{\operatorname{Frac}}
\newcommand{\Spec}{\operatorname{Spec}}
\newcommand{\degtrans}{\operatorname{deg.tr}}
\newcommand{\Gal}{\operatorname{Gal}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\init}{\operatorname{in}}
\newcommand{\ord}{\operatorname{ord}}
\newcommand{\divis}{\operatorname{div}}
\newcommand{\Pic}{\operatorname{Pic}}
\renewcommand{\qedsymbol}{\smiley}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
%
%
\begin{document}
\title{\underline{Brouillon} de notes de cours\\de géométrie algébrique}
\author{David A. Madore}
\maketitle

\centerline{\textbf{MDI349}}

%
%
%

\section{Prolégomènes d'algèbre commutative}

\subsection{Anneaux réduits, intègres}\label{subsection-reduced-and-integral-rings}

Sauf précision expresse du contraire, tous les anneaux considérés sont
commutatifs et ont un élément unité (noté $1$).  Il existe un unique
anneau dans lequel $0=1$, c'est l'anneau réduit à un seul élément,
appelé l'\textbf{anneau nul}.

Si $k$ est un anneau, une \textbf{$k$-algèbre} (là aussi :
implicitement commutative) est la donnée d'un morphisme d'anneaux $k
\buildrel\varphi\over\to A$ (appelé \emph{morphisme structural} de
l'algèbre).  On peut multiplier un élément de $A$ par un élément
de $k$ avec : $c\cdot x = \varphi(c)\,x \in A$ (pour $c\in k$ et $x\in
A$).

\smallbreak

Anneau \textbf{réduit} = anneau dans lequel $x^n = 0$ implique $x =
0$.  En général, un $x$ (dans un anneau $A$) tel que $x^n = 0$ pour un
certain $n \in \mathbb{N}$ s'appelle un élément \textbf{nilpotent}.

Anneau \textbf{intègre} = anneau non nul dans lequel $xy = 0$ implique
$x=0$ ou $y=0$ (remarque : la réciproque vaut dans tout anneau).  En
général, un $x$ (dans un anneau $A$) tel qu'il existe $y \neq 0$ tel
que $xy = 0$ s'appelle un \textbf{diviseur de zéro}.

Élément \textbf{inversible} (ou \emph{unité}) d'un anneau $A$ =
élément $x$ tel qu'il existe $y$ vérifiant $xy = 1$.  L'ensemble
$A^\times$ ou $\mathbb{G}_m(A)$ des tels éléments forme un
\emph{groupe}, appelé groupe multiplicatif des inversibles de $A$.  Un
\textbf{corps} est un anneau tel que $A^\times = A\setminus\{0\}$.

Un corps est un anneau intègre.  Un anneau intègre est un anneau
réduit.

\smallbreak

On rappelle qu'un \textbf{idéal} d'un anneau est un sous-groupe
additif $I$ de $A$ tel que $AI \subseteq I$.  Si $(x_i)_{i\in
  \Lambda}$ sont des éléments de $A$, l'intersection de tous les
idéaux contenant les $x_i$ est un idéal et s'appelle l'idéal
\textbf{engendré} par les $x_i$ : c'est l'ensemble des toutes les
combinaisons linéaires $a_1 x_{i_1} + \cdots + a_n x_{i_n}$ avec
$a_1,\ldots,a_n \in A$ et $i_1,\ldots,i_n \in \Lambda$.  Lorsque
$\Lambda$ est fini : l'idéal $I$ engendré par $x_1,\ldots,x_n$ est
l'ensemble des toutes les combinaisons linéaires $a_1 x_1 + \cdots +
a_n x_n$ et il peut se noter $Ax_1 + \cdots + Ax_n$ ou parfois
$(x_1,\ldots,x_n)$ : on dit que $I$ est un idéal \textbf{de type
  fini}.  Si $I$ peut être engendré par un seul élément, $I = Ax$
(aussi noté $(x)$), on dit que $I$ est un idéal \textbf{principal}.

Idéal nul $(0) = \{0\}$.  Idéal plein ou idéal unité $A$ : un élément
$x$ est inversible ssi l'idéal $(x)$ qu'il engendre est l'idéal unité.

\smallbreak

Idéal \textbf{maximal} d'un anneau $A$ = un idéal $\mathfrak{m} \neq
A$ tel que si $\mathfrak{m} \subseteq \mathfrak{m}'$ (avec
$\mathfrak{m}'$ un autre idéal) alors soit
$\mathfrak{m}'=\mathfrak{m}$ soit $\mathfrak{m}'=A$).  Propriété
équivalente : c'est un idéal $\mathfrak{m}$ tel que $A/\mathfrak{m}$
soit un corps.

Idéal \textbf{premier} d'un anneau $A$ = un idéal $\mathfrak{p} \neq
A$ tel que si $x,y\not\in\mathfrak{p}$ alors $xy \not\in
\mathfrak{p}$.  Propriété équivalente : c'est un idéal $\mathfrak{p}$
tel que $A/\mathfrak{p}$ soit intègre.

Idéal \textbf{radical} d'un anneau $A$ = un idéal $\mathfrak{r}$ tel
que si $x^n \in \mathfrak{r}$ alors $x \in \mathfrak{r}$.  Propriété
équivalente : c'est un idéal $\mathfrak{r}$ tel que $A/\mathfrak{r}$
soit réduit.

\emph{Exemples :} L'idéal $7\mathbb{Z}$ de $\mathbb{Z}$ est maximal
(le quotient $\mathbb{Z}/7\mathbb{Z}$ est un corps), donc \textit{a
  fortiori} premier et radical.  L'idéal $0$ de $\mathbb{Z}$ est
premier mais non maximal (le quotient $\mathbb{Z}/0\mathbb{Z} =
\mathbb{Z}$ est un anneau intègre mais non un corps).  L'idéal
$6\mathbb{Z}$ de $\mathbb{Z}$ est radical mais n'est pas premier.
L'idéal $9\mathbb{Z}$ de $\mathbb{Z}$ n'est pas radical.

