%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}[subsection]
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newtheorem{defn}[comcnt]{Définition}
\newtheorem{prop}[comcnt]{Proposition}
\newtheorem{lem}[comcnt]{Lemme}
\newtheorem{thm}[comcnt]{Théorème}
\newtheorem{cor}[comcnt]{Corollaire}
\newtheorem{scho}[comcnt]{Scholie}
\renewcommand{\qedsymbol}{\smiley}
%
\newcommand{\outnb}{\operatorname{outnb}}
\newcommand{\downstr}{\operatorname{downstr}}
\newcommand{\mex}{\operatorname{mex}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\limp}{\Longrightarrow}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
%
%
\begin{document}
\title{Théorie(s) des jeux\\(notes provisoires)}
\author{David A. Madore}
\maketitle

\centerline{\textbf{MITRO206}}

{\footnotesize
\immediate\write18{sh ./vc > vcline.tex}
\begin{center}
Git: \input{vcline.tex}
\end{center}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}



%
%
%

\section{Introduction et typologie}

\subsection{La notion de jeu mathématique : généralités}

\thingy Il n'est pas possible de donner une définition générale
précise de la notion de « jeu mathématique ».  On verra plus loin des
définitions précises de certains types de jeux (p. ex., les jeux
impartiaux à information parfaite), mais il n'existe pas de définition
générale utile qui s'applique à tous ces types, et à partir de
laquelle on pourrait développer une théorie intéressante.

Pire, différentes disciplines se sont développées sous le nom de
« théorie des jeux », chacune donnant une définition différente de ce
qu'est un « jeu ».  Par exemple, l'étude des jeux « en forme normale »
(=jeux définis par des matrices de gains), la théorie combinatoire des
jeux (jeux à information parfaite), la théorie des jeux logiques, la
théorie des jeux différentiels, etc.  Il n'existe donc pas une mais
plusieurs théories des jeux.

Ces différentes théories des jeux intersectent différentes branches
des mathématiques ou d'autres sciences : probabilités,
optimisation/contrôle, combinatoire, logique, calculabilité,
complexité, analyse/EDP ou encore (en-dehors ou en marge des
mathématiques), économie, cryptographie, physique quantique,
cybernétique, biologie, sociologie, linguistique, philosophie.

Il va de soi qu'on ne pourra dans ce cours donner qu'un aperçu de
quelques unes de ces théories des jeux.


\thingy Une tentative pour approcher la notion de jeu mathématique :
le jeu possède un \textbf{état}, qui évolue dans un ensemble (fini ou
infini) d'états ou \textbf{positions} possibles ; un certain nombre de
\textbf{joueurs} choisissent, simultanément ou consécutivement, un
\textbf{coup} à jouer parmi différentes \textbf{options}, en fonction
de l'état courant, ou peut-être seulement d'une fonction de l'état
courant ; ce coup peut éventuellement faire intervenir un aléa (hasard
voulu par le joueur) ; l'état du jeu évolue en fonction des coups des
joueurs et éventuellement d'un autre aléa (hasard intrinsèque au
jeu) ; au bout d'un certain nombre de coups (fini ou infini), la règle
du jeu attribue, en fonction de l'état final, ou de son évolution
complète, un \textbf{gain} à chaque joueur, ce gain pouvant être un
réel (gain numérique), l'étiquette « gagné » / « perdu », ou encore
autre chose, et chaque joueur cherche en priorité à maximiser son gain
(i.e., à gagner le plus possible, ou à gagner tout court), ou dans le
cas probabiliste, son espérance de gain.

Mais même cette définition très vague est incomplète !, par exemple
dans le cas des jeux différentiels, les coups n'ont pas lieu tour à
tour mais continûment.

Une \textbf{stratégie} d'un joueur est la fonction par laquelle il
choisit son coup à jouer en fonction de l'état du jeu (ou de la
fonction de l'état qui lui est présentée), et d'aléa éventuel.  On
peut ainsi résumer le jeu en : chaque joueur choisit une stratégie, et
la règle du jeu définit alors un gain pour chaque joueur.  Les
stratégies peuvent être contraintes de différentes manières (par
exemple : être calculables par une machine de Turing).  Une stratégie
est dite \textbf{gagnante} si le joueur qui l'utilise gagne le jeu
(supposé avoir une notion de « joueur gagnant ») quels que soient les
coups choisis par l'autre joueur.

Il faut aussi se poser la question de si les joueurs peuvent
communiquer entre eux (et si oui, s'ils peuvent prouver leur honnêteté
ou s'engager irrévocablement quant au coup qu'ils vont jouer, etc.).
Dans certains cas, on peut aussi être amené à supposer que les joueurs
ne connaissent pas toute la règle du jeu (voir « information
  complète » ci-dessous).


\subsection{Quelques types de jeux}

\thingy Le \textbf{nombre de joueurs} est généralement $2$.  On peut
néanmoins étudier des jeux multi-joueurs, ce qui pose des questions
d'alliances et compliquer la question des buts (un joueur peut être
incapable de gagner lui-même mais être en situation de décider quel
autre joueur gagnera : on parle de « kingmaker »).  On peut aussi
étudier des jeux à un seul joueur (jouant contre le hasard), voire à
zéro joueurs (systèmes dynamiques), mais ceux-ci relèvent plutôt
d'autres domaines.  Dans ce cours, on s'intéressera (presque
uniquement) aux jeux à deux joueurs.

\thingy Les joueurs peuvent avoir \textbf{des intérêts communs,
  opposés, ou toute situation intermédiaire}.

Le cas d'intérêts communs est celui où tous les joueurs ont le même
gain.  Si les joueurs peuvent parfaitement communiquer, on est alors
essentiellement ramené à un jeu à un seul joueur : on s'intéresse donc
ici surtout aux situations où la communication est imparfaite.

Le cas de deux joueurs d'intérêts opposés est le plus courant : dans
le cas de gains numériques, on le modélise en faisant des gains d'un
joueur l'opposé des gains de l'autre — on parle alors de \textbf{jeu à
  somme nulle} ; ou bien la règle fera qu'un et un seul joueur aura
gagné et l'autre perdu (mais parfois, elle peut aussi admettre le
match nul).

Toute autre situation intermédiaire est possible.  Mais on conviendra
bien que le but de chaque joueur est de maximiser son propre gain,
sans considération des gains des autres joueurs.

\thingy Le jeu peut être \textbf{partial/partisan ou impartial}.  Un
jeu impartial est un jeu où tous les joueurs sont traités de façon
équivalente par la règle (le sens de « équivalent » étant à définir
plus précisément selon le type de jeu).

\thingy\label{intro-simultaneous-or-sequential} Les coups des joueurs
peuvent avoir lieu \textbf{simultanément ou séquentiellement}.

Formellement, il s'agit seulement d'une différence de présentation.
On peut toujours ramener des coups séquentiels à plusieurs coups
simultanés en n'offrant qu'une seule option à tous les joueurs sauf
l'un, et réciproquement, on peut ramener des coups simultanés à des
coups séquentiels en cachant à chaque joueur l'information de ce que
l'autre a joué.  La question \ref{question-preposing-moves} est
cependant plus intéressante.

\thingy Le jeu peut être à \textbf{information parfaite} ou non.  Un
jeu à information parfaite est un jeu dont la règle ne fait pas
intervenir le hasard et où chaque joueur joue séquentiellement en
ayant la connaissance complète de l'état du jeu et de tous les coups
effectués antérieurement par tous les autres joueurs.

(Cette notion est parfois distinguée de la notion plus faible
d'\textbf{information complète}, qui souligne que les joueurs ont
connaissance complète de la \emph{règle} du jeu, i.e., des gains
finaux et des options disponibles à chaque joueur.  Néanmoins, on peut
formellement ramener un jeu à information incomplète en jeu à
information complète en regroupant toute l'inconnue sur les règles du
jeu dans des coups d'un joueur appelé « la nature ».  Dans ce cours,
on ne considérera que des jeux à information complète [et toute
  occurrence des mots « information complète » sera probablement un
  lapsus pour « information parfaite »].)

\thingy Le nombre de positions (= états possibles), comme le nombre
d'options dans une position donnée, ou comme le nombre de coups, peut
être \textbf{fini ou infini}.  Même si l'étude des jeux finis (de
différentes manières) est la plus intéressante pour des raisons
pratiques, toutes sortes de jeux infinis peuvent être considérés, par
exemple en logique (voir plus loin sur l'axiome de détermination).
Pour un jeu à durée infinie, le gagnant pourra être déterminé, par
exemple, par toute la suite des coups effectués par les deux joueurs ;
on peut même introduire des coups après un nombre infini de coups,
etc.

De même, l'ensemble des positions, des options ou des temps peut être
\textbf{discret ou continu}.  Dans ce cours, on s'intéressera presque
exclusivement au cas discret (on écartera, par exemple, la théorie des
jeux différentiels).


\subsection{Quelques exemples en vrac}

\thingy Le jeu de \textbf{pile ou face} entre Pauline et Florian.  On
tire une pièce non-truquée : si elle tombe sur pile, Pauline gagne, si
c'est face, c'est Florian.  Aucun des joueurs n'a de choix à faire.
Chacun a une probabilité $\frac{1}{2}$ de gagner, ou une espérance de
$0$ si les gains sont $+1$ au gagnant et $-1$ au perdant (il s'agit
donc d'un jeu à somme nulle).

Variante entre Alice et Bob : maintenant, Alice choisit « pile » ou
« face » avant qu'on (Bob) tire la pièce.  Si Alice a bien prévu, elle
gagne, sinon c'est Bob.  Ici, seule Alice a un choix à faire.
Néanmoins, il n'y a pas de stratégie intéressante : la stratégie
consistant à choisir « pile » offre la même espérance que celle
consistant à choisir « face », et il n'existe pas de stratégie
(c'est-à-dire, de stratégie mesurable par rapport à l'information dont
dispose Alice) offrant une meilleure espérance.

\thingy Variante : Alice choisit « pile » ou « face », l'écrit dans
une enveloppe scellée sans la montrer à Bob (elle s'\emph{engage} sur
son choix), et Bob, plutôt que tirer une pièce, choisit le côté qu'il
montre.  Si Alice a bien deviné le choix de Bob, Alice gagne, sinon
c'est Bob.  Variante : Bob choisit une carte dans un jeu de 52 cartes
sans la montrer à Bob, et Alice doit deviner si la carte est noire ou
rouge.

Variante équivalente : Alice choisit « Alice » ou « Bob » et Bob
choisit simultanément « gagne » ou « perd ».  Si la phrase obtenue en
combinant ces deux mots est « Alice gagne » ou « Bob perd », alors
Alice gagne, si c'est « Alice perd » ou « Bob gagne », alors Bob
gagne.  Encore une variante : Alice et Bob choisissent simultanément
un bit (élément de $\{\mathtt{0},\mathtt{1}\}$), si le XOR de ces deux
bits vaut $\mathtt{0}$ alors Alice gagne, s'il vaut $\mathtt{1}$ c'est
Bob.  Ce jeu est impartial (même s'il n'est pas parfaitement
symétrique entre les joueurs) : Alice n'a pas d'avantage particulier
sur Bob (ce qui est assez évident sur ces dernières variantes).

\begin{center}
\begin{tabular}{r|cc}
$\downarrow$Alice, Bob$\rightarrow$&$\mathtt{0}$/« gagne »&$\mathtt{1}$/« perd »\\\hline
$\mathtt{0}$/« Alice »&$+1,-1$&$-1,+1$\\
$\mathtt{1}$/« Bob »&$-1,+1$&$+1,-1$\\
\end{tabular}
\end{center}

La notion de coups simultanés peut se convertir en coups engagés dans
une enveloppe scellée (cf. \ref{intro-simultaneous-or-sequential}).

On verra, et il est assez facile de comprendre intuitivement, que la
meilleure stratégie possible pour un joueur comme pour l'autre,
consiste à choisir l'une ou l'autre des deux options offertes avec
probabilité $\frac{1}{2}$ (ceci assure une espérance de gain nul quoi
que fasse l'autre joueur).

(En pratique, si on joue de façon répétée à ce jeu, il peut être
intéressant d'essayer d'exploiter le fait que les humains ont des
générateurs aléatoires assez mauvais, et d'arriver à prédire leurs
coups pour gagner.  Ceci est particulièrement amusant avec des petits
enfants.  Voir aussi le film \textit{Princess Bride} à ce sujet.)

\thingy Le jeu de \textbf{pierre-papier-ciseaux} : Alice et Bob
choisissent simultanément un élément de l'ensemble
$\{\textrm{pierre},\penalty0 \textrm{papier},\penalty0
\textrm{ciseaux}\}$.  S'ils ont choisi le même élément, le jeu est
nul ; sinon, papier gagne sur pierre, ciseaux gagne sur papier et
pierre gagne sur ciseaux (l'intérêt étant qu'il s'agit d'un « ordre »
cyclique, totalement symétrique entre les options).  Il s'agit
toujours d'un jeu à somme nulle (disons que gagner vaut $+1$ et perdre
vaut $-1$), et cette fois les deux joueurs sont en situation
complètement symétrique.

\begin{center}
\begin{tabular}{r|ccc}
$\downarrow$Alice, Bob$\rightarrow$&Pierre&Papier&Ciseaux\\\hline
Pierre&$0,0$&$-1,+1$&$+1,-1$\\
Papier&$+1,-1$&$0,0$&$-1,+1$\\
Ciseaux&$-1,+1$&$+1,-1$&$0,0$\\
\end{tabular}
\end{center}

On verra que la meilleure stratégie possible consiste à choisir
chacune des options avec probabilité $\frac{1}{3}$ (ceci assure une
espérance de gain nul quoi que fasse l'autre joueur).

