%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{makeidx}
%% Self-note: compile index with:
%% xindy -M texindy -C utf8 -L french notes-mitro206.idx
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix,calc}
\usepackage{hyperref}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newcommand\exercice{%
\refstepcounter{comcnt}\bigbreak\noindent\textbf{Exercice~\thecomcnt.}}
\renewcommand{\qedsymbol}{\smiley}
%
\newcommand{\outnb}{\operatorname{outnb}}
\newcommand{\downstr}{\operatorname{downstr}}
\newcommand{\precs}{\operatorname{precs}}
\newcommand{\mex}{\operatorname{mex}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\limp}{\Longrightarrow}
\newcommand{\gr}{\operatorname{gr}}
\newcommand{\rk}{\operatorname{rk}}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
\newif\ifcorrige
\corrigetrue
\newenvironment{corrige}%
{\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi%
\smallbreak\noindent{\underbar{\textit{Corrigé.}}\quad}}
{{\hbox{}\nobreak\hfill\checkmark}%
\ifcorrige\relax\else\egroup\fi\par}
%
%
%
\begin{document}
\title{Exercices sur les ordinaux}
\author{David A. Madore}
\maketitle

\centerline{\textbf{MITRO206}}

{\footnotesize
\immediate\write18{sh ./vc > vcline.tex}
\begin{center}
Git: \input{vcline.tex}
\end{center}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}

\pretolerance=8000
\tolerance=50000



%
%
%

\exercice

\newcommand{\spaceout}{\hskip1emplus2emminus.5em}

Ranger les ordinaux suivants par ordre croissant :
\spaceout $\omega^{\omega+1} + \omega^\omega\cdot 33$ ;
\spaceout $\omega\cdot 3 + 42$ ;
\spaceout $\omega^{\omega+1} + \omega + 33$ ;
\spaceout $\omega^{\omega+2} + \omega^\omega$ ;
\spaceout $\omega^2\cdot 42 + 1000$ ;
\spaceout $\omega^2 + \omega$ ;
\spaceout $\omega^2\cdot 42 + \omega$ ;
\spaceout $\omega^{\omega^2 + 1}$ ;
\spaceout $\omega^{\omega^{(\omega\cdot 2)}}$ ;
\spaceout $\omega^{\omega^\omega} + 1$ ;
\spaceout $\omega^{\omega+1} + \omega\cdot 33$ ;
\spaceout $\omega^{\omega^2}$ ;
\spaceout $\omega^{\omega^2 + 1} + \omega^{\omega\cdot 2}\cdot 1000$ ;
\spaceout $\omega^{\omega^2 + \omega}$ ;
\spaceout $\omega\cdot 3$ ;
\spaceout $\omega^{(\omega^\omega\cdot 2)}$ ;
\spaceout $\omega^{\omega^3}$ ;
\spaceout $\omega^{\omega+1} + 1000$ ;
\spaceout $\omega^{\omega+2}$ ;
\spaceout $\omega^{\omega+1}\cdot 2$ ;
\spaceout $\omega\cdot 2 + 1729$ ;
\spaceout $\omega^2 + 1000$ ;
\spaceout $42$ ;
\spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2 + 1}$ ;
\spaceout $\omega^{\omega\cdot 2}\cdot 1000$ ;
\spaceout $\omega^2\cdot 42$ ;
\spaceout $\omega^{\omega+1} + \omega^2\cdot 33$ ;
\spaceout $\omega^2$ ;
\spaceout $\omega$ ;
\spaceout $\omega^{\omega+1}$ ;
\spaceout $\omega^{\omega^2 + 1} + \omega^{\omega^2}\cdot 42$ ;
\spaceout $\omega^{\omega\cdot 2} + \omega^{\omega+2}$ ;
\spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2} + \omega^{\omega+1}$ ;
\spaceout $\omega^{\omega^{(\omega^2)}}$ ;
\spaceout $\omega^{\omega^2 + 1}\cdot 2$ ;
\spaceout $\omega^2 + \omega\cdot 42$ ;
\spaceout $\omega + 42$ ;
\spaceout $\omega^{\omega^2\cdot 2}$ ;
\spaceout $\omega^{\omega\cdot 2 + 42}$ ;
\spaceout $\omega^{\omega\cdot 2}$ ;
\spaceout $\omega\cdot 2$ ;
\spaceout $\omega^{\omega+1} + \omega^2 + 33$ ;
\spaceout $\omega^{\omega^{(\omega+1)}}$ ;
\spaceout $\omega^\omega$ ;
\spaceout $\omega^{\omega^2 + \omega + 1}$ ;
\spaceout $\omega^{\omega^\omega}\cdot 2$ ;
\spaceout $\omega^{\omega^\omega}$ ;
\spaceout $0$ ;
\spaceout $\omega^{\omega^2} + \omega^{\omega+1}$ ;
\spaceout $\omega^{(\omega^\omega + 1)}$.