\smallbreak

Un anneau est un corps ssi son idéal $(0)$ est maximal.  Un anneau est
intègre ssi son idéal $(0)$ est premier.  Un anneau est réduit ssi son
idéal $(0)$ est radical.

Un anneau est dit \textbf{local} lorsqu'il a un unique idéal maximal.
(En particulier, un corps est un anneau local.)  Le quotient d'un
anneau local par son idéal maximal s'appelle son \emph{corps
  résiduel}.  \emph{Exercice :} l'anneau $A$ des rationnels de la
forme $\frac{a}{b}$ avec $a,b \in \mathbb{Z}$ et $b$ impair est un
anneau local dont l'idéal maximal $\mathfrak{m}$ est formé des
$\frac{a}{b}$ avec $a$ pair.  (Quel est le corps résiduel ?)

\smallbreak

On admet les résultats suivants :
\begin{prop}\label{existence-maximal-ideals}
Dans un anneau $A$, tout idéal strict (=autre que $A$) est inclus dans
un idéal maximal.
\end{prop}

\begin{prop}
Dans un anneau, l'ensemble des éléments nilpotents est un idéal :
c'est le plus petit idéal radical (intersection des idéaux radicaux).
Cet idéal est aussi l'intersection des idéaux premiers de l'anneau.
On l'appelle le \textbf{nilradical} de l'anneau.
\end{prop}

En appliquant ce dernier résultat à $A/I$, on obtient :
\begin{prop}
Si $A$ est un anneau et $I$ un idéal de $A$, l'ensemble des éléments
tels que $z^n \in I$ pour un certain $n \in \mathbb{N}$ est un idéal :
c'est le plus petit idéal radical contenant $I$.  Cet idéal est
précisément l'intersection des idéaux premiers de $A$ contenant $I$.
On l'appelle le \textbf{radical} de l'idéal $I$ et on le note $\surd
I$.
\end{prop}

L'intersection des idéaux maximaux d'un anneau s'appelle le
\textbf{radical de Jacobson} de cet anneau : il est, en général,
strictement plus grand que le nilradical.

Notons aussi la conséquence facile suivante de la
proposition \ref{existence-maximal-ideals}.
\begin{prop}\label{non-invertible-elements-and-maximal-ideals}
Dans un anneau $A$, l'ensemble des éléments non-inversibles est la
réunion de tous les idéaux maximaux.
\end{prop}
\begin{proof}
Dire que $x$ est inversible signifie que $x$ engendre l'idéal unité.
Si c'est le cas, $x$ n'appartient à aucun idéal strict de $A$, et en
particulier aucun idéal maximal.  Réciproquement, si $x$ n'est pas
inversible, l'idéal $(x)$ qu'il engendre est strict, donc inclus dans
un idéal maximal $\mathfrak{m}$
d'après \ref{existence-maximal-ideals}, donc $x$ est bien dans la
réunion des idéaux maximaux.
\end{proof}

%
\subsection{Anneaux noethériens}

Anneau \textbf{noethérien} : c'est un anneau $A$ vérifiant les
proprités équivalentes suivantes :
\begin{itemize}
\item toute suite croissante pour l'inclusion $I_0 \subseteq I_1
  \subseteq I_2 \subseteq \cdots$ d'idéaux de $A$ stationne
  (c'est-à-dire est constante à partir d'un certain rang) ;
\item tout idéal $I$ de $A$ est de type fini : il existe une famille
  \emph{finie} $(x_i)$ d'éléments de $I$ qui engendre $I$ comme
  idéal ;
\item plus précisément, si $I$ est l'idéal engendré par une famille
  $x_i$ d'éléments, on peut trouver une sous-famille finie des $x_i$
  qui engendre le même idéal $I$.
\end{itemize}

L'essentiel des anneaux utilisés en géométrie algébrique (en tout cas,
auxquels on aura affaire) sont noethériens.  L'anneau $\mathbb{Z}$ est
noethérien.  Tout corps est un anneau noethérien.  Tout quotient d'un
anneau noethérien est noethérien (attention : il n'est pas vrai qu'un
sous-anneau d'un anneau noethérien soit toujours noethérien).  Et
surtout :
\begin{prop}[théorème de la base de Hilbert]
Si $A$ est un anneau noethérien, alors l'anneau $A[t]$ des polynômes à
une indéterminée sur $A$ est noethérien.
\end{prop}

En itérant ce résultat, on voit que si $A$ est noethérien, alors
$A[t_1,\ldots,t_d]$ l'est pour tout $d\in\mathbb{N}$.  Comme un
quotient d'un anneau noethérien est encore noethérien :

\begin{defn}\label{finite-type-algebras}
Une $A$-algèbre $B$ est dite \textbf{de type fini} (comme $A$-algèbre)
lorsqu'il existe $x_1,\ldots,x_d \in B$ (qu'on dit \emph{engendrer}
$B$ comme $A$-algèbre) tel que tout élément de $B$ s'écrive
$f(x_1,\ldots,x_d)$ pour un certain polynôme $f \in
A[t_1,\ldots,t_d]$.
\end{defn}