Ce jeu s'appelle aussi papier-ciseaux-puits, qui est exactement le
même si ce n'est que « pierre » s'appelle maintenant « puits » (donc
ciseaux gagne sur papier, puits gagne sur ciseaux et papier gagne sur
puits) : la stratégie optimale est évidemment la même.

Certains enfants, embrouillés par l'existence des deux variantes,
jouent à pierre-papier-ciseaux-puits, qui permet les quatre options,
et où on convient que la pierre tombe dans le puits : quelle est alors
la stratégie optimale ? il est facile de se convaincre qu'elle
consiste à ne jamais jouer pierre (qui est strictement « dominée » par
puits), et jouer papier, ciseaux ou puits avec probabilité
$\frac{1}{3}$ chacun (cette stratégie garantit un gain au moins nul
quoi que fasse l'autre adversaire, et même strictement positif s'il
joue pierre avec probabilité strictement positive).

\begin{center}
\begin{tabular}{r|cccc}
$\downarrow$Alice, Bob$\rightarrow$&Pierre&Papier&Ciseaux&Puits\\\hline
Pierre&$0,0$&$-1,+1$&$+1,-1$&$-1,+1$\\
Papier&$+1,-1$&$0,0$&$-1,+1$&$+1,-1$\\
Ciseaux&$-1,+1$&$+1,-1$&$0,0$&$-1,+1$\\
Puits&$+1,-1$&$-1,+1$&$+1,-1$&$0,0$\\
\end{tabular}
\end{center}

\thingy Le \textbf{dilemme du prisonnier} : Alice et Bob choisissent
simultanément une option parmi « coopérer » ou « faire défaut ».  Les
gains sont déterminés par la matrice suivante :

\begin{center}
\begin{tabular}{r|cc}
$\downarrow$Alice, Bob$\rightarrow$&Coopère&Défaut\\\hline
Coopère&$2,2$&$0,4$\\
Défaut&$4,0$&$1,1$\\
\end{tabular}
\end{center}

Ou plus généralement, en remplaçant $4,2,1,0$ par quatre nombres
$T$ (tentation), $R$ (récompense), $P$ (punition) et
$S$ (\textit{sucker}) tels que $T>R>P>S$.  Ces inégalités font que
chaque joueur a intérêt à faire défaut, quelle que soit l'option
choisie par l'autre joueur : on se convaincra facilement que le seul
équilibre de Nash
(cf. \ref{definition-best-response-and-nash-equilibrium}) pour ce jeu
est celui où Alice et Bob font tous deux défaut ; pourtant, tous les
deux reçoivent moins dans cette situation que s'ils coopèrent
mutuellement.

Ce jeu a été énormément étudié du point de vue économique,
psychologique, politique, philosophique, etc., pour trouver des cadres
d'étude justifiant que la coopération est rationnelle, pour expliquer
en quoi le jeu itéré (=répété) diffère du jeu simple, ou pour montrer
que la notion d'équilibre de Nash est perfectible.

\thingy Le jeu du \textbf{trouillard}, ou de la \textbf{colombe et du
  faucon}, obtenu en modifiant les gains du dilemme du prisonnier pour
pénaliser le double défaut (maintenant appelé rencontre faucon-faucon)
plus lourdement que la coopération (colombe) face au défaut.
Autrement dit :

\begin{center}
\begin{tabular}{r|cc}
$\downarrow$Alice, Bob$\rightarrow$&Colombe&Faucon\\\hline
Colombe&$2,2$&$0,4$\\
Faucon&$4,0$&$-4,-4$\\
\end{tabular}
\end{center}

Ou plus généralement, en remplaçant $4,2,0,-4$ par quatre nombres
$W$ (\textit{win}), $T$ (\textit{truce}), $L$ (\textit{loss}) et
$X$ (\textit{crash}) tels que $W>T>L>X$.  Ces inégalités font que
chaque joueur a intérêt à faire le contraire de ce que fait l'autre
(si Bob joue faucon, Alice a intérêt à jouer colombe, et si Bob joue
colombe, Alice a intérêt à jouer faucon).

On pourra se convaincre que ce jeu a trois équilibres de Nash
(cf. \ref{definition-best-response-and-nash-equilibrium} ; en gros, il
s'agit d'une situation dans laquelle aucun des joueurs n'améliorerait
son gain en changeant \emph{unilatéralement} la stratégie employée) :
l'un où Alice joue colombe et Bob joue faucon, un deuxième où c'est le
contraire, et un troisième où chacun joue colombe ou faucon avec les
probabilités respectives $\frac{L-X}{W-T + L-X}$ et $\frac{W-T}{W-T +
  L-X}$ (avec les valeurs ci-desssus : $\frac{2}{3}$ et
$\frac{1}{3}$), pour un gain espéré de $\frac{LW - TX}{W-T + L-X}$
(avec les valeurs ci-dessus : $\frac{4}{3}$).

\thingy La \textbf{guerre des sexes}.  Alice et Bob veulent faire du
sport ensemble : Alice préfère l'alpinisme, Bob préfère la boxe, mais
tous les deux préfèrent faire quelque chose avec l'autre que
séparément.  D'où les gains suivants :

\begin{center}
\begin{tabular}{r|cc}
$\downarrow$Alice, Bob$\rightarrow$&Alpinisme&Boxe\\\hline
Alpinisme&$2,1$&$0,0$\\
Boxe&$0,0$&$1,2$\\
\end{tabular}
\end{center}

Ou plus généralement, en remplaçant $2,1,0$ par trois nombres
$P$ (préféré), $Q$ (autre), $N$ (nul) tels que $P>Q>N$.

On pourra se convaincre que ce jeu a trois équilibres de Nash
(cf. \ref{definition-best-response-and-nash-equilibrium}) : l'un où
les deux joueurs vont à l'alpinisme, un deuxième où les deux vont à la
boxe, et un troisième où chacun va à son activité préférée avec
probabilité $\frac{P-N}{P+Q-2N}$ et à l'autre avec probabilité
$\frac{Q-N}{P+Q-2N}$ (avec les valeurs ci-dessus : $\frac{2}{3}$ et
$\frac{1}{3}$), pour un gain espéré de $\frac{PQ-N^2}{P+Q-2N}$ (avec
les valeurs ci-dessus : $\frac{2}{3}$).  Remarquablement, ce gain
espéré est inférieur à $Q$.

\thingy Le \textbf{jeu du partage} ou \textbf{de l'ultimatum} : Alice
et Bob ont $10$ points à se partager : Alice choisit un $k$ entre $0$
et $10$ entier (disons), la partie qu'elle se propose de garder pour
elle, \emph{puis} Bob choisit, en fonction du $k$ proposé par Alice,
d'accepter ou de refuser le partage : s'il accepte, Alice reçoit le
gain $k$ et Bob reçoit le gain $10-k$, tandis que si Bob refuse, les
deux reçoivent $0$.  Cette fois, il ne s'agit pas d'un jeu à somme
nulle !

Variante : Alice choisit $k$ et \emph{simultanément} Bob choisit
$\varphi \colon \{0,\ldots,10\} \to \{\textrm{accepte},\penalty0
\textrm{refuse}\}$.  Si $\varphi(k) = \textrm{accepte}$ alors Alice
reçoit $k$ et Bob reçoit $10-k$, tandis que si $\varphi(k) =
\textrm{refuse}$ alors Alice et Bob reçoivent tous les deux $0$.  Ceci
revient (cf. \ref{question-preposing-moves}) à demander à Bob de
préparer sa réponse $\varphi(k)$ à tous les coups possibles d'Alice
(notons qu'Alice n'a pas connaissance de $\varphi$ quand elle
choisit $k$, les deux sont choisis simultanément).  On se convainc
facilement que si Bob accepte $k$, il devrait aussi accepter tous
les $k'\leq k$, d'où la nouvelle :

Variante : Alice choisit $k$ entre $0$ et $10$ (la somme qu'elle
propose de se garder) et \emph{simultanément} Bob choisit $\ell$ entre
$0$ et $10$ (le maximum qu'il accepte qu'Alice garde pour elle) : si
$k\leq \ell$ alors Alice reçoit $k$ et Bob reçoit $10-k$, tandis que
si $k>\ell$ alors Alice et Bob reçoivent tous les deux $0$.

Ce jeu peut sembler paradoxal pour la raison suivante : dans la
première forme proposée, une fois $k$ choisi, on il semble que Bob ait
toujours intérêt à accepter le partage dès que $k<10$ (il gagnera
quelque chose, alors que s'il refuse il ne gagne rien) ; pourtant, on
a aussi l'impression que refuser un partage pour $k>5$ correspond à
refuser un chantage (Alice dit en quelque sorte à Bob « si tu
n'acceptes pas la petite part que je te laisse, tu n'auras rien du
tout »).

Dans la troisième forme, qui est censée être équivalente, on verra
qu'il existe plusieurs équilibres de Nash, ceux où $\ell=k$ (les deux
joueurs sont d'accord sur le partage) et celui où $k=10$ et $\ell=0$
(les deux joueurs demandent tous les deux la totalité du butin, et
n'obtiennent rien).

\thingy Un jeu idiot : Alice et Bob choisissent simultanément chacun
un entier naturel.  Celui qui a choisi le plus grand gagne (en cas
d'égalité, on peut déclarer le nul, ou décider arbitrairement qu'Alice
gagne — ceci ne changera rien au problème).  Ce jeu résiste à toute
forme d'analyse intelligente, il n'existe pas de stratégie gagnante
(ni d'équilibre de Nash, cf. plus haut), on ne peut rien en dire
d'utile.

Cet exemple sert à illustrer le fait que dans l'étude des jeux sous
forme normale, l'hypothèse de finitude des choix sera généralement
essentielle.

\thingy\label{introduction-graph-game} Le jeu d'un graphe : soit $G$
un graphe orienté (cf. \ref{definitions-graphs} ci-dessous pour la
définition) et $x_0$ un sommet de $G$.  Partant de $x_0$, Alice et Bob
choisissent tour à tour une arête à emprunter pour arriver dans un
nouveau sommet (c'est-à-dire : Alice choisit un voisin sortant $x_1$
de $x_0$, puis Bob un voisins ortant $x_2$ de $x_1$, puis Alice $x_3$
de $x_2$ et ainsi de suite).  \emph{Le perdant est celui qui ne peut
  plus jouer}, et si ceci ne se produit jamais (si on définit un
chemin infini $x_0, x_1, x_2, x_3,\ldots$) alors la partie est
déclarée nulle (ceci ne peut pas se produire lorsque le graphe $G$ est
« bien-fondé »).  On verra qu'il s'agit là du cadre général dans
lequel on étudie la théorie combinatoire des jeux impartiaux à
information parfaite
(cf. \ref{definition-impartial-combinatorial-game}), et qu'un des
joueurs a forcément une stratégie gagnante ou bien les deux joueurs
une stratégie assurant le nul (si le nul est possible)
(cf. \ref{determinacy-of-perfect-information-games}).

Dans une variante du jeu, celui qui ne peut plus jouer gagne au lieu
de perdre : on parle alors de la variante « misère » du jeu.

On peut aussi considérer un graphe dont les arêtes peuvent être
coloriées de trois couleurs possibles : des arêtes rouges, qui ne
peuvent être suivies que par Alice, des arêtes bleues, qui ne peuvent
être suivies que par Bob, et des arêtes vertes (équivalentes à une
arête rouge \emph{et} une arête bleue entre les mêmes deux sommets),
qui peuvent être suivies par l'un ou l'autre joueur (le cas précédent
est donc équivalent à celui d'un graphe entièrement vert).  Il s'agira
là du cadre général dans lequel on étudie la théorie combinatoire des
jeux \emph{partiaux} à information parfaite : on verra que, si le nul
est rendu impossible, quatre cas sont possibles (Alice a une stratégie
gagnante qui que soit le joueur qui commence, ou Bob en a une, ou le
premier joueur a une stratégie gagnante, ou le second en a une).

\thingy Le \textbf{jeu de Nim} : un certain nombre d'allumettes sont
arrangées en plusieurs lignes ; chacun leur tour, Alice et Bob
retirent des allumettes, au moins une à chaque fois, et autant qu'ils
veulent, mais \emph{d'une ligne seulement} ; le gagnant est celui qui
retire la dernière allumette (de façon équivalente, le perdant est
celui qui ne peut pas jouer).  Il s'agit ici d'un jeu à deux joueurs
impartial à connaissance parfaite (un cas particulier du jeu général
défini en \ref{introduction-graph-game}) : on verra que la théorie de
Grundy permet de décrire exactement la stratégie gagnante (et pour
qui).

\thingy Jeux de retournement de pièces.  \textcolor{red}{...}

\thingy Le jeu de \textbf{chomp} ou de la tablette de chocolat (ou
gaufre) empoisonnée.