\begin{corrige}
On vérifie que tous ces ordinaux sont écrits en forme normale de
Cantor (et les exposants de $\omega$ aussi, etc.).  On les compare
donc en comparant à chaque fois la plus grande puissance de $\omega$.

Dans l'ordre croissant : \spaceout $0$ ;
\spaceout $42$ ;
\spaceout $\omega$ ;
\spaceout $\omega + 42$ ;
\spaceout $\omega\cdot 2$ ;
\spaceout $\omega\cdot 2 + 1729$ ;
\spaceout $\omega\cdot 3$ ;
\spaceout $\omega\cdot 3 + 42$ ;
\spaceout $\omega^2$ ;
\spaceout $\omega^2 + 1000$ ;
\spaceout $\omega^2 + \omega$ ;
\spaceout $\omega^2 + \omega\cdot 42$ ;
\spaceout $\omega^2\cdot 42$ ;
\spaceout $\omega^2\cdot 42 + 1000$ ;
\spaceout $\omega^2\cdot 42 + \omega$ ;
\spaceout $\omega^\omega$ ;
\spaceout $\omega^{\omega+1}$ ;
\spaceout $\omega^{\omega+1} + 1000$ ;
\spaceout $\omega^{\omega+1} + \omega + 33$ ;
\spaceout $\omega^{\omega+1} + \omega\cdot 33$ ;
\spaceout $\omega^{\omega+1} + \omega^2 + 33$ ;
\spaceout $\omega^{\omega+1} + \omega^2\cdot 33$ ;
\spaceout $\omega^{\omega+1} + \omega^\omega\cdot 33$ ;
\spaceout $\omega^{\omega+1}\cdot 2$ ;
\spaceout $\omega^{\omega+2}$ ;
\spaceout $\omega^{\omega+2} + \omega^\omega$ ;
\spaceout $\omega^{\omega\cdot 2}$ ;
\spaceout $\omega^{\omega\cdot 2} + \omega^{\omega+2}$ ;
\spaceout $\omega^{\omega\cdot 2}\cdot 1000$ ;
\spaceout $\omega^{\omega\cdot 2 + 42}$ ;
\spaceout $\omega^{\omega^2}$ ;
\spaceout $\omega^{\omega^2} + \omega^{\omega+1}$ ;
\spaceout $\omega^{\omega^2 + 1}$ ;
\spaceout $\omega^{\omega^2 + 1} + \omega^{\omega\cdot 2}\cdot 1000$ ;
\spaceout $\omega^{\omega^2 + 1} + \omega^{\omega^2}\cdot 42$ ;
\spaceout $\omega^{\omega^2 + 1}\cdot 2$ ;
\spaceout $\omega^{\omega^2 + \omega}$ ;
\spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2} + \omega^{\omega+1}$ ;
\spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2 + 1}$ ;
\spaceout $\omega^{\omega^2 + \omega + 1}$ ;
\spaceout $\omega^{\omega^2\cdot 2}$ ;
\spaceout $\omega^{\omega^3}$ ;
\spaceout $\omega^{\omega^\omega}$ ;
\spaceout $\omega^{\omega^\omega} + 1$ ;
\spaceout $\omega^{\omega^\omega}\cdot 2$ ;
\spaceout $\omega^{(\omega^\omega + 1)}$ ;
\spaceout $\omega^{(\omega^\omega\cdot 2)}$ ;
\spaceout $\omega^{\omega^{(\omega+1)}}$ ;
\spaceout $\omega^{\omega^{(\omega\cdot 2)}}$ ; et enfin
\spaceout $\omega^{\omega^{(\omega^2)}}$.
\end{corrige}



%
%
%

\exercice

(a) Que vaut $(\omega+1) + (\omega+1)$ ?