Dire que $B$ est une $A$-algèbre de type fini engendrée par
$x_1,\ldots,x_d$ signifie donc que le morphisme $\xi\colon
A[t_1,\ldots,t_d] \to B$ défini par $f \mapsto f(x_1,\ldots,x_d)$ est
\emph{surjectif}.  Par conséquent, si $I$ désigne le noyau de ce
morphisme (c'est-à-dire l'ensemble des $f \in A[t_1,\ldots,t_d]$ qui
s'annulent en $(x_1,\ldots,x_d)$) alors $\xi$ définit un isomorphisme
$A[t_1,\ldots,t_d]/I \buildrel\sim\over\to B$.  On peut donc dire :
une $A$-algèbre de type fini est un quotient de $A[t_1,\ldots,t_d]$
(pour un certain $d$).

\begin{cor}\label{finite-type-algebras-are-noetherian}
Une algèbre de type fini sur un anneau noethérien, et en particulier
sur un corps ou sur $\mathbb{Z}$, est un anneau noethérien.
\end{cor}

%
\subsection{Localisation}

On dit qu'une partie $S$ d'un anneau $A$ est \emph{multiplicative}
lorsque $1\in S$ et $s,s'\in S \limp ss'\in S$.  Par exemple, le
complémentaire d'un idéal premier est, par définition,
multiplicative ; en particulier, dans un anneau intègre, l'ensemble
des éléments non nuls est une partie multiplicative.

Dans ces conditions, on construit un anneau noté $A[S^{-1}]$ (ou
$S^{-1}A$) de la façon suivante : ses éléments sont notés $a/s$ avec
$a\in A$ et $s \in S$, où on identifie\footnote{Ce racourci de langage
  signifie qu'on considère la relation d'équivalence $\sim$ sur
  $A\times S$ définie par $(a,s) \sim (a',s')$ lorsqu'il existe $t \in
  S$ tel que $t(a's-as') = 0$, on appelle $A[S^{-1}]$ le quotient
  $(A\times S)/\sim$, et on note $a/s$ la classe de $(a,s)$ pour cette
  relation ; il faudrait encore vérifier que toutes les opérations
  proposées ensuite sont bien définies.} $a/s = a'/s'$ lorsqu'il
existe $t \in S$ tel que $t(a's-as') = 0$.  L'addition est définie par
$(a/s)+(a'/s') = (a's+as')/(ss')$ (le zéro par $0/1$, l'opposé par
$-(a/s) = (-a)/s$) et la multiplication par $(a/s)\cdot (a'/s') =
(aa')/(ss')$ (l'unité par $1/1$).  Cet anneau est muni d'un morphisme
naturel $A \buildrel\iota\over\to A[S^{-1}]$ donné par $a \mapsto
a/1$.  On l'appelle le \textbf{localisé} de $A$ inversant la partie
multiplicative $S$.  Si $A$ est une $k$-algèbre (pour un certain
anneau $k$) alors $A[S^{-1}]$ est une $k$-algèbre de façon évidente
(en composant le morphisme structural $k\to A$ par le morphisme
naturel $A \to A[S^{-1}]$).

\begin{prop}\label{properties-localization}
\begin{itemize}
\item Le morphisme naturel $A \buildrel\iota\over\to A[S^{-1}]$ est
  injectif si et seulement si $S$ ne contient aucun diviseur de zéro.
  (Extrême inverse : si $S$ contient $0$, alors $A[S^{-1}]$ est
  l'anneau nul.)
\item Tout idéal $J$ de $A[S^{-1}]$ est de la forme $J = I[S^{-1}] :=
  \{a/s : a\in I,\penalty0 s \in S\}$ où $I$ est l'image réciproque
  dans $A$ (par le morphisme naturel $\iota\colon A \to A[S^{-1}]$) de
  l'idéal $J$ considéré.
\item L'application $\mathfrak{p} \mapsto \iota^{-1}(\mathfrak{p})$
  définit une bijection entre les idéaux premiers de $A[S^{-1}]$ et
  ceux de $A$ ne rencontrant pas $S$.
\end{itemize}
\end{prop}

Cas particuliers importants : si $\mathfrak{p}$ est premier et $S =
A\setminus\mathfrak{p}$ est son com\-plé\-men\-taire, on note
$A_{\mathfrak{p}} = A[S^{-1}]$ ; c'est un anneau local (dont l'idéal
maximal est $\mathfrak{p}[S^{-1}] = \{a/s : a\in \mathfrak{p}, s
\not\in \mathfrak{p}\}$) : on l'appelle le localisé de $A$
\textbf{en} $\mathfrak{p}$.  Si $A$ est un anneau intègre et $S = A
\setminus\{0\}$ l'ensemble des éléments non nuls de $A$, on note
$\Frac(A) = A[S^{-1}]$ : c'est un corps, appelé \textbf{corps des
  fractions} de $A$.  Par exemple, $\Frac(\mathbb{Z}) = \mathbb{Q}$ et
$\Frac(k[t]) = k(t)$ pour $k$ un corps.

Toute partie $\Sigma$ de $A$ engendre une partie multiplicative $S$
(c'est l'intersection de toutes les parties multiplicatives
contenant $\Sigma$, ou simplement l'ensemble de tous les produits
possibles d'éléments de $\Sigma$) : on note généralement
$A[\Sigma^{-1}]$ pour $A[S^{-1}]$.  En particulier, lorsque $\Sigma =
\{\sigma_1,\ldots,\sigma_n\}$, on note
$A[\sigma_1^{-1},\ldots,\sigma_n^{-1}]$ ou
$A[\frac{1}{\sigma_1},\ldots,\frac{1}{\sigma_n}]$.

\begin{prop}\label{localization-inverting-one-element}
Si $A$ est un anneau et $\sigma_1,\ldots,\sigma_n \in A$, alors
\begin{itemize}
\item L'anneau $A[\frac{1}{\sigma_1},\ldots,\frac{1}{\sigma_n}]$
  s'identifie à $A[\frac{1}{f}]$ où $f = \sigma_1\cdots\sigma_n$.
\item De plus, $A[\frac{1}{f}] \cong A[z]/(zf-1)$ (ici, $A[z]$ est
  l'anneau des polynômes en une indéterminée), par un isomorphisme
  envoyant $\frac{a}{f^n}$ sur la classe de $a z^n$
\end{itemize}
\end{prop}


%
%
%

\section{Variétés algébriques affines sur un corps algé\-bri\-que\-ment clos}

Dans cette section, $k$ sera un corps algébriquement clos.