On part d'une « tablette de chocolat » de taille $m\times n$,
c'est-à-dire le produit $\{0,\ldots,m-1\} \times \{0,\ldots,n-1\}$
dont les éléments (les couples $(i,j)$ avec $0\leq i<m$ et $0\leq
j<n$) sont appelés les « carrés » de la tablette ; un état général du
jeu sera un sous-ensemble de ce produit (l'ensemble des carrés restant
à manger).  Le carré $(0,0)$ est empoisonné et le but est de ne pas le
manger.  Un coup consiste à choisir un carré $(i,j)$ où mordre dans la
tablette, ce qui fait disparaître tous les carrés $(i',j')$ avec
$i'\geq i$ et $j'\geq j$.  Chaque joueur, tour à tour, effectue un
coup de la sorte, et le premier à mordre dans la case empoisonnée
$(0,0)$ a perdu (de façon équivalente, on ne peut pas mordre dedans,
ce qui se ramène au formalisme général où le premier qui ne peut pas
jouer a perdu).

On ne sait pas décrire la stratégie gagnante en général, mais on peut
montrer que, partant d'une tablette rectangulaire (ou carrée) $m\times
n$ (par opposition à une forme irrégulière quelconque), le
\emph{premier joueur} a forcément une stratégie gagnante.  En effet,
en admettant provisoirement
(cf. \ref{determinacy-of-perfect-information-games}) qu'un des deux
joueurs a une stratégie gagnante, montrons qu'il s'agit forcément du
premier ; pour cela, supposons par l'absurde que le second joueur ait
une stratégie gagnante, et considérons la réponse $(i,j)$ préconisée
par cette stratégie si le premier joueur joue en mordant la case
$(m-1,n-1)$ opposée à la case empoisonnée : à partir de l'état obtenu
en jouant cette réponse (i.e., toutes les cases $(i',j')$ avec $i'\geq
i$ et $j'\geq j$ ont été mangées), le joueur qui vient de jouer est
censé avoir une stratégie gagnante ; mais si le premier joueur jouait
directement en mordant en $(i,j)$, il se ramènerait à cet état, les
rôles des joueurs étant inversés, donc il aurait une stratégie
gagnante, et cela signifie qu'il en a une dès le premier tour.

\thingy Le jeu de \textbf{Hackenbush} impartial, bicolore, ou
tricolore.

Dans ce jeu, l'état est défini par un dessin, plus précisément un
graphe non orienté, pouvant avoir des arêtes multiples et des arêtes
reliant un sommet à lui-même, dont certains sommets sont « au sol »
(graphiquement représentés en les plaçant sur une droite horizontale
en bas du dessin).  Chaque sommet et chaque arête doit être « relié au
  sol », c'est-à-dire atteignable depuis un sommet au sol par une
succession d'arêtes.  De plus, dans le cas de Hackenbush bicolore,
chaque arête est coloriée rouge ou bleue, dans le cas de Hackenbush
tricolore elle peut aussi être verte, et dans le cas de Hackenbush
impartial il n'y a pas de couleur, ou, si on préfère, toutes les
arêtes sont vertes.

\begin{center}
\begin{tikzpicture}
\draw[very thin] (-0.5,0) -- (3.5,0);
\begin{scope}[every node/.style={circle,fill,inner sep=0.5mm}]
\node (P0) at (0,0) {};
\node (P1) at (1.5,0) {};
\node (P2) at (0.75,1) {};
\node (P3) at (0.75,2.5) {};
\node (P4) at (0,2) {};
\node (P5) at (1.5,2) {};
\node (Q0) at (3,0) {};
\node (Q1) at (3,1.5) {};
\node (Q2) at (3,3) {};
\end{scope}
\begin{scope}[line width=1.5pt]
\draw[color=green] (P0) -- (P2);
\draw[color=green] (P1) -- (P2);
\draw[color=green] (P2) -- (P3);
\draw[color=green] (P3) -- (P4);
\draw[color=green] (P3) -- (P5);
\draw[color=green] (P3) .. controls (1.0,2.75) and (1.0,3.0) .. (0.75,3.0) .. controls (0.5,3.0) and (0.5,2.75) .. (P3);
\draw[color=red] (Q0) -- (Q1);
\draw[color=blue] (Q1) -- (Q2);
\end{scope}
\end{tikzpicture}
\\{\footnotesize (Un état possible de Hackenbush.)}
\end{center}

Alice et Bob jouent tour à tour, chacun efface une arête du dessin, ce
qui fait disparaître du même coup toutes les arêtes et tous les
sommets qui ne sont plus reliés au sol.  (Par exemple, dans le dessin
représenté ci-dessus, si on efface l'arête rouge, l'arête bleue
au-dessus disparaît immédiatement ; si on efface l'une des deux arêtes
vertes reliées au sol, les « jambes » du « bonhomme » vert, rien de
particulier ne se passe mais si on efface la deuxième, toutes les
arêtes vertes disparaissent.)  Dans le jeu de Hackenbush impartial,
n'importe quel joueur peut effacer n'importe quelle arête ; dans le
jeu bicolore, seule Alice peut effacer les arêtes rouges et seul Bob
peut effacer les arêtes bleues ; dans le jeu tricolore, les arêtes
vertes sont effaçables par l'un ou l'autre joueur (mais dans tous les
cas, la disparition des arêtes non reliées au sol est automatique).
Le jeu se termine quand un joueur ne peut plus jouer, auquel cas il a
perdu (au Hackenbush impartial, cela signifie que le jeu se termine
quand un joueur finit de faire disparaître le dessin, auquel cas il a
gagné ; au Hackenbush bicolore ou tricolore, il se peut bien sûr qu'il
reste des arêtes de la couleur du joueur qui vient de jouer).

Le jeu de Hackenbush impartial possède une stratégie gagnante soit par
le premier soit par le second joueur (le dessin formé uniquement des
arêtes vertes ci-dessus, par exemple, est gagnable par le premier
joueur, le seul coup gagnant consistant à effacer le « corps » du
« bonhomme » pour ne laisser que ses jambes).  Le jeu de Hackenbush
bicolore possède une stratégie gagnante soit pour Alice, soit pour
Bob, soit pour le second joueur, mais jamais pour le premier (le
dessin formé par les arêtes rouge et bleue ci-dessus, par exemple, est
gagnable par Alice).  Le jeu de Hackenbush tricolore possède une
stratégie gagnante soit pour Alice, soit pour Bob, soit pour le
premier joueur, soit pour le second (l'ensemble du dessin ci-dessus,
par exemple, est gagnable par Alice).

\thingy Le \textbf{jeu de l'hydre} : Hercule essaie de terrasser
l'hydre.  Le joueur qui joue l'hydre commence par dessiner (i.e.,
choisir) un arbre (fini, enraciné), la forme initiale de l'hydre.
Puis Hercule choisit une \emph{tête} de l'hydre, c'est-à-dire une
feuille $x$ de l'arbre, et la décapite en la supprimant de l'arbre.
L'hydre se reproduit alors de la façon suivante : soit $y$ le nœud
parent de $x$ dans l'arbre, et $z$ le nœud parent de $y$ (grand-parent
de $x$, donc) : si l'un ou l'autre n'existe pas, rien ne se passe
(l'hydre passe son tour) ; sinon, l'hydre choisit un entier naturel
$n$ (aussi grand qu'elle veut) et attache à $z$ autant de nouvelles
copies de $y$ (mais sans la tête $x$ qui a été décapitée) qu'elle le
souhaite.  Hercule gagne s'il réussit à décapiter le dernier nœud de
l'hydre ; l'hydre gagnerait si elle réussissait à survivre
indéfiniment.

Ce jeu est particulier en ce que, mathématiquement, non seulement
Hercule possède une stratégie gagnante, mais en fait Hercule gagne
\emph{toujours}, quoi qu'il fasse et quoi que fasse l'hydre.
Pourtant, en pratique, l'hydre peut facilement s'arranger pour
survivre un temps inimaginablement long.

\thingy Le \textbf{jeu topologique de Choquet} : soit $X$ un espace
métrique (ou topologique) fixé à l'avance.  Uriel et Vania choisissent
tour à tour un ouvert non vide de ($X$ contenu dans) l'ouvert
précédemment choisi : i.e., Uriel choisit $\varnothing \neq U_0
\subseteq X$, puis Vania choisit $\varnothing \neq V_0 \subseteq U_0$,
puis Uriel choisit $\varnothing \neq U_1 \subseteq V_0$ et ainsi de
suite.  Le jeu continue pendant un nombre infini de tours indicés par
les entiers naturels.  À la fin, on a bien sûr $\bigcap_{n=0}^{\infty}
U_n = \bigcap_{n=0}^{\infty} V_n$ : on dit qu'Uriel gagne le jeu si
cette intersection est vide, Vania le gagne si elle est non-vide.  On
peut se convaincre que si $X = \mathbb{Q}$, alors Uriel possède une
stratégie gagnante, tandis que si $X = \mathbb{R}$ c'est Vania qui en
a une.

\thingy Les \textbf{jeux de Gale-Stewart} : soit $A$ une partie de
$\mathbb{N}^{\mathbb{N}}$ ou de $\{0,1\}^{\mathbb{N}}$ ou de $[0,1]$.
Alice et Bob choisissent tour à tour un élément de $\mathbb{N}$ (dans
le premier cas) ou de $\{0,1\}$ (dans les deux suivants).  Ils jouent
un nombre infini de tours, « à la fin » desquels la suite de leurs
coups définit un élément de $\mathbb{N}^{\mathbb{N}}$ ou de
$\{0,1\}^{\mathbb{N}}$ ou, en les considérant comme la suite des
chiffres binaires d'un réel commençant par $0.$, de $[0,1]$ : si cet
élément appartient à $A$, Alice gagne, sinon c'est Bob (la partie
n'est jamais nulle).  \emph{Il n'est pas vrai} qu'un des deux joueurs
possède forcément une stratégie gagnante.


\subsection{Remarques}

\thingy\label{question-preposing-moves} La question suivante mérite
l'attention : supposons que, dans un jeu, deux joueurs aient à jouer
deux coups successifs, disons que le joueur $A$ choisit une option $x$
parmi un certain ensemble $E$ (typiquement fini), \emph{puis} le
joueur $B$ choisit, en connaissant le $x$ choisi par $A$, une option
$y$ parmi un certain ensemble $F$ (typiquement fini).  Revient-il au
même de demander de choisir \emph{simultanément} pour $A$ un élément
de $E$ et pour $B$ un élément de l'ensemble $F^E$ des fonctions de $E$
dans $F$ ?  L'idée étant que $B$ choisit la fonction $\varphi$ qui,
selon le coup $x \in E$ joué par $A$, déterminera le coup $y :=
\varphi(x) \in F$ qu'il joue en réponse.  Au moins si $E$ est fini, on
peut imaginer que $B$ considère mentalement tous les coups que $A$
pourra jouer et choisit la réponse qu'il y apporterait, déterminant
ainsi la fonction $\varphi$ (si on préfère, $\varphi$ est une
stratégie locale pour le prochain coup de $B$).

En principe, les jeux ainsi considérés (le jeu initial, et celui où on
a demandé à $B$ d'anticiper son choix en le remplaçant par une
fonction du choix de $A$) devraient être équivalents.  En pratique, il
se peut qu'on les analyse différemment pour différentes raisons.

Notons que si on permet ou oblige $B$ à communiquer à $A$ la fonction
$\varphi$ qu'il a choisie, i.e., à s'\emph{engager} irrévocablement
sur le coup $y$ qu'il jouerait selon le coup $x$ de $A$, on peut
véritablement changer le jeu.


%
%
%

\section{Jeux en forme normale}

\subsection{Généralités}

\begin{defn}\label{definition-game-in-normal-form}
Un \textbf{jeu en forme normale} à $N$ joueurs est la donnée de $N$
ensembles finis $A_1,\ldots,A_N$ et de $N$ fonctions
$u_1,\ldots,u_N\colon A \to \mathbb{R}$ où $A := A_1 \times \cdots
\times A_N$.

Un élément de $A_i$ s'appelle une \textbf{option} ou \textbf{stratégie
  pure} pour le joueur $i$.  Un élément de $A := A_1 \times \cdots
\times A_N$ s'appelle un \textbf{profil de stratégies pures}.  La
valeur $u_i(a)$ de la fonction $u_i$ sur un $a\in A$ s'appelle le
\textbf{gain} du joueur $i$ selon le profil $a$.
\end{defn}

Le jeu doit se comprendre de la manière suivante : chaque joueur
choisit une option $a_i \in A_i$ indépendamment des autres, et chaque
joueur reçoit un gain égal à la valeur $u_i(a_1,\ldots,a_n)$ définie
par le profil $(a_1,\ldots,a_n)$ des choix effectués par tous les
joueurs.  Le but de chaque joueur est de maximiser son propre gain.

On utilisera le terme « option » ou « stratégie pure » selon qu'on
veut souligner que le joueur $i$ choisit effectivement $a_i$ ou décide
a priori de faire forcément ce choix-là.  Cette différence vient du
fait que les joueurs peuvent également jouer de façon probabiliste, ce
qui amène à introduire la notion de stratégie mixte :

\begin{defn}\label{definition-mixed-strategy-abst}
Donné un ensemble $B$ fini d'« options », on appelle \textbf{stratégie
  mixte} sur $B$ une fonction $s\colon B\to\mathbb{R}$ telle que
$s(b)\geq 0$ pour tout $b\in B$ et $\sum_{b\in B} s(b) = 1$ :
autrement dit, il s'agit d'une distribution de probabilités sur $B$.

