%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it? \documentclass[12pt,a4paper]{article} \usepackage[francais]{babel} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} %\usepackage{ucs} \usepackage{times} % A tribute to the worthy AMS: \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} % \usepackage{mathrsfs} \usepackage{wasysym} \usepackage{url} % \usepackage{makeidx} %% Self-note: compile index with: %% xindy -M texindy -C utf8 -L french notes-mitro206.idx % \usepackage{graphics} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{tikz} \usetikzlibrary{matrix,calc} \usepackage{hyperref} % \theoremstyle{definition} \newtheorem{comcnt}{Tout} \newcommand\thingy{% \refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} } \newcommand\exercice{% \refstepcounter{comcnt}\bigbreak\noindent\textbf{Exercice~\thecomcnt.}} \renewcommand{\qedsymbol}{\smiley} % \newcommand{\outnb}{\operatorname{outnb}} \newcommand{\downstr}{\operatorname{downstr}} \newcommand{\precs}{\operatorname{precs}} \newcommand{\mex}{\operatorname{mex}} \newcommand{\id}{\operatorname{id}} \newcommand{\limp}{\Longrightarrow} \newcommand{\gr}{\operatorname{gr}} \newcommand{\rk}{\operatorname{rk}} % \DeclareUnicodeCharacter{00A0}{~} % \DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C} \DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D} % \DeclareFontFamily{U}{manual}{} \DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{} \newcommand{\manfntsymbol}[1]{% {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}} \newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped \newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2% \hbox to0pt{\hskip-\hangindent\dbend\hfill}} % \newif\ifcorrige \corrigetrue \newenvironment{corrige}% {\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi% \smallbreak\noindent{\underbar{\textit{Corrigé.}}\quad}} {{\hbox{}\nobreak\hfill\checkmark}% \ifcorrige\relax\else\egroup\fi\par} % % % \begin{document} \title{Exercices sur les ordinaux} \author{David A. Madore} \maketitle \centerline{\textbf{MITRO206}} {\footnotesize \immediate\write18{sh ./vc > vcline.tex} \begin{center} Git: \input{vcline.tex} \end{center} \immediate\write18{echo ' (stale)' >> vcline.tex} \par} \pretolerance=8000 \tolerance=50000 % % % \exercice \newcommand{\spaceout}{\hskip1emplus2emminus.5em} Ranger les ordinaux suivants par ordre croissant : \spaceout $\omega^{\omega+1} + \omega^\omega\cdot 33$ ; \spaceout $\omega\cdot 3 + 42$ ; \spaceout $\omega^{\omega+1} + \omega + 33$ ; \spaceout $\omega^{\omega+2} + \omega^\omega$ ; \spaceout $\omega^2\cdot 42 + 1000$ ; \spaceout $\omega^2 + \omega$ ; \spaceout $\omega^2\cdot 42 + \omega$ ; \spaceout $\omega^{\omega^2 + 1}$ ; \spaceout $\omega^{\omega^{(\omega\cdot 2)}}$ ; \spaceout $\omega^{\omega^\omega} + 1$ ; \spaceout $\omega^{\omega+1} + \omega\cdot 33$ ; \spaceout $\omega^{\omega^2}$ ; \spaceout $\omega^{\omega^2 + 1} + \omega^{\omega\cdot 2}\cdot 1000$ ; \spaceout $\omega^{\omega^2 + \omega}$ ; \spaceout $\omega\cdot 3$ ; \spaceout $\omega^{(\omega^\omega\cdot 2)}$ ; \spaceout $\omega^{\omega^3}$ ; \spaceout $\omega^{\omega+1} + 1000$ ; \spaceout $\omega^{\omega+2}$ ; \spaceout $\omega^{\omega+1}\cdot 2$ ; \spaceout $\omega\cdot 2 + 1729$ ; \spaceout $\omega^2 + 1000$ ; \spaceout $42$ ; \spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2 + 1}$ ; \spaceout $\omega^{\omega\cdot 2}\cdot 1000$ ; \spaceout $\omega^2\cdot 42$ ; \spaceout $\omega^{\omega+1} + \omega^2\cdot 33$ ; \spaceout $\omega^2$ ; \spaceout $\omega$ ; \spaceout $\omega^{\omega+1}$ ; \spaceout $\omega^{\omega^2 + 1} + \omega^{\omega^2}\cdot 42$ ; \spaceout $\omega^{\omega\cdot 2} + \omega^{\omega+2}$ ; \spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2} + \omega^{\omega+1}$ ; \spaceout $\omega^{\omega^{(\omega^2)}}$ ; \spaceout $\omega^{\omega^2 + 1}\cdot 2$ ; \spaceout $\omega^2 + \omega\cdot 42$ ; \spaceout $\omega + 42$ ; \spaceout $\omega^{\omega^2\cdot 2}$ ; \spaceout $\omega^{\omega\cdot 2 + 42}$ ; \spaceout $\omega^{\omega\cdot 2}$ ; \spaceout $\omega\cdot 2$ ; \spaceout $\omega^{\omega+1} + \omega^2 + 33$ ; \spaceout $\omega^{\omega^{(\omega+1)}}$ ; \spaceout $\omega^\omega$ ; \spaceout $\omega^{\omega^2 + \omega + 1}$ ; \spaceout $\omega^{\omega^\omega}\cdot 2$ ; \spaceout $\omega^{\omega^\omega}$ ; \spaceout $0$ ; \spaceout $\omega^{\omega^2} + \omega^{\omega+1}$ ; \spaceout $\omega^{(\omega^\omega + 1)}$. \begin{corrige} On vérifie que tous ces ordinaux sont écrits en forme normale de Cantor (et les exposants de $\omega$ aussi, etc.). On les compare donc en comparant à chaque fois la plus grande puissance de $\omega$. Dans l'ordre croissant : \spaceout $0$ ; \spaceout $42$ ; \spaceout $\omega$ ; \spaceout $\omega + 42$ ; \spaceout $\omega\cdot 2$ ; \spaceout $\omega\cdot 2 + 1729$ ; \spaceout $\omega\cdot 3$ ; \spaceout $\omega\cdot 3 + 42$ ; \spaceout $\omega^2$ ; \spaceout $\omega^2 + 1000$ ; \spaceout $\omega^2 + \omega$ ; \spaceout $\omega^2 + \omega\cdot 42$ ; \spaceout $\omega^2\cdot 42$ ; \spaceout $\omega^2\cdot 42 + 1000$ ; \spaceout $\omega^2\cdot 42 + \omega$ ; \spaceout $\omega^\omega$ ; \spaceout $\omega^{\omega+1}$ ; \spaceout $\omega^{\omega+1} + 1000$ ; \spaceout $\omega^{\omega+1} + \omega + 33$ ; \spaceout $\omega^{\omega+1} + \omega\cdot 33$ ; \spaceout $\omega^{\omega+1} + \omega^2 + 33$ ; \spaceout $\omega^{\omega+1} + \omega^2\cdot 33$ ; \spaceout $\omega^{\omega+1} + \omega^\omega\cdot 33$ ; \spaceout $\omega^{\omega+1}\cdot 2$ ; \spaceout $\omega^{\omega+2}$ ; \spaceout $\omega^{\omega+2} + \omega^\omega$ ; \spaceout $\omega^{\omega\cdot 2}$ ; \spaceout $\omega^{\omega\cdot 2} + \omega^{\omega+2}$ ; \spaceout $\omega^{\omega\cdot 2}\cdot 1000$ ; \spaceout $\omega^{\omega\cdot 2 + 42}$ ; \spaceout $\omega^{\omega^2}$ ; \spaceout $\omega^{\omega^2} + \omega^{\omega+1}$ ; \spaceout $\omega^{\omega^2 + 1}$ ; \spaceout $\omega^{\omega^2 + 1} + \omega^{\omega\cdot 2}\cdot 1000$ ; \spaceout $\omega^{\omega^2 + 1} + \omega^{\omega^2}\cdot 42$ ; \spaceout $\omega^{\omega^2 + 1}\cdot 2$ ; \spaceout $\omega^{\omega^2 + \omega}$ ; \spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2} + \omega^{\omega+1}$ ; \spaceout $\omega^{\omega^2 + \omega} + \omega^{\omega^2 + 1}$ ; \spaceout $\omega^{\omega^2 + \omega + 1}$ ; \spaceout $\omega^{\omega^2\cdot 2}$ ; \spaceout $\omega^{\omega^3}$ ; \spaceout $\omega^{\omega^\omega}$ ; \spaceout $\omega^{\omega^\omega} + 1$ ; \spaceout $\omega^{\omega^\omega}\cdot 2$ ; \spaceout $\omega^{(\omega^\omega + 1)}$ ; \spaceout $\omega^{(\omega^\omega\cdot 2)}$ ; \spaceout $\omega^{\omega^{(\omega+1)}}$ ; \spaceout $\omega^{\omega^{(\omega\cdot 2)}}$ ; et enfin \spaceout $\omega^{\omega^{(\omega^2)}}$. \end{corrige} % % % \exercice (a) Que vaut $(\omega+1) + (\omega+1)$ ? (b) Plus généralement, que vaut $(\omega+1) + \cdots + (\omega+1)$ avec $n$ termes $\omega+1$ (où $n$ est un entier naturel $\geq 1$) ? (c) En déduire ce que vaut $(\omega+1)\cdot n$. (d) En déduire ce que vaut $(\omega+1)\cdot \omega$. (e) En déduire ce que vaut $(\omega+1)\cdot(\omega+1)$. (f) En déduire ce que vaut $(\omega+1)^2$. \begin{corrige} (a) On a $(\omega+1) + (\omega+1) = \omega + 1 + \omega + 1 = \omega + (1 + \omega) + 1 = \omega + \omega + 1 = \omega\cdot 2 + 1$. (b) En procédant de même, on voit que dans la somme de $n$ termes $\omega + 1$, chaque $1$ est absorbé par le $\omega$ qui \emph{suit}, sauf le dernier $1$ qui demeure : la somme vaut donc $\omega\cdot n + 1$. (c) Quel que soit l'ordinal $\alpha$, la somme $\alpha + \cdots + \alpha$ avec $n$ termes $\alpha$ vaut $\alpha\cdot n$ (ceci se voit soit par une récurrence immédiate sur $n$ avec la définition par induction de la multiplication, soit en utilisant la distributivité à droite, c'est-à-dire $\alpha\cdot n = \alpha\cdot(1 + \cdots + 1) = \alpha + \cdots + \alpha$). On a donc $(\omega+1)\cdot n = \omega\cdot n + 1$. (d) L'ordinal $(\omega+1)\cdot \omega$ est donc la limite des $(\omega+1)\cdot n = \omega\cdot n + 1$ pour $n\to\omega$. Cette limite vaut $\omega^2$ : en effet, $\omega^2 \geq \omega\cdot n + 1$ pour chaque $n<\omega$, mais inversement, si $\gamma < \omega^2$, on a $\gamma < \omega\cdot n$ pour un certain $n$ (par exemple en utilisant le fait que $\omega^2 = \omega\cdot\omega$ est elle-même la limite des $\omega\cdot n$, c'est-à-dire le plus petit ordinal supérieur ou égal à eux), et en particulier $\gamma < \omega\cdot n + 1$ ; ou, si on préfère, $\omega\cdot n \leq \omega\cdot n + 1 \leq \omega\cdot (n + 1)$ où $\omega\cdot n$ et $\omega\cdot (n+1)$ ont la même limite $\omega^2$, d'où il résulte que $\omega\cdot n + 1$ aussi. (e) On a $(\omega+1)\cdot (\omega+1) = (\omega+1)\cdot \omega + \omega + 1 = \omega^2 + \omega + 1$. (f) On a toujours $\alpha^2 = \alpha\cdot\alpha$, donc $(\omega+1)^2 = \omega^2 + \omega + 1$ comme on vient de le montrer. \end{corrige} % % % \exercice On dit qu'un ordinal $\alpha$ est \textbf{infini} lorsque $\alpha\geq\omega$. Montrer qu'un ordinal est infini si et seulement si $1+\alpha = \alpha$. \begin{corrige} Si $\alpha$ est infini, on a $\alpha \geq \omega$, donc il existe un unique ordinal $\beta$ tel que $\alpha = \omega + \beta$. On a alors $1 + \alpha = 1 + (\omega + \beta) = (1 + \omega) + \beta = \omega + \beta = \alpha$. Si, en revanche, $\alpha$ est fini, c'est-à-dire $\alpha < \omega$, alors $\alpha$ est un entier naturel, et comme l'addition ordinale sur les entiers naturels coïncide avec l'addition usuelle sur ceux-ci, on a $1 + \alpha > \alpha$. \end{corrige} % % % \end{document}