On appelle \textbf{espace affine de dimension $d$} sur $k$
l'ensemble $k^d$ (on parle de droite ou plan affine lorsque $d=1,2$).
Il sera aussi parfois noté $\mathbb{A}^d$ ou $\mathbb{A}^d(k)$ pour
des raisons qui apparaîtront plus loin.

%
\subsection{Correspondance entre fermés de Zariski et idéaux}

\textbf{Comment associer une partie de $k^d$ à un idéal de
  $k[t_1,\ldots,t_d]$ ?}

Si $\mathscr{F}$ est une partie de $k[t_1,\ldots,t_d]$, on définit un
ensemble $Z(\mathscr{F}) = \{(x_1,\ldots,x_d) \in k^d :\penalty0
(\forall f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$.

Remarques évidentes : si $\mathscr{F} \subseteq \mathscr{F}'$ alors
$Z(\mathscr{F}) \supseteq Z(\mathscr{F}')$ (la fonction $Z$ est
« décroissante pour l'inclusion ») ; on a $Z(\mathscr{F}) =
\bigcap_{f\in \mathscr{F}} Z(f)$ (où $Z(f)$ est un racourci de
notation pour $Z(\{f\})$).  Plus intéressant : si $I$ est l'idéal
engendré par $\mathscr{F}$ alors $Z(I) = Z(\mathscr{F})$.  On peut
donc se contenter de regarder les $Z(I)$ avec $I$ idéal
de $k[t_1,\ldots,t_d]$.  Encore un peu mieux : si $\surd I = \{f :
(\exists n)\,f^n\in I\}$ désigne le radical de l'idéal $I$, on a
$Z(\surd I) = Z(I)$ ; on peut donc se contenter de considérer les
$Z(I)$ avec $I$ idéal radical.

On appellera \textbf{fermé de Zariski} dans $k^d$ une partie $E$ de la
forme $Z(\mathscr{F})$ pour une certaine partie $\mathscr{F}$
de $k[t_1,\ldots,t_d]$, dont on a vu qu'on pouvait supposer qu'il
s'agit d'un idéal radical.

Le vide est un fermé de Zariski ($Z(1) = \varnothing$) ; l'ensemble
$k^d$ tout entier est un fermé de Zariski ($Z(0) = k^d$).  Tout
singleton est un fermé de Zariski : en effet, $Z(\mathfrak{m}_x) =
\{x\}$, où $\mathfrak{m}_x$ est l'idéal $(t_1-x_1,\ldots,t_d-x_d)$ ;
remarquer que $\mathfrak{m}_x$ est un idéal maximal, le quotient
$k[t_1,\ldots,t_d]/\mathfrak{m}_x$ s'identifiant à $k$ par la fonction
$f \mapsto f(x)$ d'évaluation en $x$.

Si $(E_i)_{i\in \Lambda}$ sont des fermés de Zariski, alors
$\bigcap_{i\in \Lambda} E_i$ est un fermé de Zariski : plus
précisément, si $(I_i)_{i\in \Lambda}$ sont des idéaux
de $k[t_1,\ldots,t_d]$, alors $Z(\sum_{i\in\Lambda} I_i) =
\bigcap_{i\in\Lambda} Z(I_i)$.  Si $E,E'$ sont des fermés de Zariski,
alors $E \cup E'$ est un fermé de Zariski : plus précisément, si
$I,I'$ sont des idéaux de $k[t_1,\ldots,t_d]$, alors $Z(I\cap I') =
Z(I) \cup Z(I')$ (l'inclusion $\supseteq$ est évidente ; pour l'autre
inclusion, si $x \in Z(I\cap I')$ mais $x \not\in Z(I)$, il existe
$f\in I$ tel que $f(x) \neq 0$, et alors pour tout $f' \in I'$ on a
$f(x)\,f'(x) = 0$ puisque $ff' \in I\cap I'$, donc $f'(x) = 0$, ce qui
prouve $x \in Z(I')$).

\medbreak

\textbf{Comment associer un idéal de $k[t_1,\ldots,t_d]$ à une partie
  de $k^d$ ?}

Réciproquement, si $E$ est une partie de $k^d$, on note
$\mathfrak{I}(E) = \{f\in k[t_1,\ldots,t_d] :\penalty0 (\forall
(x_1,\ldots,x_d)\in E)\, f(x_1,\ldots,x_d)=0\}$.  Vérification
facile : c'est un idéal de $k[t_1,\ldots,t_d]$, et même un idéal
radical.  Remarque évidente : si $E \subseteq E'$ alors
$\mathfrak{I}(E) \supseteq \mathfrak{I}(E')$ ; on a $\mathfrak{I}(E) =
\bigcap_{x\in E} \mathfrak{m}_x$ (où $\mathfrak{m}_x$ désigne l'idéal
maximal $\mathfrak{I}(\{x\})$ des polynômes s'annulant en $x$), et en
particulier $\mathfrak{I}(E) \neq k[t_1,\ldots,t_d]$ dès que $E \neq
\varnothing$.

On a de façon triviale $\mathfrak{I}(\varnothing) =
k[t_1,\ldots,t_d]$.  De façon moins évidente, si $k$ est infini (ce
qui est en particulier le cas lorsque $k$ est algébriquement clos), on
a $\mathfrak{I}(k^d) = (0)$ (démonstration par récurrence sur $d$,
laissée en exercice).