Le \textbf{support} de $s$ est l'ensemble des options $b\in B$ pour
lesquelles $s(b) > 0$.

Parfois, on préférera considérer la stratégie comme la combinaison
formelle $\sum_{b\in B} s(b)\cdot b$ (« formelle » signifiant que le
produit $t\cdot b$ utilisé ici n'a pas de sens intrinsèque : il est
défini par son écriture ; l'écriture $\sum_{b\in B} s(b)\cdot b$ est
donc une simple notation pour $s$).  Autrement dit, ceci correspond à
voir une stratégie mixte comme une combinaison convexe d'éléments
de $B$, i.e., un point du simplexe affine dont les sommets sont les
éléments de $B$.  En particulier, un élément $b$ de $B$ (stratégie
pure) sera identifié à l'élément de $S_B$ qui affecte le poids $1$
à $b$ et $0$ à tout autre élément.

En tout état de cause, l'ensemble $S_B$ des stratégies mixtes sur $B$
sera vu (notamment comme espace topologique) comme le fermé de
$\mathbb{R}^B$ défini par l'intersection des demi-espaces de
coordonnées positives et de l'hyperplan défini par la somme des
coordonnées égale à $1$.
\end{defn}

\begin{defn}\label{definition-mixed-strategy-game}
Pour un jeu comme défini en \ref{definition-game-in-normal-form}, une
stratégie mixte pour le joueur $i$ est donc une fonction $s\colon A_i
\to\mathbb{R}$ comme on vient de le dire.  On notera parfois $S_i$
l'ensemble des stratégies mixtes du joueur $i$.  Un \textbf{profil de
  stratégies mixtes} est un élément du produit cartésien $S := S_1
\times \cdots \times S_N$.

Plus généralement, si $I \subseteq \{1,\ldots,N\}$ est un ensemble de
joueurs, un élément du produit $S_I := \prod_{j\in I} S_j$ s'appellera
un profil de stratégies mixtes pour l'ensemble $I$ de joueurs ; ceci
sera notamment utilisé si $I = \{1,\ldots,N\}\setminus\{i\}$ est
l'ensemble de tous les joueurs sauf le joueur $i$, auquel cas on
notera $S_{?i} := \prod_{j\neq i} S_j$ l'ensemble des profils.
Naturellement, si chaque composante est une stratégie pure, on pourra
parler de profil de stratégies pures.
\end{defn}

\thingy Il va de soi qu'un profil de stratégies mixtes, i.e., un
élément de $S := S_1 \times \cdots \times S_N$, i.e., la donnée d'une
distribution de probabilité sur chaque $A_i$, n'est pas la même chose
qu'une distribution de probabilités sur $A := A_1 \times \cdots \times
A_N$.  Néanmoins, on peut voir les profils de stratégies mixtes comme
des distributions particulières sur $A$, à savoir celles pour
lesquelles les marginales (i.e., les projections sur un des $A_i$)
sont indépendantes.  Concrètement, ceci signifie que donné
$(s_1,\ldots,s_N) \in S$, on en déduit un $s\colon A\to\mathbb{R}$,
aussi une distribution de probabilité, par la définition suivante :
$s(a_1,\ldots,a_N) = s_1(a_1)\cdots s_N(a_N)$ (produit des
$s_i(a_i)$).  On identifiera parfois abusivement l'élément
$(s_1,\ldots,s_N) \in S$ à la distribution $s\colon A\to\mathbb{R}$
qu'on vient de décrire (ce n'est pas un problème car $s_i$ se déduit
de $s$ : précisément, $s_i(b) = \sum_{a: a_i = b} s(a)$ où la somme
est prise sur les $a \in A$ tels que $a_i = b$).

Ceci conduit à faire la définition suivante :

\begin{defn}
Donné un jeu en forme normale comme
en \ref{definition-game-in-normal-form}, si $s := (s_1,\ldots,s_N) \in
S_1 \times \cdots \times S_N$ est un profil de stratégies mixtes, on
appelle \textbf{gain [espéré]} du joueur $i$ selon ce profil la
quantité
\[
u_i(s) := \sum_{a\in A} s_1(a_1)\cdots s_N(a_N)\,u_i(a)
\]
(ceci définit $u_i$ comme fonction de $S_1\times\cdots \times S_N$
vers $\mathbb{R}$).
\end{defn}

Selon l'approche qu'on veut avoir, on peut dire qu'on a défini
$u_i(s)$ comme l'espérance de $u_i(a)$ si chaque $a_j$ est tiré selon
la distribution de probabilité $s_i$ ; ou bien qu'on a utilisé
l'unique prolongement de $u_i$ au produit des simplexes $S_i$ qui soit
affine en chaque variable $s_i$.

\begin{defn}\label{definition-best-response-and-nash-equilibrium}
Donné un jeu en forme normale comme
en \ref{definition-game-in-normal-form}, si $1 \leq i \leq N$ et si
$s_? := (s_1,\ldots,s_{i-1},s_{i+1},\ldots,s_N) \in S_1 \times \cdots
\times S_{i-1} \times S_{i+1} \times \cdots \times S_N$ est un profil
de stratégies mixtes pour tous les joueurs autres que le joueur $i$,
on dit que la stratégie mixte $s_! \in S_i$ est une \textbf{meilleure
  réponse} (resp. la meilleure réponse stricte) contre $s_?$ lorsque
pour tout $t \in S_i$ on a $u_i(s_?,s_!) \geq u_i(s_?,t)$
(resp. lorsque pour tout $t \in S_i$ différent de $s_!$ on a
$u_i(s_?,s_!) > u_i(s_?,t)$), où $(s_?,t)$ désigne l'élément de
$S_1\times \cdots \times S_N$ obtenu en insérant $t \in S_i$ comme
$i$-ième composante entre $s_{i-1}$ et $s_{i+1}$.

Un profil de stratégies mixtes $s = (s_1,\ldots,s_N)$ (pour l'ensemble
des joueurs) est dit être un \textbf{équilibre de Nash} (resp., un
équilibre de Nash \emph{strict}) lorsque pour tout $1\leq i \leq N$,
la stratégie $s_i$ pour le joueur $i$ est une meilleure réponse
(resp. la meilleure réponse stricte) contre le profil $s_{?i}$ pour
les autres joueurs obtenu en supprimant la composante $s_i$ de $s$.
\end{defn}

\begin{prop}\label{stupid-remark-best-mixed-strategies}
Donné un jeu en forme normale comme
en \ref{definition-game-in-normal-form}, si $1 \leq i \leq N$ et si
$s_?$ est un profil de stratégies mixtes pour tous les joueurs autres
que le joueur $i$, il existe une meilleure réponse pour le joueur $i$
qui est une stratégie pure.  Et même, si $s_!$ (stratégie mixte) est
une meilleure réponse, alors il existe une meilleure réponse qui est
une stratégie pure appartenant au support de $s_!$.

En particulier, une meilleure réponse stricte est nécessairement une
stratégie pure.
\end{prop}
\begin{proof}
Il suffit de se rappeler que $u_i(s_?,t)$ est une fonction affine
de $t \in S_i$, c'est-à-dire que sa valeur est combinaison convexe, à
coefficients les $t(a)$ pour $a\in S_i$, des $u_i(s_?,a)$.  Comme une
combinaison convexe est majorée par la plus grande des valeurs
combinée (ici, des $u_i(s_?,a)$), il est clair que le maximum des
$u_i(s_?,t)$ existe et est égal au maximum des $u_i(s_?,a)$ ; les
autres affirmations sont tout aussi faciles.
\end{proof}

\begin{thm}[John Nash, 1951]\label{theorem-nash-equilibria}
Pour un jeu en forme normale comme
en \ref{definition-game-in-normal-form}, il existe un équilibre de
Nash.
\end{thm}

Pour démontrer le théorème en question, on utilise (et on admet) le
théorème du point fixe de Brouwer, qui affirme que si $K$ est un
convexe compact de $\mathbb{R}^m$, et que $T \colon K \to K$ est
continue, alors il existe $x\in K$ tel que $T(x) = x$ (un \emph{point
  fixe} de $T$, donc).

L'idée intuitive de la démonstration suivante est : partant d'un
profil $s$ de stratégies, on peut définir continûment un nouveau
profil $s^\sharp$ en donnant plus de poids aux options qui donnent un
meilleur gain au joueur correspondant — si bien que $s^\sharp$ sera
différent de $s$ dès que $s^\sharp$ n'est pas un équilibre de Nash.  Comme
la fonction $T \colon s \to s^\sharp$ doit avoir un point fixe, ce point
fixe sera un équilibre de Nash.

\begin{proof}[Démonstration de \ref{theorem-nash-equilibria}]
Si $s \in S$ et $1\leq i\leq N$, convenons de noter $s_{?i}$
l'effacement de la composante $s_i$ (c'est-à-dire le profil pour les
joueurs autres que $i$).  Si de plus $b \in A_i$, notons
$\varphi_{i,b}(s) = \max(0,\; u_i(s_{?i},b) - u_i(s))$ l'augmentation
du gain du joueur $i$ si on remplace sa stratégie $s_i$ par la
stratégie pure $b$ en laissant le profil $s_{?i}$ des autres joueurs
inchangé (ou bien $0$ s'il n'y a pas d'augmentation).  On remarquera
que $s$ est un équilibre de Nash si et seulement si les
$\varphi_{i,b}(s)$ sont nuls pour tout $1\leq i\leq N$ et tout $b\in
A_i$ (faire appel à la proposition précédente pour le « si »).  On
remarquera aussi que chaque $\varphi_{i,b}$ est une fonction continue
sur $S$.

Définissons maintenant $T\colon S\to S$ de la façon suivante : si $s
\in S$, on pose $T(s) = s^\sharp$, où $s^\sharp =
(s^\sharp_1,\ldots,s^\sharp_N)$ avec $s^\sharp_i$ le barycentre de
$s_i$ avec coefficient $1$ et des $a_i$ avec les coefficients
$\varphi_{i,a}(s)$, autrement dit :
\[
\begin{aligned}
s^\sharp_i(a) &= \frac{s_i(a) + \varphi_{i,a}(s)}{\sum_{b\in A_i}(s_i(b) + \varphi_{i,b}(s))}\\
&= \frac{s_i(a) + \varphi_{i,a}(s)}{1 + \sum_{b\in A_i}\varphi_{i,b}(s)}
\end{aligned}
\]
(L'important est que $s^\sharp_i$ augmente strictement le poids des options
$a\in A_i$ telles que $u_i(s_{?i},a) > u_i(s)$ ; en fait, on pourrait
composer $\varphi$ à gauche par n'importe quelle fonction $\mathbb{R}
\to \mathbb{R}$ croissante, continue, nulle sur les négatifs et
strictement positive sur les réels strictement positifs, on a choisi
l'identité ci-dessus pour rendre l'expression plus simple à écrire,
mais elle peut donner l'impression qu'on commet une « erreur
  d'homogénéité » en ajoutant un gain à une probabilité.)

D'après la première expression donnée, il est clair qu'on a bien $s^\sharp_i
\in S_i$, et qu'on a donc bien défini une fonction $T\colon S\to S$.
Cette fonction est continue, donc admet un point fixe $s$.  On va
montrer que $s$ est un équilibre de Nash.

Si $1\leq i\leq N$, il existe $a \in A_i$ tel que $u_i(s_{?i},a) \leq
u_i(s)$ (car, comme dans la preuve
de \ref{stupid-remark-best-mixed-strategies}, $u_i(s)$ est combinaison
convexe des $u_i(s_{?i},a)$ dont est supérieur au plus petit d'entre
eux) : c'est-à-dire $\varphi_{i,a}(s) = 0$.  Pour un tel $a$, la
seconde expression $s^\sharp_i(a) = s_i(a) / \big(1 + \sum_{b\in
  A_i}\varphi_{i,b}(s)\big)$ montre, en tenant compte du fait que
$s^\sharp_i = s_i$ puisque $s$ est un point fixe, que $\sum_{b\in A_i}
\varphi_{i,b}(s) = 0$, donc $\varphi_{i,b}(s) = 0$ pour tout $b$.  On
vient de voir que les $\varphi_{i,b}(s)$ sont nuls pour tout $i$ et
tout $b$, et on a expliqué que ceci signifie que $s$ est un équilibre
de Nash.
\end{proof}

\textcolor{red}{Dire quelque chose sur l'algorithme de Lemke-Howson ?}


%
%
%

\section{Jeux à somme nulle en forme normale}

\subsection{Le théorème du minimax}

\begin{thm}[« du minimax », von Neumann, 1928]\label{theorem-minimax}
Soient $C$ et $C'$ deux convexes compacts dans des espaces affines
réels de dimension finie, et $u\colon C\times C' \to \mathbb{R}$
une application bi-affine (c'est-à-dire, affine en chaque variable
séparément).  Alors
\[
\max_{x\in C} \min_{y\in C'} u(x,y) =
\min_{y\in C'} \max_{x\in C} u(x,y)
\]
\end{thm}
\begin{proof}
Tout d'abord, l'inégalité dans un sens est évidente : on a
\[
\max_{x\in C} \min_{y\in C'} u(x,y)
= \min_{y\in C'} u(x_*,y)
\leq u(x_*,y_*) \leq \max_{x\in C} u(x,y_*) =
\min_{y\in C'} \max_{x\in C} u(x,y)
\]
où $x_* \in C$ est un point où $\max_{x\in C} \min_{y\in C'}
u(x,y)$ est atteint et $y_* \in C'$ un point où $\min_{y\in C'}
\max_{x\in C} u(x,y)$ l'est.  Il s'agit donc de prouver
l'inégalité de sens contraire.

