From 859fab9a347ae412ee934b81941504de803dd7fd Mon Sep 17 00:00:00 2001 From: "David A. Madore" Date: Wed, 12 Apr 2023 19:06:19 +0200 Subject: Write final exercise. --- controle-20230417.tex | 177 +++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 175 insertions(+), 2 deletions(-) (limited to 'controle-20230417.tex') diff --git a/controle-20230417.tex b/controle-20230417.tex index 1ce23ea..34925af 100644 --- a/controle-20230417.tex +++ b/controle-20230417.tex @@ -104,9 +104,9 @@ Durée : 2h Barème \emph{indicatif} : \textcolor{red}{XXX}. \ifcorrige -Ce corrigé comporte \textcolor{red}{XXX} pages (page de garde incluse). +Ce corrigé comporte 8 pages (page de garde incluse). \else -Cet énoncé comporte \textcolor{red}{XXX} pages (page de garde incluse). +Cet énoncé comporte 4 pages (page de garde incluse). \fi \vfill @@ -596,6 +596,179 @@ revenir en arrière), et notamment, elle n'est pas d'image finie. \end{corrige} +% +% +% + +\exercice + +On considère une variante \emph{à somme (possiblement) non-nulle} de +Pierre-Papier-Ciseaux, à savoir le jeu en forme normale défini par la +matrice de gain suivante : +\begin{center} +\begin{tabular}{r|ccc} +$\downarrow$Alice, Bob$\rightarrow$&$U$&$V$&$W$\\\hline +$U$&$x,x$&$-1,+1$&$+1,-1$\\ +$V$&$+1,-1$&$x,x$&$-1,+1$\\ +$W$&$-1,+1$&$+1,-1$&$x,x$\\ +\end{tabular} +\end{center} +où $x$ est un réel et, pour plus de commodité, on a écrit $U$ pour +« Pierre », $V$ pour « Papier » et $W$ pour « Ciseaux ». Le but de +l'exercice est d'étudier les équilibres de Nash de ce jeu. + +(On prendra bien note, pour simplifier les raisonnements en cas, du +fait que les options ont une symétrie cyclique\footnote{C'est-à-dire + que remplacer $U$ par $V$ et $V$ par $W$ et $W$ par $U$ ne change + rien au jeu.}, et que les joueurs ont eux aussi des rôles +symétriques.) + +(1) Considérons le profil de stratégies mixtes dans lequel les deux +joueurs choisissent chacun chaque option avec probabilité +$\frac{1}{3}$ (on rappelle que c'est ça la stratégie optimale dans le +cas à somme nulle). Pour quelle(s) valeur(s) de $x$ ce profil est-il +un équilibre de Nash ? + +\begin{corrige} +Pour des raisons de symétrie, si l'un des joueurs joue cette stratégie +mixte $\frac{1}{3}U + \frac{1}{3}V + \frac{1}{3}W$, le gain espéré de +chacun des deux joueurs est le même quelle que soit la stratégie pure, +donc aussi mixte, de l'autre joueur. Cette valeur se calcule +d'ailleurs aisément (comme somme des trois colonnes, ou des trois +lignes, de la matrice de gains, affectées des +coefficients $\frac{1}{3}$) : c'est $\frac{1}{3}x$ ; mais la seule +chose qui importe est que l'adversaire ait le même gain espéré quelle +que soit la stratégie pure, donc aussi mixte, qu'il choisit : il n'a +donc pas intérêt à changer unilatéralement sa stratégie. Il s'agit +donc \emph{toujours} d'un équilibre de Nash, quelle que soit la valeur +de $x$. +\end{corrige} + +\emph{On suppose dorénavant que $x<-1$.} + +(2) Existe-t-il un équilibre de Nash dans lequel Alice joue purement +$U$ (Pierre) ? (On raisonnera sur le support de la stratégie de Bob +en réponse.) En déduire tous les équilibres de Nash dans lesquels au +moins un joueur joue une stratégie pure. + +\begin{corrige} +Si Alice joue purement $U$, les gains de Bob pour les différentes +stratégies pures de sa réponse sont $x$ pour $U$, $+1$ pour $V$ et +$-1$ pour $W$ d'après la matrice de gains. Comme $+1 > -1 > x$, la +seule option qui peut faire partie du support d'une meilleure réponse +de Bob est $V$, autrement dit, si Alice joue purement $U$ dans un +équilibre de Nash, Bob répond forcément purement $V$. Mais par le +même raisonnement (compte tenu de la symétrie cyclique des options et +de la symétrie des joueurs), si Bob joue purement $V$, Alice répond +purement $W$. Il ne peut donc pas y avoir d'équilibre de Nash dans +lequel Alice joue purement $U$. Et de nouveau par symétrie cyclique +des options et symétrie des joueurs, il ne peut y avoir aucun +équilibre de Nash dans lequel un joueur jouerait une stratégie pure. +\end{corrige} + +(3) Dans cette question et la suivante, envisageons un équilibre de +Nash dans lequel Alice joue une stratégie mixte $pU + (1-p)V$ avec +$0 1$ +lorsque $-30$, $p'>0$ et +$1-p-p'>0$ et Bob répond par une stratégie ayant elle aussi +$\{U,V,W\}$ comme support. Écrire un système de deux équations +linéaires sur $p,p'$, justifier que ce système est non-dégéné et +conclure. + +\begin{corrige} +Si Alice joue $pU + p'V + (1-p-p')W$, les gains espérés de Bob pour +les différences stratégies pures de sa réponse sont $px - p' + +(1-p-p') = 1 + (x-1)p - 2p'$ pour $U$, $p + p' x - (1-p-p') = -1 + 2p ++ (x+1)p'$ pour $V$ et $-p + p' + (1-p-p')x = x -(x+1)p - +(x-1)p'$ pour $W$. Si une meilleure réponse de Bob a $\{U,V,W\}$ +comme support, ces trois options doivent apporter le même gain espéré, +c'est-à-dire que $1 + (x-1)p - 2p' = -1 + 2p + (x+1)p' = x -(x+1)p - +(x-1)p'$, ou (en soustrayant, disons, le premier membre aux deux +autres) : +\[ +\begin{aligned} +-(x-3)p + (x+3)p' &= 2\\ +- 2xp - (x-3)p' &= -(x-1) +\end{aligned} +\] +Le déterminant de ce système est $(x-3)^2 + 2x(x+3) = 3(x^2+3)$ qui +est non nul quel que soit $x$, donc le système est non-dégénéré : la +solution $p=p'=\frac{1}{3}$ trouvée en (1) est donc la seule solution. + +Bref, on a montré que le seul équilibre de Nash dans lequel les +supports des stratégies d'Alice et Bob sont $\{U,V,W\}$ est celui +décrit en (1) ; comme on a vu en (5) que ceci est la seule possibilité +de support, il s'agit du seul équilibre de Nash du jeu. +\end{corrige} + + + + % % -- cgit v1.2.3