\danger Sur un corps fini $\mathbb{F}_q$, on a
$\mathfrak{I}({\mathbb{F}_q}^d) \neq (0)$.  Par exemple, si $t$ est
une des in\-dé\-ter\-mi\-nées, le polynôme $t^q-t$ s'annule en tout
point de ${\mathbb{F}_q}^d$.

\medbreak

\textbf{Le rapport entre ces deux fonctions}

On a $E \subseteq Z(\mathscr{F})$ ssi $\mathscr{F} \subseteq
\mathfrak{I}(E)$, puisque les deux signifient « tout polynôme dans
  $\mathscr{F}$ s'annule en tout point de $E$ ».

En particulier, en appliquant cette remarque à $\mathscr{F} =
\mathfrak{I}(E)$, on a $E \subseteq Z(\mathfrak{I}(E))$ pour toute
partie $E$ de $k^d$ ; et en appliquant la remarque à $E =
Z(\mathscr{F})$, on a $\mathscr{F} \subseteq
\mathfrak{I}(Z(\mathscr{F}))$.  De $E \subseteq Z(\mathfrak{I}(E))$ on
déduit $\mathfrak{I}(E) \supseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$
(car $\mathfrak{I}$ est décroissante), mais par ailleurs
$\mathfrak{I}(E) \subseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$ en
appliquant l'autre inclusion à $\mathfrak{I}(E)$ : donc
$\mathfrak{I}(E) = \mathfrak{I}(Z(\mathfrak{I}(E)))$ pour toute partie
$E$ de $k^d$ ; de même, $Z(\mathscr{F}) =
Z(\mathfrak{I}(Z(\mathscr{F})))$ pour tout ensemble $\mathscr{F}$ de
polynômes.  On a donc prouvé :

\begin{prop}
Avec les notations ci-dessus :
\begin{itemize}
\item Une partie $E$ de $k^d$ vérifie $E = Z(\mathfrak{I}(E))$ si et
  seulement si elle est de la forme $Z(\mathscr{F})$ pour un
  certain $\mathscr{F}$ (=: c'est un fermé de Zariski), et dans ce cas
  on peut prendre $\mathscr{F} = \mathfrak{I}(E)$, qui est un idéal
  radical.
\item Une partie $I$ de $k[t_1,\ldots,t_d]$ vérifie $I =
  \mathfrak{I}(Z(I))$ si et seulement si elle est de la forme
  $\mathfrak{I}(E)$ pour un certain $E$, et dans ce cas on peut
  prendre $E = Z(I)$, et $I$ est un idéal radical
  de $k[t_1,\ldots,t_d]$.
\item Les fonctions $\mathfrak{I}$ et $Z$ se restreignent en des
  bijections décroissantes réci\-proques entre l'ensemble des fermés
  de Zariski $E$ de $k^d$ et l'ensemble des idéaux (radicaux) $I$
  de $k[t_1,\ldots,t_d]$ tels que $I = \mathfrak{I}(Z(I))$.
\end{itemize}
\end{prop}

On va voir ci-dessous que les idéaux tels que $I = \mathfrak{I}(Z(I))$
sont exactement (tous) les idéaux radicaux de $k[t_1,\ldots,t_d]$.

\medbreak

\textbf{Fermés irréductibles et idéaux premiers}

On dit qu'un fermé de Zariski $E \subseteq k^d$ non vide est
\textbf{irréductible} lorsqu'on ne peut pas écrire $E = E' \cup E''$,
où $E',E''$ sont deux fermés de Zariski (forcément contenus
dans $E$...), sauf si $E'=E$ ou $E''=E$.

\emph{Contre-exemple :} $Z(xy)$ (dans le plan $k^2$ de
coordonnées $x,y$) n'est pas ir\-ré\-duc\-tible, car $Z(xy) = \{(x,y)
\in k^2 : xy=0\} = \{(x,y) \in k^2 :
x=0\penalty0\ \textrm{ou}\penalty0\ y=0\} = Z(x) \cup Z(y)$ est
réunion de $Z(x)$ (l'axe des ordonnées) et $Z(y)$ (l'axe des
abscisses) qui sont tous tous les deux strictement plus petits
que $Z(xy)$.

\begin{prop}\label{closed-irreducible-iff-prime-ideal}
Un fermé de Zariski $E \subseteq k^d$ est irréductible si, et
seulement si, l'idéal $\mathfrak{I}(E)$ est premier.
\end{prop}
\begin{proof}
Supposons $\mathfrak{I}(E)$ premier : on veut montrer que $E$ est
irréductible.  Supposons $E = E' \cup E''$ comme ci-dessus (on a vu
que $E = Z(\mathfrak{I}(E))$, $E' = Z(\mathfrak{I}(E'))$ et $E'' =
Z(\mathfrak{I}(E''))$) : on veut montrer que $E' = E$ ou $E'' = E$.
Supposons le contraire, c'est-à-dire $\mathfrak{I}(E) \neq
\mathfrak{I}(E')$ et $\mathfrak{I}(E) \neq \mathfrak{I}(E'')$.  Il
existe alors $f' \in \mathfrak{I}(E') \setminus \mathfrak{I}(E)$ et
$f'' \in \mathfrak{I}(E'') \setminus \mathfrak{I}(E)$.  On a alors
$f'f'' \not\in \mathfrak{I}(E)$ car $\mathfrak{I}(E)$ est premier, et
pourtant $f'f''$ s'annule sur $E'$ et $E''$ donc sur $E$, une
contradiction.