Commençons par supposer que $C$ est l'enveloppe convexe d'un nombre
fini de points $(x_i)_{i\in I}$ et $C'$ de $(y_j)_{j\in J}$, et on
expliquera plus loin comment se ramener à ce cas (même si c'est le
seul qui servira dans le cadre de la théorie des jeux).  Lorsque cette
hypothèse est vérifiée, on va définir une fonction $T\colon C\times C'
\to C\times C'$ de la façon suivante.  Donnons-nous $(x,y) \in C\times
C'$.  Pour chaque $i\in I$, on définit $\varphi_i(x,y) = \max (0,\;
u(x_i,y)-u(x,y))$, et de même on pose $\psi_j(x,y) = \max (0,\;
u(x,y)-u(x,y_j))$.  Posons enfin $T(x,y) = (x^\sharp,y^\sharp)$ où
$x^\sharp$ et $y^\sharp$ (qui dépendent tous les deux de $x$ et $y$ à
la fois, malgré la notation) sont définis comme suit.  On appelle
$x^\sharp$ le barycentre de $x$ affecté du coefficient $1$ et des
$x_i$ (pour $i\in I$) affectés des coefficients respectifs
$\varphi_i(x,y)$, c'est-à-dire $x^\sharp = \frac{x + \sum_{i\in I}
  \varphi_i(x,y)\,x_i}{1 + \sum_{i\in I} \varphi_i(x,y)}$ ; et soit de
même $y^\sharp$ le barycentre de $y$ avec coefficient $1$ et des $y_i$
avec les coefficients $\psi_i(x,y)$.  Clairement, $x^\sharp$ et
$y^\sharp$ sont dans $C$ et $C'$ respectivement (il s'agit de
barycentres à coefficients positifs, c'est-à-dire de combinaisons
convexes).  La fonction $T\colon C\times C' \to C\times C'$ définie
par $T(x,y) = (x^\sharp,y^\sharp)$ est continue.  Par ailleurs, on a
$x^\sharp = x$ si et seulement si $x$ réalise $\max_{\tilde x\in C}
u(\tilde x,y)$ (un sens est évident, et pour l'autre il suffit de se
convaincre que s'il existe $\tilde x$ tel que $u(\tilde x,y) > u(x,y)$
alors il y a un $i$ tel que ceci soit vrai en remplaçant $\tilde x$
par $x_i$, et on a alors $\varphi_i(x,y)>0$ donc $u(x^\sharp,y) >
u(x,y)$) ; et on a un résultat analogue pour $y$.  La fonction $T$
continue du compact convexe $C\times C'$ vers lui-même y admet un
point fixe $(x_0,y_0)$, vérifiant donc $(x_0^\sharp, y_0^\sharp) =
(x_0,y_0)$, c'est-à-dire que $u (x_0,y_0) = \max_{x\in C} u(x,y_0) =
\min_{y\in C'} u(x_0, y)$.  On a donc maintenant
\[
\max_{x\in C} \min_{y\in C'} u(x,y)
\geq \min_{y\in C'} u(x_0,y) = u(x_0,y_0)
= \max_{x\in C} u(x,y_0) \geq
\min_{y\in C'} \max_{x\in C} u(x,y)
\]
ce qu'on voulait.

Pour se ramener au cas où $C$ et $C'$ sont enveloppes convexes d'un
nombre fini de points, on observe que pour tout $\varepsilon>0$ il
existe $\Sigma$ et $\Sigma'$ des enveloppes convexes d'un nombre fini
de points (= polytopes) contenues dans $C$ et $C'$ respectivement et
telles que pour tout $x\in C$ on ait $\min_{y\in C'} u(x,y) >
\min_{y\in\Sigma'} u(x,y)-\varepsilon$ et $\max_{x\in C} u(x,y) <
\max_{x\in\Sigma} u(x,y)+\varepsilon$ (explication : il est trivial
que pour chaque $x$ il existe un $\Sigma'$ vérifiant la condition
demandée, le point intéressant est qu'un unique $\Sigma'$ peut
convenir pour tous les $x$ ; mais pour chaque $\Sigma'$ donné,
l'ensemble des $x$ pour lesquels il convient est un ouvert de $C$, qui
est compact, donc un nombre fini de ces ouverts recouvrent $C$, et on
prend l'enveloppe convexe de la réunion des $\Sigma'$ en question ; on
procède de même pour $\Sigma$).  On a alors $\max_{x\in C} \min_{y\in
  C'} u(x,y) > \max_{x\in \Sigma} \min_{y\in \Sigma'} u(x,y) -
\varepsilon$ et une inégalité analogue pour l'autre membre : on en
déduit l'inégalité recherchée à $2\varepsilon$ près, mais comme on
peut prendre $\varepsilon$ arbitrairement petit, on a ce qu'on
voulait.
\end{proof}

\begin{cor}
Soit $C$ un convexe compact dans un espace affine réel de dimension
finie, et $u\colon C^2 \to \mathbb{R}$ une application bi-affine
antisymétrique (i.e., $u(y,x) = -u(x,y)$).  Alors il
existe $x\in C$ tel que pour tout $y\in C$ on ait $u(x,y)\geq 0$
(et la valeur commune des deux membres de l'égalité du
théorème \ref{theorem-minimax} est $0$).
\end{cor}
\begin{proof}
On applique le théorème : il donne $\max_{x\in C}\penalty0 \min_{y\in
  C} u(x,y) = \min_{y\in C}\penalty0 \max_{x\in C} u(x,y)$.  Mais
puisque $u$ est antisymétrique ceci s'écrit encore $\min_{y\in C}y
\max_{x\in C} (-u(y,x))$, soit, en renommant les variables liées,
$\min_{x\in C}\penalty0 \max_{y\in C} (-u(x,y)) = -\max_{x\in
  C}\penalty0 \min_{y\in C} u(x,y)$.  Par conséquent, $\max_{x\in
  C}\penalty0 \min_{y\in C} u(x,y) = 0$ (il est son propre opposé), et
en prenant un $x$ qui réalise ce maximum, on a $\min_{y\in C} u(x,y) =
0$, ce qu'on voulait prouver.
\end{proof}

Avec les hypothèses et notations du corollaire, l'ensemble des $x$
tels que $u(x,y)\geq 0$ pour tout $y\in C$ est un convexe
compact $C_0 \neq \varnothing$ inclus dans $C$.


%
%
%

\section{Théorie combinatoire des jeux impartiaux}

\subsection{Graphes orientés bien-fondés}

Le but de cette section est de présenter les outils fondamentaux sur
les graphes orientés bien-fondés (cf. \ref{definitions-graphs})
permettant utiles à la théorie combinatoire des jeux impartiaux.  Il
s'agit notamment de la théorie de l'induction bien-fondée
(cf. \ref{scholion-well-founded-induction}
et \ref{scholion-well-founded-definition}).

\begin{defn}\label{definitions-graphs}
Un \textbf{graphe orienté [simple]} est la donnée d'un ensemble $G$ et
d'une partie $E$ de $G^2$ ne rencontrant pas la diagonale (i.e., un
ensemble de couples $(x,y)$ avec $x\neq y$) : si on préfère, il s'agit
d'un ensemble $G$ muni d'une relation $E$ irreflexive.  Les éléments
de $G$ s'appellent \textbf{sommets} et les éléments de $E$
\textbf{arêtes} de $G$, et si $(x,y) \in E$, on dit qu'il y a une
arête allant du sommet $x$ au sommet $y$, ou arête de source $x$ et de
cible $y$, ou encore que $y$ est \textbf{atteint} par une arête de
source $x$, ou encore que $y$ est un \textbf{voisin sortant} de $x$,
et on notera $\outnb(x) = \{y : (x,y) \in E\}$ l'ensemble des voisins
sortants de $x$.  Un sommet qui n'a pas de voisin sortant est
appelé \textbf{puits} dans $G$.

Un tel graphe est dit \textbf{fini} lorsque $G$ est fini (il est clair
que $E$ l'est alors aussi).  Il est dit \textbf{acyclique} lorsqu'il
n'existe pas de suite finie (« cycle ») $x_0,\ldots,x_{n-1}$ de
sommets telle que $(x_i,x_{i+1})$ soit une arête pour chaque $0\leq
i\leq n-1$, où on convient que $x_n = x_0$.

Un graphe orienté (possiblement infini) est dit \textbf{bien-fondé}
lorsqu'il n'existe pas de suite $x_0,x_1,x_2,\ldots$ de sommets telle
que $(x_i,x_{i+1})$ soit une arête pour tout $i\in\mathbb{N}$ (i.e.,
aucun cycle ni chemin infini, cf. ci-dessous).
\end{defn}

\thingy Il est évident que tout graphe bien-fondé est acyclique (s'il
existe un cycle $x_0,\ldots,x_{n-1}$, on en déduit une suite infinie
en posant $x_i = x_{i\mod n}$) ; pour un graphe \emph{fini}, la
réciproque est vraie : en effet, s'il existe une suite infinie
$x_0,x_1,x_2,\ldots$ avec une arête de $x_i$ à $x_{i+1}$ pour
chaque $i$, il doit exister $n$ tel que $x_n = x_0$, et on obtient
alors un cycle $x_0,\ldots,x_{n-1}$.  En général, cependant, les
notions sont distinctes, l'exemple le plus évident étant sans doute
celui de $\mathbb{N}$ dans lequel on fait pointer une arête de $i$
à $i+1$ pour chaque $i$.

\begin{defn}\label{definition-accessibility-downstream}
Si $G$ est un graphe orienté on appelle \textbf{relation
  d'accessibilité} la clôture réflexive-transitive de la relation
donnée par les arêtes de $G$ : autrement dit, on dit que $y$ est
accessible à partir de $x$ lorsqu'il existe $x {=}
x_0,x_1,\ldots,x_{n-1},x_n {=} y$ tels que pour chaque $i$ le sommet
$x_{i+1}$ soit voisin sortant de $x_i$ (on autorise $n=0$,
c'est-à-dire que chaque sommet est toujours accessible à partir de
lui-même).

L'ensemble des sommets accessibles à partir d'un sommet $x$
s'appellera aussi l'\textbf{aval} de $x$ et pourra se noter
$\downstr(x)$ (c'est donc la plus petite partie $P$ de $G$ telle que
$x\in P$ et $y\in P \limp \outnb(y)\subseteq P$,
cf. \ref{definition-downstream-closed-inductive}).  On peut considérer
l'aval de $x$ comme un sous-graphe induit de $G$ (c'est-à-dire,
considérer le graphe dont l'ensemble des sommets est l'aval de $x$ et
dont les arêtes sont celles qui partent d'un tel sommet).  On
remarquera la convention faite que $x$ appartient à son propre aval.
\end{defn}

\thingy On peut remarquer que la relation d'accessibilité sur $G$ est
antisymétrique (i.e., est une relation d'ordre partiel) si et
seulement si $G$ est acyclique.  Lorsque $G$ est bien-fondé, la
relation d'accessibilité est elle-même bien-fondée (au sens où le
graphe qu'elle définit est bien-fondé).

\begin{defn}\label{definition-downstream-closed-inductive}
Si $G$ est un graphe orienté, on dira qu'un ensemble $P$ de sommets de
$G$ est \textbf{aval-clos} lorsqu'il vérifie la propriété suivante :
« si $x$ est dans $P$ alors tout voisin sortant de $x$ est dans $P$ »
(soit $x\in P \limp \outnb(x)\subseteq P$ ; ou de façon équivalente,
« tout sommet accessible à partir d'un sommet de $P$ est encore
  dans $P$ »,).

Réciproquement, on dira qu'un ensemble $P$ de sommets de $G$ est
\textbf{aval-inductif} lorsqu'il vérifie la propriété suivante : « si
  $x \in G$ est tel que tout voisin sortant de $x$ appartient à $P$,
  alors $x$ lui-même appartient à $P$ » (i.e. « $P$ contient tout
  sommet dont tous les voisins sortants sont dans $P$ »,
soit $\outnb(x)\subseteq P \limp x\in P$).
\end{defn}

\thingy\label{trivial-remark-downstream} Il est clair qu'une
intersection ou réunion quelconque d'ensembles aval-clos est encore
aval-close.  L'aval de $x$ (ensemble des sommets accessibles
depuis $x$) est toujours aval-clos, c'est même la plus petite partie
aval-close contenant $x$, et il est facile de se convaincre qu'un
ensemble de sommets est aval-clos si et seulement si il est une
réunion d'avals.