(b) Plus généralement, que vaut $(\omega+1) + \cdots + (\omega+1)$
avec $n$ termes $\omega+1$ (où $n$ est un entier naturel $\geq 1$) ?

(c) En déduire ce que vaut $(\omega+1)\cdot n$.

(d) En déduire ce que vaut $(\omega+1)\cdot \omega$.

(e) En déduire ce que vaut $(\omega+1)\cdot(\omega+1)$.

(f) En déduire ce que vaut $(\omega+1)^2$.

\begin{corrige}
(a) On a $(\omega+1) + (\omega+1) = \omega + 1 + \omega + 1 = \omega +
  (1 + \omega) + 1 = \omega + \omega + 1 = \omega\cdot 2 + 1$.

(b) En procédant de même, on voit que dans la somme de $n$ termes
  $\omega + 1$, chaque $1$ est absorbé par le $\omega$ qui
  \emph{suit}, sauf le dernier $1$ qui demeure : la somme vaut
  donc $\omega\cdot n + 1$.

(c) Quel que soit l'ordinal $\alpha$, la somme $\alpha + \cdots +
  \alpha$ avec $n$ termes $\alpha$ vaut $\alpha\cdot n$ (ceci se voit
  soit par une récurrence immédiate sur $n$ avec la définition par
  induction de la multiplication, soit en utilisant la distributivité
  à droite, c'est-à-dire $\alpha\cdot n = \alpha\cdot(1 + \cdots + 1)
  = \alpha + \cdots + \alpha$).  On a donc $(\omega+1)\cdot n =
  \omega\cdot n + 1$.

(d) L'ordinal $(\omega+1)\cdot \omega$ est donc la limite des
  $(\omega+1)\cdot n = \omega\cdot n + 1$ pour $n\to\omega$.  Cette
  limite vaut $\omega^2$ : en effet, $\omega^2 \geq \omega\cdot n + 1$
  pour chaque $n<\omega$, mais inversement, si $\gamma < \omega^2$, on
  a $\gamma < \omega\cdot n$ pour un certain $n$ (par exemple en
  utilisant le fait que $\omega^2 = \omega\cdot\omega$ est elle-même
  la limite des $\omega\cdot n$, c'est-à-dire le plus petit ordinal
  supérieur ou égal à eux), et en particulier $\gamma < \omega\cdot n
  + 1$ ; ou, si on préfère, $\omega\cdot n \leq \omega\cdot n + 1 \leq
  \omega\cdot (n + 1)$ où $\omega\cdot n$ et $\omega\cdot (n+1)$ ont
  la même limite $\omega^2$, d'où il résulte que $\omega\cdot n + 1$
  aussi.

(e) On a $(\omega+1)\cdot (\omega+1) = (\omega+1)\cdot \omega + \omega
  + 1 = \omega^2 + \omega + 1$.

(f) On a toujours $\alpha^2 = \alpha\cdot\alpha$, donc $(\omega+1)^2 =
  \omega^2 + \omega + 1$ comme on vient de le montrer.
\end{corrige}



%
%
%

\exercice

On dit qu'un ordinal $\alpha$ est \textbf{infini} lorsque
$\alpha\geq\omega$.  Montrer qu'un ordinal est infini si et seulement
si $1+\alpha = \alpha$.

\begin{corrige}
Si $\alpha$ est infini, on a $\alpha \geq \omega$, donc il existe un
unique ordinal $\beta$ tel que $\alpha = \omega + \beta$.  On a alors
$1 + \alpha = 1 + (\omega + \beta) = (1 + \omega) + \beta = \omega +
\beta = \alpha$.

Si, en revanche, $\alpha$ est fini, c'est-à-dire $\alpha < \omega$,
alors $\alpha$ est un entier naturel, et comme l'addition ordinale sur
les entiers naturels coïncide avec l'addition usuelle sur ceux-ci, on
a $1 + \alpha > \alpha$.
\end{corrige}


%
%
%
\end{document}