Réciproquement, supposons $E$ irréductible : on veut montrer que
$\mathfrak{I}(E)$ est premier.  Soient $f',f''$ tels que $f'f'' \in
\mathfrak{I}(E)$ : posons $E' = Z(\mathfrak{I}(E) + (f'))$ et $E'' =
Z(\mathfrak{I}(E) + (f''))$.  On a $E' \subseteq E$ et $E'' \subseteq
E$ puisque $E = Z(\mathfrak{I}(E))$, et en fait $E' = E \cap Z(f')$ et
$E'' = E \cap Z(f'')$ ; on a par ailleurs $E = E' \cup E''$ (car si $x
\in E$ alors $f'(x)\,f''(x) = 0$ donc soit $f'(x)=0$ soit $f''(x)=0$,
et dans le premier cas $x \in E'$ et dans le second $x \in E''$).
Puisqu'on a supposé $E$ irréductible, on a, disons, $E' = E$,
c'est-à-dire $E \subseteq Z(f')$, ce qui signifie $f' \in
\mathfrak{I}(E)$.  Ceci montre bien que $\mathfrak{I}(E)$ est premier.
\end{proof}

%
\subsection{Le Nullstellensatz}

(Nullstellensatz, littéralement, « théorème du lieu d'annulation », ou
« théorème des zéros de Hilbert ».)

On rappelle que $k$ est algébriquement clos !  (Pour l'instant, cela
n'a pas beaucoup servi.)

\begin{prop}[Nullstellensatz faible]
Soit $k$ un corps algébriquement clos.  Si $I$ est un idéal de
$k[t_1,\ldots,t_d]$ tel que $Z(I) = \varnothing$, alors $I =
k[t_1,\ldots,t_d]$.
\end{prop}
\begin{proof}[Démonstration dans le cas particulier où $k$ est indénombrable.]
Supposons par contraposée $I \subsetneq k[t_1,\ldots,t_d]$.  Alors il
existe un idéal maximal $\mathfrak{m}$ tel que $I \subseteq
\mathfrak{m}$, et on a $Z(\mathfrak{m}) \subseteq Z(I)$.  On va
montrer $Z(\mathfrak{m}) \neq \varnothing$.

Soit $K = k[t_1,\ldots,t_d]/\mathfrak{m}$.  Il s'agit d'un corps, qui
est de dimension au plus dénombrable (=il a une famille génératrice
dénombrable, à savoir les images des monômes dans les $t_i$) sur $k$.
Mais $K$ ne peut pas contenir d'élément transcendant $\tau$ sur $k$
car, $k$ ayant été supposé indénombrable, la famille des
$\frac{1}{\tau - x}$ pour $x\in k$ serait linéairement indépendante
(par décomposition en élément simples) dans $k(\tau)$ donc dans $K$.
Donc $K$ est algébrique sur $k$.  Comme $k$ était supposé
algébriquement clos, on a en fait $K=k$.  Les classes des
indéterminées $t_1,\ldots,t_d$ définissent alors des éléments
$x_1,\ldots,x_d \in k$, et pour tout $f \in \mathfrak{m}$, on a
$f(x_1,\ldots,x_d) = 0$.  Autrement dit, $(x_1,\ldots,x_d) \in
Z(\mathfrak{m})$, ce qui conclut.
\end{proof}

En fait, dans le cours de cette démonstration, on a montré (dans le
cas particulier où on s'est placé, mais c'est vrai en général) :
\begin{prop}[{idéaux maximaux de $k[t_1,\ldots,t_d]$}]\label{maximal-ideals-of-polynomial-algebras}
Soit $k$ un corps algé\-bri\-que\-ment clos.  Tout idéal maximal
$\mathfrak{m}$ de $k[t_1,\ldots,t_d]$ est de la forme
$\mathfrak{m}_{(x_1,\ldots,x_d)} := \{f : f(x_1,\ldots,x_d) = 0\}$
pour un certain $(x_1,\ldots,x_d) \in k^d$.
\end{prop}
\begin{proof}
En fait, on a prouvé que si $\mathfrak{m}$ est un idéal maximal, il
existe $(x_1,\ldots,x_d) \in k^d$ tels que $(x_1,\ldots,x_d) \in
Z(\mathfrak{m})$, ce qui donne $\mathfrak{m} \subseteq
\mathfrak{I}(\{(x_1,\ldots,x_d)\})$, mais par maximalité de
$\mathfrak{m}$ ceci est en fait une égalité.
\end{proof}

En particulier, le corps quotient $k[t_1,\ldots,t_d]/\mathfrak{m}$ est
isomorphe à $k$, l'isomorphisme étant donnée par l'évaluation au point
$(x_1,\ldots,x_d)$ tel que ci-dessus.

\begin{thm}[Nullstellensatz = théorème des zéros de Hilbert]
Soit $I$ un idéal de $k[t_1,\ldots,t_d]$ (toujours avec $k$ un corps
algébriquement clos) : alors $\mathfrak{I}(Z(I)) = \surd I$ (le
radical de $I$).
\end{thm}
\begin{proof}
On sait que $\surd I \subseteq \mathfrak{I}(Z(I))$ et il s'agit de
montrer la réciproque.  Soit $f \in \mathfrak{I}(Z(I))$ : on veut
prouver $f\in \surd I$.  On vérifie facilement que ceci revient à
montrer que l'idéal $I[\frac{1}{f}]$
de $k[t_1,\ldots,t_d,\frac{1}{f}]$ est l'idéal unité.  Or
$k[t_1,\ldots,t_d,\frac{1}{f}] = k[t_1,\ldots,t_d,z]/(zf-1)$
d'après \ref{localization-inverting-one-element}.  Soit $J$ l'idéal
engendré par $I$ et $zf-1$ dans $k[t_1,\ldots,t_d,z]$ : on voit que
$Z(J) = \varnothing$ (dans $k^{d+1}$), car on ne peut pas avoir
simultanément $f(x_1,\ldots,x_d) = 0$ et $z\,f(x_1,\ldots,x_d) = 1$,
donc le Nullstellensatz faible entraîne $J = k[t_1,\ldots,t_d,z]$ :
ceci donne $I[\frac{1}{f}] = k[t_1,\ldots,t_d,\frac{1}{f}]$.
\end{proof}

\begin{scho}
Si $k$ est un corps algébriquement clos, les fonctions $I \mapsto
Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
réci\-proques, décroissantes pour l'inclusion, entre les idéaux radicaux
de $k[t_1,\ldots,t_d]$ d'une part, et les fermés de Zariski de $k^d$
d'autre part.