Pour ce qui est des ensembles aval-inductifs, il est clair qu'une
intersection quelconque d'ensembles aval-inductifs est aval-inductive.
Leur nature, au moins dans un graphe bien-fondé, va être précisée dans
ce qui suit, et ceci justifiera le terme d'« aval-inductif ».

\begin{prop}[induction bien-fondée]\label{well-founded-induction}
Pour un graphe orienté $G$, les affirmations suivantes sont
équivalentes :

\begin{itemize}
\item[(*)]$G$ est bien-fondé.
\item[(\dag)]Tout ensemble \emph{non vide} $N$ de sommets de $G$
  contient un sommet $x \in N$ qui est un puits pour $N$,
  c'est-à-dire qu'il n'existe aucune arête $(x,y)$ de $G$ avec $y \in
  N$ (i.e., aucun voisin sortant de $x$ n'appartient à $N$).
\item[(\ddag)]Si une partie $P\subseteq G$ vérifie la propriété
  suivante « si $x \in G$ est tel que tout voisin sortant de $x$
    appartient à $P$, alors $x$ lui-même appartient à $P$ » (i.e.,
  « $P$ est aval-inductif »,
  cf. \ref{definition-downstream-closed-inductive}), alors $P = G$.
\end{itemize}
\end{prop}
\begin{proof}
L'équivalence entre (\dag) et (\ddag) est complètement formelle : elle
s'obtient en posant $P = G\setminus N$ ou réciproquement $N =
G\setminus P$, en passant à la contraposée, et en passant aussi à la
contraposée à l'intérieur de la propriété d'être aval-inductif (entre
guillemets dans (\ddag)), et encore une fois dans la prémisse de cette
propriété (« tout voisin sortant de $x$ appartient à $P$ » équivaut à
« aucun voisin sortant de $x$ n'appartient à $N$ », i.e., « $x$ est un
  puits pour $N$ »).

Pour montrer que (\dag) implique (*), il suffit d'appliquer (\dag) à
l'ensemble $N := \{x_0,x_1,x_2,\ldots\}$ des sommets d'une suite telle
qu'il y ait une arête de $x_i$ à $x_{i+1}$.

Pour montrer que (*) implique (\dag), on suppose que $N$ est un
ensemble non-vide de sommets sans puits [i.e., puits pour $N$] : comme
$N$ est non-vide, on choisit $x_0 \in N$, et comme $x_0$ n'est pas un
puits on peut choisir $x_1 \in N$ atteignable à partir de $x_0$ par
une arête, puis $x_2 \in N$ atteignable à partir de $x_1$ et ainsi de
suite — par récurrence (et par l'axiome du choix [dépendants]), on
construit ainsi une suite $(x_i)$ de sommets telle qu'il y ait une
arête de $x_i$ à $x_{i+1}$.
\end{proof}

La définition (*) choisie pour un graphe bien-fondé est la plus
compréhensible, mais en un certain sens la définition (\ddag) est « la
  bonne » (en l'absence de l'axiome du choix, il faut utiliser (\dag)
ou (\ddag), et en mathématiques constructives il faut
utiliser (\ddag)).  En voici une traduction informelle :

\begin{scho}\label{scholion-well-founded-induction}
Pour montrer une propriété $P$ sur les sommets d'un graphe bien-fondé,
on peut supposer (comme « hypothèse d'induction »), lorsqu'il s'agit
de montrer que $x$ a la propriété $P$, que cette propriété est déjà
connue de tous les voisins sortants de $x$.
\end{scho}

Exactement comme le principe de récurrence sur les entiers naturels,
le principe d'induction bien-fondée peut servir non seulement à
démontrer des propriétés sur les graphes bien-fondés, mais aussi à
définir des fonctions dessus :

\begin{thm}[définition par induction bien-fondée]\label{well-founded-definition}
Soit $G$ un graphe orienté bien-fondé et $Z$ un ensemble quelconque.
Notons $\outnb(x) = \{y : (x,y) \in E\}$ l'ensemble des
voisins sortants d'un sommet $x$ de $G$ (i.e., des $y$ atteints par une
arête de source $x$).

Appelons $\mathscr{F}$ l'ensemble des couples $(x,f)$ où $x\in G$ et
$f$ une fonction de l'ensemble des voisins sortants de $x$ vers $Z$
(autrement dit, $\mathscr{F}$ est $\bigcup_{x \in G} \big(\{x\}\times
Z^{\outnb(x)}\big)$).  Soit enfin $\Phi\colon \mathscr{F} \to Z$
une fonction quelconque.  Alors il existe une unique fonction $f\colon
G \to Z$ telle que pour tout $x \in G$ on ait
\[
f(x) = \Phi(x,\, f|_{\outnb(x)})
\]
\end{thm}
\begin{proof}
Montrons d'abord l'unicité : si $f$ et $f'$ vérifient toutes les deux
la propriété anoncée, soit $P$ l'ensemble des sommets $x$ de $G$ tels
que $f(x) = f'(x)$.  Si $x \in G$ est tel que $\outnb(x)
\subseteq P$, c'est-à-dire que $f|_{\outnb(x)} =
f'|_{\outnb(x)}$, alors $f(x) = \Phi(x,\,
f|_{\outnb(x)}) = \Phi(x,\, f'|_{\outnb(x)}) = f'(x)$,
autrement dit, $x\in P$.  La phrase précédente affirme précisément que
$P$ vérifie la propriété entre guillemets dans (\ddag)
de \ref{well-founded-induction}, et d'après la proposition en
question, on a donc $P = G$, c'est-à-dire $f = f'$.  Ceci montre
l'unicité.

Pour montrer l'existence, on considère l'ensemble $\mathfrak{E}$ des
fonctions $e\colon H\to Z$ définies sur une partie aval-close $H
\subseteq G$ et telles que pour tout $e(x) = \Phi(x, e|_{\outnb(x)})$
pour tout $x\in H$.  Si $e,e' \in \mathfrak{E}$ alors $e$ et $e'$
coïncident là où toutes deux sont définies, comme le montre l'unicité
qu'on a montrée (appliquée à $e$ et $e'$ sur l'ensemble aval-clos $H
\cap H'$ de définition commun de $e$ et $e'$).  En particulier, la
réunion [des graphes] de tous les $e\in\mathfrak{E}$ définit encore un
élément $f$ de $\mathfrak{E}$, maximal pour le prolongement.  Soit $P$
l'ensemble des $x \in G$ où $f$ est définie.  Si $P$ contient (i.e.,
$f$ est définie sur) tous les voisins sortants d'un certain $x\in G$,
alors $f$ est nécessairement définie aussi en $x$, sans quoi on
pourrait l'y prolonger par $f(x) = \Phi(x,\, f|_{\outnb(x)})$, ce qui
contredirait la maximalité de $f$.  Par induction bien-fondée, on en
conclut $P = G$, c'est-à-dire que $f$ est définie sur $G$ tout entier.
C'est ce qu'on voulait.
\end{proof}

Ce théorème est difficile à lire.  En voici une traduction
informelle :

\begin{scho}\label{scholion-well-founded-definition}
Pour définir une fonction $f$ sur un graphe bien-fondé, on peut
supposer, lorsqu'on définit $f(x)$, que $f$ est déjà défini (i.e.,
connu) sur tous les voisins sortants de $x$ : autrement dit, on
peut librement utiliser la valeur de $f(y)$ sur chaque sommet $y$
voisin sortant de $x$, dans la définition de $f(x)$.
\end{scho}

Voici un exemple d'application de la définition par induction
bien-fondée :

\begin{defn}
Soit $G$ un graphe orienté bien-fondé dans lequel chaque sommet n'a
qu'un nombre fini de voisins sortants.  En utilisant le
théorème \ref{well-founded-definition}, on définit alors une fonction
$\rho\colon G \to \mathbb{N}$ par $\rho(x) = \max\{\rho(y) :
y\in\outnb(x)\} + 1$ où il est convenu que $\max\varnothing = -1$ ;
formellement, c'est-à-dire qu'on pose $\Phi(x, r) = \max\{r(y) :
y\in\outnb(x)\} + 1$ avec $\Phi(x, r) = 0$ si $x$ est un puits, et
qu'on appelle $\rho$ la fonction telle que $\rho(x) = \Phi(x,
\rho|_{\outnb(x)})$ dont l'existence et l'unicité sont garanties par
le théorème.  Cette fonction $\rho$ s'appelle la \textbf{fonction
  rang} sur $G$, on dit que $\rho(x)$ est le rang (ou rang bien-fondé)
d'un sommet $x$.
\end{defn}

\thingy Autrement dit, un sommet de rang $0$ est un puits,
un sommet de rang $1$ est un sommet non-puits dont tous les
voisins sortants sont terminaux, un sommet de rang $2$ est un sommet dont
tous les voisins sortants sont de rang $\leq 1$ mais et au moins un est de
rang exactement $1$, et ainsi de suite.

Il revient au même de définir le rang de la manière suivante : le rang
$\rho(x)$ d'un sommet $x$ d'un graphe orienté bien-fondé est la plus
grande longueur possible d'un chemin orienté partant de $x$,
c'est-à-dire, le plus grand $n$ tel qu'il existe une suite
$x_0,x_1,\ldots,x_n$ telle que $x_0 = x$ et que pour chaque $i$ le
sommet $x_{i+1}$ soit atteint par une arête de source $x_i$.

Voici un autre exemple de définition par induction bien-fondée :

\begin{defn}\label{definition-grundy-function}
Soit $G$ un graphe orienté bien-fondé dans lequel chaque sommet n'a
qu'un nombre fini de voisins sortants.  En utilisant le
théorème \ref{well-founded-definition}, on définit alors une fonction
$\gamma\colon G \to \mathbb{N}$ par $\gamma(x) = \mex\{\gamma(y) :
y\in\outnb(x)\}$ où, si $S\subseteq\mathbb{N}$, on note $\mex S
:= \mathbb{N}\setminus S$ pour le plus petit entier naturel
\emph{n'appartenant pas} à $S$ ; formellement, c'est-à-dire qu'on pose
$\Phi(x, g) = \mex\{g(y) : y\in\outnb(x)\}$ et qu'on appelle
$\gamma$ la fonction telle que $\gamma(x) = \Phi(x,
\gamma|_{\outnb(x)})$ dont l'existence et l'unicité sont
garanties par le théorème.  Cette fonction $\gamma$ s'appelle la
\textbf{fonction de Grundy} sur $G$, on dit que $\gamma(x)$ est la
valeur de Grundy d'un sommet $x$.
\end{defn}

\thingy En particulier, un sommet de valeur de Grundy $0$ est un
sommet qui n'a que des sommets de valeur de Grundy $>0$ comme voisins
sortants (ceci inclut le cas particulier d'un puits), tandis qu'un
sommet de valeur de Grundy $>0$ est un sommet ayant au moins un sommet
de valeur de Grundy $0$ comme voisin sortant.

On verra que la notion de fonction de Grundy, et particulièrement le
fait que la valeur soit nulle ou pas, a énormément d'importance dans
l'étude de la théorie des jeux impartiaux.  On verra aussi comment la
définir sans l'hypothèse que chaque sommet n'a qu'un nombre fini de
voisins sortants (mais ce ne sera pas forcément un entier naturel).
En attendant, peut se passer de cette hypothèse pour définir isolément
l'ensemble des sommets de valeur de Grundy $0$ :

\begin{defn}\label{definition-grundy-kernel}
Soit $G$ un graphe orienté bien-fondé.  En utilisant le
théorème \ref{well-founded-definition}, on définit alors une partie $P
\subseteq G$ telle que $x \in P$ ssi $\outnb(x) \cap P =
\varnothing$ ; formellement, c'est-à-dire que pour $f\colon \outnb(x)
\to \{0,1\}$ on définit $\Phi(x, f)$ comme valant $1$ si $f$ prend la
valeur $0$ et $0$ si $f$ vaut constamment $1$, et qu'on appelle $f$ la
fonction telle que $f(x) = \Phi(x, f|_{\outnb(x)})$ dont l'existence
et l'unicité sont garanties par le théorème, et enfin on pose $P = \{x
\in G : f(x) = 0\}$.

Les éléments de $P$ seront appelés les \textbf{P-sommets} (ou
P-positions) de $G$, tandis que les éléments du complémentaire
$G\setminus P$ seront appelés \textbf{N-sommets} (ou N-positions)
de $G$ : ainsi, \emph{un P-sommet est un sommet dont tous les voisins
  sortants sont des N-sommets, et un N-sommet est un sommet qui a au
  moins un P-sommet pour voisin sortant}.
\end{defn}

On va voir que dans le jeu exposé en \ref{introduction-graph-game}, si
le graphe est bien-fondé, les P-sommets sont les positions du jeu à
partir desquelles le joueur précédent a une stratégie gagnante, tandis
que les N-sommets sont celles à partir desquelles le joueur suivant
(`N' comme « Next ») a une stratégie gagnante (consistant, justement,
à jouer vers un P-sommet).


\subsection{Généralisations aux graphes non nécessairement bien-fondés}

\begin{defn}\label{definition-wfpart}
L'ensemble des sommets d'un graphe orienté dont l'aval est bien-fondé,
autrement dit, l'ensemble des sommets $x$ tels qu'il n'existe pas de
suite $x_0,x_1,x_2,\ldots$ de sommets où $x_0 = x$ et où pour
chaque $i$ le sommet $x_{i+1}$ est atteint par une arête de
source $x_i$, est appelé la \textbf{partie bien-fondée} du graphe.
\end{defn}

\thingy\label{trivial-remark-wfpart} Il sera utile pour la suite de
remarquer que la partie bien-fondée de $G$ est à la fois aval-close et
aval-inductive (car on peut construire une suite infinie $x_0, x_1,
x_2\ldots$, avec $x_{i+1}$ voisin sortant de $x_i$, commençant par un
$x_0$ donné si et seulement si on peut le faire en commençant pour un
certain voisin sortant $x_1$ de ce $x_0$).

\begin{prop}\label{wfpart-is-smallest-inductive}
Si $G$ est un graphe orienté non supposé bien-fondé, la partie
bien-fondée de $G$ est la plus petite (pour l'inclusion) partie $P$
aval-inductive de $P$ (i.e., vérifiant la propriété « si $x \in
  G$ est tel que tout voisin sortant de $x$ appartient à $P$, alors
  $x$ lui-même appartient à $P$ »,
cf. \ref{definition-downstream-closed-inductive}).
\end{prop}
\begin{proof}
La plus petite partie aval-inductive de $G$ a bien un sens, car
l'intersection de toutes les parties aval-inductives est encore
aval-inductive (cf. \ref{trivial-remark-downstream}).

Si $x$ est un sommet de $G$ et $\downstr(x)$ désigne son aval
(considéré comme sous-graphe induit de $G$), il est clair que pour
toute partie $P$ aval-inductive de $G$, la partie $P \cap \downstr(x)$
de $\downstr(x)$ est aval-inductive dans ce dernier (le point
important étant que les voisins sortants d'un sommet de $\downstr(x)$
dans ce dernier sont les mêmes que ceux dans $G$).  En particulier, si
$\downstr(x)$ est bien-fondé (c'est-à-dire, si $x$ appartient à la
partie bien-fondée de $G$), alors $x$ appartient à toute partie
aval-inductive de $G$.

Mais réciproquement, la partie bien-fondée de $G$ est elle-même
aval-inductive (car si $\downstr(y)$ est bien-fondé pour tout voisin
sortant de $x$, il est clair que $\downstr(x)$ est aussi bien-fondé,
cf. \ref{trivial-remark-wfpart}), donc un sommet qui appartient à
toute partie aval-inductive de $G$ est, en particulier, dans la partie
bien-fondée de $G$.
\end{proof}

\thingy Pour pouvoir énoncer le théorème suivant, on aura besoin de
faire les rappels, définitions et remarques suivants.  Une
\textbf{fonction partielle} $A \dasharrow Z$, où $A$ est un ensemble
quelconque, n'est rien d'autre qu'une fonction définie $D \to Z$ sur
une partie $D\subseteq A$ de $Z$ (appelée \textbf{ensemble de
  définition} de la partie).  Si $f,g\colon A \dasharrow Z$ sont deux
fonctions partielles, on dit que $f$ \textbf{prolonge} $g$ et on note
$f \supseteq g$ ou $g\subseteq f$, lorsque l'ensemble de définition
$D_f$ de $f$ contient celui $D_g$ de $g$ et que $f$ et $g$ coïncident
sur $D_f$ (ceci signifie bien que $f \supseteq g$ en tant qu'ensembles
si on identifie une fonction avec son graphe).  Il s'agit bien sûr là
d'un ordre partiel (sur l'ensemble des fonctions partielles $A
\dasharrow Z$).

Enfin, si $\Phi$ est une fonction partielle elle-même définie sur
l'ensemble des fonctions partielles $A \dasharrow Z$ (cet ensemble est
$\bigcup_{D\subseteq A} Z^D$, si on veut), on dit que $\Phi$ est
\textbf{cohérente} lorsque $\Phi(f) = \Phi(g)$ à chaque fois que $f$
prolonge $g$ et que $\Phi(g)$ est définie (autrement dit, une fois que
$\Phi$ est définie sur une fonction partielle $g$, elle est définie
sur tout prolongement de $g$ et y prend la même valeur que sur $g$ ;
intuitivement, il faut s'imaginer que si $g$ apporte assez
d'information pour décider la valeur de $\Phi(g)$, toute information
supplémentaire reste cohérente avec cette valeur).

\begin{thm}\label{non-well-founded-definition}
Soit $G$ un graphe orienté et $Z$ un ensemble quelconque.
Notons $\outnb(x) = \{y : (x,y) \in E\}$ l'ensemble des
voisins sortants d'un sommet $x$ de $G$ (i.e., des $y$ atteints par une
arête de source $x$).

Appelons $\mathscr{F}$ l'ensemble des couples $(x,f)$ où $x\in G$ et
$f$ une fonction \emph{partielle} de l'ensemble des voisins sortants
de $x$ vers $Z$ (autrement dit, $\mathscr{F}$ est $\bigcup_{x \in G}
\bigcup_{D \subseteq \outnb(x)} \big(\{x\}\times Z^D\big)$).  Soit
enfin $\Phi\colon \mathscr{F} \dasharrow Z$ une fonction partielle
cohérente en la deuxième variable, c'est-à-dire telle que $\Phi(x,f) =
\Phi(x,g)$ dès que $f \supseteq g$ et que $\Phi(x,g)$ est définie.
Alors il existe une plus petite (au sens du prolongement) fonction
partielle $f\colon G \dasharrow Z$ telle que pour tout $x \in G$ on
ait
\[
f(x) = \Phi(x,\, f|_{\outnb(x)})
\]
(au sens où chacun des deux membres est défini ssi l'autre l'est, et
dans ce cas ils ont la même valeur).

Si $\Phi(x,g)$ est défini à chaque fois que $g$ est totale, alors la
fonction $f$ qu'on vient de décrire est définie \emph{au moins} sur la
partie bien-fondée de $G$.
\end{thm}
\begin{proof}
Soit $\mathscr{D}$ l'ensemble des fonctions partielles $f \colon G
\dasharrow Z$.  Pour $f \in \mathscr{D}$, on définit $\Psi(f)$ comme
la fonction partielle $x \mapsto \Phi(x, f|_{\outnb(x)})$.  Remarquons
que si $f$ prolonge $g$ dans $\mathscr{D}$ alors $\Psi(f)$
prolonge $\Psi(g)$ (c'est une traduction de la cohérence supposée
sur $\Phi$).  Le lemme suivant (appliqué à $X=G$, les autres notations
étant inchangées) permet de conclure à l'existence de $f$.

Pour ce qui est de la dernière affirmation, on procède par induction
bien-fondée sur la partie bien-fondée de $G$ : si $f|_{\outnb(x)}$ est
totale, i.e., si $f$ est définie sur chaque voisin sortant de $x$,
alors l'hypothèse faite sur $\Phi$ assure que $f(x)$ est définie, et
l'induction bien-fondée ((\ddag) de \ref{well-founded-induction}
appliqué à l'intersection $P$ de la partie bien-fondée de $G$ et de
l'ensemble de définition de $f$) montre alors que $f$ est définie
partout sur la partie bien-fondée de $G$.
\end{proof}

La démonstration du théorème repose crucialement sur le lemme suivant,
dont on va donner deux démonstrations :
\begin{lem}
Soient $X$ et $Z$ deux ensembles quelconques : notons $\mathscr{D}$
l'ensemble des fonctions partielles $X\dasharrow Z$, qu'on verra comme
des parties de $X\times Z$ ne contenant jamais deux couples $(x,z_1)$
et $(x,z_2)$ avec la même première coordonnée.  (Lorsque $f\supseteq
g$, on dit que « $f$ prolonge $g$ ».)

Soit $\Psi \colon \mathscr{D} \to \mathscr{D}$ une fonction (totale !)
vérifiant : $\Psi$ est \emph{croissante} pour l'inclusion,
c'est-à-dire que si $f$ prolonge $g$, alors $\Psi(f)$
prolonge $\Psi(g)$.  Alors il existe une plus petite (au sens du
prolongement) fonction partielle $f \in \mathscr{D}$ telle que
$\Psi(f) = f$.
\end{lem}
\begin{proof}[Première démonstration]
Montrons d'abord que \emph{si} il existe une fonction partielle $f \in
\mathscr{D}$ telle que $\Psi(f) = f$, ou même simplement $\Psi(f)
\subseteq f$, alors il en existe une plus petite.  Pour cela, il
suffit de considérer l'intersection $h$ de toutes les $f$ telles que
$\Psi(f) \subseteq f$ (considérées comme des parties de $X\times Z$) :
dès lors qu'il existe au moins un $f \in \mathscr{D}$ tel que $\Psi(f)
\subseteq f$, cette intersection $h$ est bien définie et est bien un
élément de $\mathscr{D}$.  Si $\Psi(f) \subseteq f$ alors $h \subseteq
f$ (puisque $h$ est l'intersection des $f$), donc $\Psi(h) \subseteq
\Psi(f)$ (par croissance de $\Psi$), donc $\Psi(h) \subseteq f$ (par
transitivité), et comme ceci est vrai pour tous les $f$ dont
l'intersection est $h$, on a finalement $\Psi(h) \subseteq h$ ; mais
la croissance de $\Psi$ donne alors aussi $\Psi(\Psi(h)) \subseteq
\Psi(h)$, et du coup $\Psi(h)$ fait partie des $f$ qu'on a
intersectées pour former $h$, et on a ainsi $h \subseteq \Psi(h)$ ;
bref, $\Psi(h) = h$, et $h$ est à la fois le plus petit élément $f \in
\mathscr{D}$ vérifiant $\Psi(f) \subseteq f$ (de par sa construction)
et le plus petit vérifiant $\Psi(f) = f$ (puisqu'il vérifie cette
propriété).

Reste à montrer qu'il existe bien une fonction partielle $f$ telle que
$\Psi(f) = f$, ou même simplement $\Psi(f) \subseteq f$.  Pour cela,
on introduit l'ensemble $\mathscr{E}$ des $f \in \mathscr{D}$ qui
vérifient $\Psi(f) \supseteq f$ (inclusion dans le sens opposé du
précédent !).  Notons que $\mathscr{E}$ n'est pas vide puisque
$\varnothing \in \mathscr{E}$ (où $\varnothing$ est la fonction vide,
définie nulle part).

Soit maintenant $\mathfrak{M}$ l'ensemble des applications (totales !)
$T\colon\mathscr{E}\to\mathscr{E}$ qui vérifient (i) $T(f) \supseteq
f$ pour tout $f\in \mathscr{E}$ et (ii) si $f \supseteq g$ alors $T(f)
\supseteq T(g)$.  Ainsi $\id_{\mathscr{E}} \in \mathfrak{M}$
(trivialement) et $\Psi \in \mathfrak{M}$ (par définition de
$\mathscr{E}$ et par croissance de $\Psi$) ; et si $T, T' \in
\mathfrak{M}$ on a $T'\circ T \in \mathfrak{M}$ (en notant $T'\circ T$
la composée).  L'observation suivante sera cruciale : si $g \in
\mathscr{E}$ et $T, T' \in \mathfrak{M}$, alors on a à la fois
$(T'\circ T)(g) \supseteq T(g)$ (d'après (i) pour $T'$) et $(T'\circ
T)(g) \supseteq T'(g)$ (d'après (i) pour $T$ et (ii) pour $T'$).

Affirmation : si $g \in \mathscr{E}$ alors la réunion des $T(g)$ pour
tous les $T\in\mathfrak{M}$ est, en fait, une fonction partielle.  En
effet, l'observation faite ci-dessus montre que si $T, T' \in
\mathfrak{M}$ alors les fonctions partielles $T(g)$ et $T'(g)$ sont
toutes deux restrictions d'une même fonction partielle $(T'\circ
T)(g)$, donc il ne peut pas y avoir de conflit entre leurs valeurs (au
sens où si toutes les deux sont définies en un $x\in X$, elles y
coïncident) — c'est exactement ce qui permet de dire que la réunion
est encore une fonction partielle.  Notons $U(g) :=
\bigcup_{T\in\mathfrak{M}} T(g)$ cette réunion.  On a au moins $U(g)
\in \mathscr{D}$.  Mais en fait, comme $U(g)$ prolonge tous les
$T(g)$, la croissance de $\Psi$ assure que $\Psi(U(g))$ prolonge tous
les $\Psi(T(g))$, qui prolongent eux-mêmes les $T(g)$ (puisque $T(g)
\in \mathscr{E}$), bref $\Psi(U(g)) \supseteq U(g)$ et ainsi $U(g) \in
\mathscr{E}$.