Ces bijections mettent les \emph{points} (c'est-à-dire les singletons)
de $k^d$ en correspondance avec les idéaux maximaux de
$k[t_1,\ldots,t_d]$ (ils ont tous pour quotient $k$), et les
\emph{fermés irréductibles} en correspondance avec les idéaux
premiers.
\end{scho}

%
\subsection{L'anneau d'un fermé de Zariski}

Si $X$ est un fermé de Zariski dans $k^d$ avec $k$ algébriquement
clos, on a vu qu'il existe un unique idéal radical $I$
de $k[t_1,\ldots,t_d]$, à savoir l'idéal $I = \mathfrak{I}(X)$ des
polynômes s'annulant sur $X$, tel que $X = Z(I)$.  Le quotient
$k[t_1,\ldots,t_d] / I$ (qui est donc un anneau réduit, et intègre ssi
$X$ est irréductible) s'appelle l'\emph{anneau des fonctions
  régulières} sur $X$ et se note $\mathcal{O}(X)$.

Pourquoi fonctions régulières ?  On peut considérer un élément $f \in
\mathcal{O}(X)$ comme une fonction $X \to k$ de la façon suivante : si
$\tilde f \in k[t_1,\ldots,t_d]$ est un représentant de $f$
(modulo $I$) et si $x = (x_1,\ldots,x_d) \in X$, la valeur de $\tilde
f(x_1,\ldots,x_d)$ ne dépend pas du choix de $\tilde f$ représentant
$f$ puisque tout élément de $I$ s'annule en $x$ ; on peut donc appeler
$f(x)$ cette valeur.  Inversement, un $f \in \mathcal{O}(X)$ est
complètement déterminé par sa valeur sur chaque point $x$ de $X$
(rappel : $k$ est algébriquement clos ici, et c'est important !) ; en
effet, si $f$ s'annule en tout $x \in X$, tout élément de
$k[t_1,\ldots,t_d]$ représentant $f$ s'annule en tout $x \in X$,
c'est-à-dire appartient à $\mathfrak{I}(X)$, ce qui signifie justement
$f = 0$ dans $\mathcal{O}(X)$.  Moralité : on peut bien considérer les
éléments de $\mathcal{O}(X)$ comme des fonctions.  Ces fonctions sont,
tout simplement, \emph{les restrictions à $X$ des fonctions
  polynomiales sur l'espace affine $\mathbb{A}^d$}.

Dans le cas où $X = \mathbb{A}^d = k^d$ tout entier (donc $I = (0)$),
évidemment, $\mathcal{O}(\mathbb{A}^d) = k[t_1,\ldots,t_d]$.

On définit un \textbf{fermé de Zariski de $X$} comme un fermé de
Zariski de $k^d$ qui se trouve être inclus dans $X$.  La bonne
nouvelle est que la correspondance entre fermés de Zariski de $k^d$ et
idéaux de $k[t_1,\ldots,t_d]$ se généralise presque mot pour mot à une
correspondance entre fermés de Zariski de $X$ et idéaux
de $\mathcal{O}(X)$ :

\begin{prop}
Avec les notations ci-dessus :
\begin{itemize}
\item Tout fermé de Zariski de $X$ est de la forme $Z(\mathscr{F}) :=
  \{x\in X :\penalty0 {(\forall f\in \mathscr{F})}\penalty100\, f(x) =
  0\}$ pour un certain ensemble $\mathscr{F}$ d'éléments
  de $\mathcal{O}(X)$.
\item En posant $\mathfrak{I}(E) := \{f\in \mathcal{O}(X) :\penalty0
  {(\forall x\in E)}\penalty100\, f(x)=0\}$, les fonctions $I \mapsto
  Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
  réci\-proques, décroissantes pour l'inclusion, entre les idéaux
  radicaux de $\mathcal{O}(X)$ d'une part, et les fermés de Zariski de
  $X$ d'autre part : on a $\mathfrak{I}(Z(I)) = \surd I$ pour tout
  idéal $I$ de $\mathcal{O}(X)$.
\item Ces bijections mettent les \emph{points} (c'est-à-dire les
  singletons) de $X$ en correspondance avec les idéaux maximaux de
  $\mathcal{O}(X)$ (qui sont donc tous de la forme $\mathfrak{m}_x :=
  \{f \in \mathcal{O}(X) : f(x)=0\}$ pour un $x\in X$) ; et les
  \emph{fermés irréductibles} en correspondance avec les idéaux
  premiers.
\end{itemize}
\end{prop}

\smallbreak

Soulignons en particulier que si $X'$ est un fermé de Zariski de $X$
(disons défini comme $X' = Z(I)$ où $I$ est un idéal radical
de $\mathcal{O}(X)$), alors la surjection canonique $\mathcal{O}(X)
\to \mathcal{O}(X)/I$ est un morphisme d'anneaux $\mathcal{O}(X) \to
\mathcal{O}(X')$ qu'il faut interpréter comme envoyant une fonction
régulière $f$ sur $X$ sur sa \emph{restriction} à $X'$, parfois
notée $f|_{X'}$.