Mais alors $U \in \mathfrak{M}$ (on vient de voir que $U$ est une
fonction $\mathscr{E}\to\mathscr{E}$, et les propriétés (i) et (ii)
sont claires).  En particulier, $\Psi\circ U \in \mathfrak{M}$, donc
$(\Psi\circ U)(g)$ fait partie des $T(g)$ dont $U(g)$ est la réunion,
et on a donc $(\Psi\circ U)(g) \subseteq U(g)$, l'inclusion réciproque
ayant déjà été vue (et de toute façon on n'en a pas besoin).  On a
donc bien trouvé une fonction partielle $f := U(\varnothing)$ telle
que $\Psi(f) \subseteq f$ (même $\Psi(f) = f$).
\end{proof}

\begin{proof}[Seconde démonstration]
On utilise la notion d'ordinaux.  On pose $f_0 = \varnothing$, et par
induction sur l'ordinal $\alpha$ on définit $f_{\alpha+1} =
\Psi(f_\alpha)$ et si $\delta$ est un ordinal limite alors $f_\delta =
\bigcup_{\gamma<\delta} f_\gamma$.  On montre simultanément par
induction sur $\alpha$ que $f_\alpha$ est bien définie, est une
fonction partielle, et, grâce à la croissance de $\Psi$, prolonge
$f_\beta$ pour chaque $\beta<\alpha$ (c'est ce dernier point qui
permet de conclure que $\bigcup_{\gamma<\delta} f_\gamma$ est une
fonction partielle lorsque $\delta$ est un ordinal limite : la réunion
d'une famille totalement ordonnée pour l'inclusion de fonctions
partielles est encore une fonction partielle).  Les inclusions
$f_\beta \subseteq f_\alpha$ pour $\beta<\alpha$ ne peuvent pas être
toutes strictes sans quoi on aurait une surjection d'un ensemble sur
la classe des ordinaux.  Il existe donc $\tau$ tel que $f_{\tau+1} =
f_\tau$, c'est-à-dire $\Psi(f_\tau) = f_\tau$.  D'autre part, si
$\Psi(h) = h$, alors par induction sur $\alpha$ on montre $f_\alpha
\subseteq h$ pour chaque $\alpha$ (l'étape successeur étant que si
$f_\alpha \subseteq h$ alors $f_{\alpha+1} = \Psi(f_\alpha) \subseteq
\Psi(h) = h$), donc en particulier $f_\tau \subseteq h$, et $f_\tau$
est bien le plus petit $f$ tel que $\Psi(f) = f$.
\end{proof}



\subsection{Écrasement transitif}

\begin{defn}\label{definition-transitive-collapse}
Soit $G$ un graphe orienté bien-fondé.  En utilisant le
théorème \ref{well-founded-definition} (modulo la remarque qui suit),
on définit alors une fonction $f$ sur $G$ par $f(x) = \{f(y) :
y\in\outnb(x)\}$.  L'image $f(G)$ de $G$ par la fonction $f$ (c'est-à-dire
l'ensemble des $f(x)$ pour $x\in G$) s'appelle l'\textbf{écrasement
  transitif} ou \textbf{écrasement de Mostowski} de $G$, tandis que
$f$ s'appelle la fonction d'écrasement, et la valeur $f(x)$ (qui n'est
autre que l'écrasement transitif de l'aval de $x$ vu comme un graphe
orienté) s'appelle l'écasement transitif du sommet $x$.

On considérera l'écrasement $f(G)$ de $G$ comme un graphe orienté, en
plaçant une arête de $u$ vers $v$ lorsque $v \in u$ ; autrement dit,
lorsque $v = f(y)$ et $u = f(x)$ pour certains $x,y$ de $G$ tels qu'il
existe une arête de $x$ vers $y$.
\end{defn}

\thingy En particulier, un puits a pour écrasement $\varnothing$, un
sommet qui n'a pour voisins sortants que des sommets terminaux a pour
écrasement $\{\varnothing\}$, un sommet qui n'a pour voisins sortants
que de tels sommets a pour écrasement $\{\{\varnothing\}\}$ tandis que
s'il a aussi des sommets terminaux pour voisins sortants ce sera
$\{\varnothing,\penalty0 \{\varnothing\}\}$, et ainsi de suite.

La terminologie « transitif » fait référence au fait qu'un ensemble
$E$ est dit transitif lorsque $v \in u\in E$ implique $v \in E$ (de
façon équivalente, $E \subseteq \mathscr{P}(E)$ où $\mathscr{P}(E)$
est l'ensemble des parties de $E$) : c'est le cas de $f(G)$ ici.

Il y a une subtilité ensembliste dans la définition ci-dessus, c'est
qu'on ne peut pas donner \textit{a priori} un ensemble $Z$ dans lequel
$f$ prend sa valeur : il faut en fait appliquer une généralisation
de \ref{well-founded-definition} où $Z$ est remplacé par l'univers de
tous les ensembles : nous ne rentrerons pas dans ces subtilités, et
admettrons qu'il existe bien une unique fonction $f$ sur $G$ qui
vérifie $f(x) = \{f(y) : y\in\outnb(x)\}$ pour chaque $x\in G$.

\begin{defn}
Un graphe orienté $G$ est dit \textbf{extensionnel} lorsque deux
sommets $x$ et $x'$ ayant le même ensemble de voisins sortants ($\outnb(x)
= \outnb(x')$) sont égaux.
\end{defn}

Pour bien comprendre et utiliser la définition ci-dessus, il est
pertinent de rappeler que \emph{deux ensembles sont égaux si et
  seulement si il sont les mêmes éléments} (\textbf{axiome
  d'extensionalité}).

\begin{prop}\label{extensional-iff-collapse-injective}
Un graphe orienté bien-fondé est extensionnel si et seulement si sa
fonction d'écrasement $f$ définie
en \ref{definition-transitive-collapse} est injective.
\end{prop}
\begin{proof}
Si $f$ est injective et si $\outnb(x) = \outnb(x')$ alors en
particulier $f(x) = f(x')$ (puisque $f(x)$ est définie comme l'image
par $f$ de $\outnb(x)$), donc $x = x'$.  Ceci montre que $G$ est
extensionnel.

Réciproquement, $G$ extensionnel et montrons que $f$ est injective,
c'est-à-dire que $f(x) = f(x')$ implique $x = x'$.  On va procéder par
induction bien-fondée sur le graphe $G^2$ dont les sommets sont les
couples $(x,x')$ de sommets de $G$, avec une arête de $(x,x')$ vers
$(y,y')$ lorsqu'il y en a de $x$ vers $y$ \emph{et} de $x'$
vers $y'$ : il est clair que $G^2$ est bien-fondé ; soit $P$
l'ensemble des sommets $(x,x')$ de $G^2$ tels que $f(x) = f(x')$
implique $x=x'$ (autrement dit, l'ensemble des sommets tels que
$(x,x')$ tels que $x=x'$ \emph{ou bien} $f(x) \neq f(x')$).  Soit
$(x,x')$ un sommet de $G^2$ dont tous les voisins sortants vérifient
l'hypothèse d'induction (i.e., appartiennent à $P$) : on suppose $f(x)
= f(x')$ et on veut montrer $x = x'$ pour pouvoir conclure $P = G^2$.
Or $f(x) \subseteq f(x')$ signifie que tout $f(y) \in f(x)$ appartient
à $f(x')$, c'est-à-dire que pour tout voisin sortant $y$ de $x$ il
existe un voisin sortant $y'$ de $x'$ pour lequel $f(y) = f(y')$, et
l'hypothèse d'induction montre alors $y = y'$ : ainsi, $\outnb(x)
\subseteq \outnb(x')$, et par symétrie, $f(x) = f(x')$ montre
$\outnb(x) = \outnb(x')$ donc, par extensionalité de $G$, on a $x =
x'$ comme on le voulait.
\end{proof}

\thingy Si $G$ est un graphe orienté (non nécessairement bien-fondé),
et si $\sim$ est une relation d'équivalence sur l'ensemble des sommets
de $G$, on peut définir un \emph{graphe quotient} $G/\sim$ dont les
sommets sont les classes d'équivalences pour $\sim$ de sommets de $G$
et dont les arêtes sont les couples $(\bar x,\bar y)$ de classes
telles qu'il existe une arête $(x,y)$ (i.e., de $x$ vers $y$) dans $G$
avec $\bar x$ classe de $x$ et $\bar y$ celle de $y$ ; si ce graphe
est extensionnel, on peut dire abusivement que $\sim$ l'est :
concrètement, cela signifie que pour tous $x,x' \in G$, si pour chaque
voisin sortant $y$ de $x$ il existe un voisin sortant $y'$ de $x'$
avec $y \sim y'$ et que la même chose vaut en échangeant $x$ et $x'$,
alors $x \sim x'$.  Une intersection quelconque de relations
d'équivalence extensionnelles sur $G$ est encore une relation
d'équivalence extensionnelle, donc il existe une plus petite relation
d'équivalence extensionnelle $\equiv$ sur $G$, c'est-à-dire un plus
grand quotient $G/\equiv$ de $G$ qui soit extensionnel (« plus grand »
au sens où tout quotient de $G$ par une relation d'équivalence se
factorise à travers ce quotient $G/\equiv$).

Le contenu essentiel de la
proposition \ref{extensional-iff-collapse-injective} est que
l'écrasement transitif $f(G)$ d'un graphe $G$ bien-fondé réalise ce
plus grand quotient extensionnel $G/\equiv$ : la relation $f(x) =
f(x')$ sur $G$ est précisément la plus petite relation d'équivalence
extensionnelle $\equiv$ sur $G$ (en effet, la relation $f(x) = f(x')$
est évidemment extensionnelle, donc contient $\equiv$ par définition
de celle-ci, mais l'écrasement de $G/\equiv$ est le même que celui
de $G$, et comme la fonction d'écrasement est injective sur
$G/\equiv$, on a bien $f(x) = f(x')$ ssi $x\equiv x'$).


\subsection{Jeux impartiaux à information parfaite}

\begin{defn}\label{definition-impartial-combinatorial-game}
Un jeu \textbf{impartial à information parfaite} est un graphe
orienté $G$ muni d'un sommet $x_0$ appelé \textbf{position initiale}
et vérifiant de plus :
\begin{itemize}
\item pour un jeu « court » : $G$ est fini acyclique (ou de façon
  équivalente, fini et bien-fondé) ;
\item pour un jeu « terminant » : $G$ est bien-fondé ;
\item pour un jeu « fini à boucles » : $G$ est fini.
\item pour un jeu « non nécessairement terminant » : (aucune
  hypothèse).
\end{itemize}
On supposera de plus que tout sommet de $G$ est accessible à partir
de $x_0$ (si ce n'est pas le cas, il reviendra au même de supprimer
tous les sommets inaccessibles, assurant du coup cette hypothèse).
\end{defn}

La terminologie est malheureusement peu standardisée : la plupart des
auteurs font implicitement une des deux hypothèses
(« bien-fondé »=« terminant », et/ou « fini ») sur le jeu $G$, le cas
« court » étant la conjonction des deux.  Ici, on fera le plus souvent
l'hypothèse que $G$ est terminant ; on attire l'attention sur le fait
que cela signifie que $x_0$ appartient à la partie bien-fondée
(cf. \ref{definition-wfpart}) du graphe $G$.

\begin{defn}
Pour un jeu $G$ comme
en \ref{definition-impartial-combinatorial-game}, une
\textbf{stratégie} est une fonction partielle $\varsigma\colon G
\dasharrow G$ telle que $\varsigma(x)$ soit, s'il est défini, un
voisin sortant de $x$ (s'il n'est pas défini, il faut comprendre que
le joueur est forfait).

Une \textbf{partie} de $G$ est une suite finie ou infinie $(x_i)$ de
sommets de $G$ telle que $x_0$ soit la position initiale et que pour
chaque $i$ pour lequel $x_{i+1}$ soit défini, ce dernier soit un
voisin sortant de $x_i$.  Lorsque le dernier $x_i$ défini l'est pour
un $i$ pair, on dit qu'Alice \textbf{perd} et que Bob \textbf{gagne},
tandis que lorsque le dernier $x_i$ défini l'est pour un $i$ impair,
on dit qu'Alice gagne et que Bob perd ; enfin, lorsque $x_i$ est
défini pour tout entier naturel $i$ (ce qui ne peut pas se produire si
$G$ est bien-fondé), on dit que la partie est nulle ou que les deux
joueurs \textbf{survivent} sans gagner.  Lorsque de plus
$\varsigma(x_i) = x_{i+1}$ pour chaque $i$ pair pour lequel $x_i$ est
défini, on dit qu'Alice a joué la partie selon la stratégie
$\varsigma$ ; tandis que si $\tau(x_i) = x_{i+1}$ pour chaque $i$
impair pour lequel $x_i$ est défini, on dit que Bob a joué la partie
selon la stratégie $\tau$.

Si $\varsigma$ et $\tau$ sont deux stratégies, on définit $\varsigma
\ast \tau$ comme la partie jouée lorsque Alice joue $\varsigma$ et Bob
joue $\tau$ : autrement dit, $x_0$ est la position initiale du jeu,
et, si $x_i$ est défini, $x_{i+1}$ est défini par $\varsigma(x_i)$ si
$i$ est pair et $\tau(x_i)$ si $i$ est impair (si $x_{i+1}$ n'est pas
défini, la suite s'arrête là).

La stratégie $\varsigma$ est dite \textbf{gagnante pour Alice} lorsque
Alice gagne toute partie où elle joue selon $\varsigma$.  La stratégie
$\tau$ est dite \textbf{gagnante pour Bob} lorsque Bob gagne toute
partie où il joue selon $\tau$.  On définit de même une stratégie
survivante (c'est-à-dire, permettant d'assurer au moins le nul) pour
Alice, resp. Bob.
\end{defn}

\begin{thm}\label{determinacy-of-perfect-information-games}
Soit $G$ un jeu impartial à information parfaite : exactement l'une
des trois affirmations suivantes est vraie :
\begin{itemize}
\item Alice possède une stratégie gagnante,
\item Bob possède une stratégie gagnante,
\item Alice et Bob possèdent une stratégie survivante — ce cas ne
  pouvant pas se produire si $G$ est terminant.
\end{itemize}
\end{thm}
\begin{proof}
\textcolor{red}{...}
\end{proof}

%
%
%
\end{document}