%
\subsection{Variétés algébriques affines, morphismes}

On appelle provisoirement \textbf{variété algébrique affine}
dans $k^d$ (toujours avec $k$ algébriquement clos) un fermé de Zariski
$X$ de $k^d$.  Pourquoi cette terminologie redondante ?  Le terme
« fermé de Zariski » insiste sur $X$ en tant que plongée dans l'espace
affine $\mathbb{A}^d$.  Le terme de « variété algébrique affine »
insiste sur l'aspect intrinsèque de $X$, muni de ses propres fermés de
Zariski et de ses propres fonctions régulières, qu'on va maintenant
présenter.  On a vu ci-dessus comment associer à $X$ un anneau
$\mathcal{O}(X)$ des fonctions régulières, qui coïncide avec
l'ensemble des fonctions $X \to k$ qui sont restrictions de fonctions
polynomiales sur $k^d$.

On appelle \textbf{morphisme de variétés algébriques affines} entre un
fermé de Zariski $X \subseteq k^d$ et un fermé de Zariski $Y \subseteq
k^e$ une application $X \to Y$ telle que chacune des $e$ coordonnées à
l'arrivée soit une fonction régulière sur $X$.  Autrement dit, il
s'agit de la donnée de $e$ éléments $f_1,\ldots,f_e$ de
$\mathcal{O}(X)$ tels que $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout $x
\in X$.
\begin{prop}
Si $X = Z(I) \subseteq k^d$ et $Y = Z(J) \subseteq k^e$, et si
$(f_1,\ldots,f_e) \in \mathcal{O}(X)$, alors $f = (f_1,\ldots,f_e)$
définit un morphisme $X\to Y$ (autrement dit $(f_1(x),\ldots,f_e(x))
\in Y$ pour tout $x \in X$) \emph{si et seulement si}
$h(f_1,\ldots,f_e) = 0$ (vu comme élément de $\mathcal{O}(X)$) pour
tout $h \in J$.
\end{prop}
\begin{proof}
Il y a équivalence entre :
\begin{itemize}
\item $h(f_1,\ldots,f_e) = 0$ dans $\mathcal{O}(Y)$ pour tout $h \in J$,
\item $h(f_1(x),\ldots,f_e(x)) = 0$ pour tout $h \in J$ et $x \in X$, et
\item $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout $x \in X$.
\end{itemize}
(L'équivalence entre les deux premières affirmations vient du fait que
pour $g\in \mathcal{O}(X)$, ici $g = h(f_1,\ldots,f_e)$, on a $g=0$ si
et seulement si $g(x)=0$ pour tout $x\in X$.  L'équivalence entre les
deux dernières vient du fait que $(y_1,\ldots,y_e) \in Y$ si et
seulement si $h(y_1,\ldots,y_e) = 0$ pour tout $h \in J$ par
définition de $Y = Z(J)$.)
\end{proof}

Remarquons en particulier que les fonctions régulières sur $X$
(c'est-à-dire les éléments de $\mathcal{O}(X)$) peuvent se voir comme
des morphismes $X \to \mathbb{A}^1$ de $X$ vers la droite affine.

Remarquons par ailleurs que les morphismes de variétés algébriques se
composent : donnés deux morphismes $X \to Y$ et $Y \to Z$, on peut
définir un morphisme $X \to Z$ en composant les applications.

Lorsque $f \colon X \to Y$ est un morphisme comme ci-dessus, on
définit $f^* \colon \mathcal{O}(Y) \to \mathcal{O}(X)$ de la façon
suivante : si $h \in \mathcal{O}(Y)$ est une fonction régulière vue
comme un morphisme $Y \to \mathbb{A}^1$, on définit $f^*(h) \in
\mathcal{O}(X)$ comme la fonction régulière donnée par le morphisme
composé $h\circ f \colon X \to \mathbb{A}^1$.  (Autrement dit, $f^*$
est l'application de composition à droite par $f$.)

\begin{prop}
Si $X \subseteq \mathbb{A}^d$ et $Y \subseteq \mathbb{A}^e$ sont deux
variétés algébriques affines, la correspondance $f \mapsto f^*$
définie ci-dessus définit une bijection entre les morphismes $X \to Y$
de variétés algébriques affines et les morphismes $\mathcal{O}(Y) \to
\mathcal{O}(X)$ de $k$-algèbres.
\end{prop}
\begin{proof}
Si les indéterminées $u_1,\ldots,u_e$ sont les $e$ coordonnées sur
$\mathbb{A}^e$, alors les classes de $u_1,\ldots,u_e$ définissent des
éléments de $\mathcal{O}(Y)$ : si $f \colon X \to Y$ est un morphisme
de variétés algébriques, alors les fonctions $f_1,\ldots,f_e \in
\mathcal{O}(X)$ le définissant sont simplement les images par $f^*$ de
ces éléments.  Ceci montre que $f^*$ permet de retrouver $f$ (la
correspondance $f \mapsto f^*$ est injective).  Et si $\psi \colon
\mathcal{O}(Y) \to \mathcal{O}(X)$ est un morphisme quelconque, alors
en définissant $f_1,\ldots,f_e$ comme les images de $u_1,\ldots,u_e
\in \mathcal{O}(Y)$ par $\psi$, on a $h(f_1,\ldots,f_e) = 0$ dans
$\mathcal{O}(Y)$ pour tout $h \in J$ (puisque $h(u_1,\ldots,u_e) = 0$
dans $\mathcal{O}(Y)$) donc $f_1,\ldots,f_e$ définissent bien un
morphisme $X \to Y$.
\end{proof}



%
%
%
\end{document}