diff options
author | David A. Madore <david+git@madore.org> | 2013-02-07 17:44:18 +0100 |
---|---|---|
committer | David A. Madore <david+git@madore.org> | 2013-02-07 17:44:18 +0100 |
commit | 60b838b3bf3f99a0091edc6b04a5541b5a1fd37d (patch) | |
tree | dfff461a4563100e5337cc0ed004581e6d895109 | |
parent | 72ac39542e5c463de5751c1392cf17220334c02b (diff) | |
download | ordinal-zoo-60b838b3bf3f99a0091edc6b04a5541b5a1fd37d.tar.gz ordinal-zoo-60b838b3bf3f99a0091edc6b04a5541b5a1fd37d.tar.bz2 ordinal-zoo-60b838b3bf3f99a0091edc6b04a5541b5a1fd37d.zip |
Fix spelling mistake on Stål Aanderaa's name.
-rw-r--r-- | ordinal-zoo.tex | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/ordinal-zoo.tex b/ordinal-zoo.tex index 54cdc13..e6377a0 100644 --- a/ordinal-zoo.tex +++ b/ordinal-zoo.tex @@ -277,7 +277,7 @@ $\Sigma^1_1$-inductively definable subsets of $\omega$ also \cite[example 4.14 on p. 370]{Simpson1978}). That this ordinal is gerater than that of •\ref{PiOneOne}: -\cite[corollary 1 to theorem 6 on p.213]{Anderaa1974}; also see: +\cite[corollary 1 to theorem 6 on p.213]{Aanderaa1974}; also see: \cite[theorem 6.5]{Simpson1978}. This is the smallest ordinal $\omega_1^{\mathsf{E}_1^\#}$ not the @@ -547,6 +547,12 @@ so $A \in L_\gamma$ with $\gamma$ countable, as asserted. \begin{thebibliography}{} +\bibitem[Aanderaa1974]{Aanderaa1974} Stål Aanderaa, “Inductive + Definitions and their Closure Ordinals”, \textit{in}: Jens Erik + Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion + Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, + 207–220. + \bibitem[AbramsonSacks1976]{AbramsonSacks1976} Fred G. Abramson \& Gerald E. Sacks, “Uncountable Gandy Ordinals”, \textit{J. London Math. Soc. (2)} \textbf{14} (1976), 387–392. @@ -564,12 +570,6 @@ so $A \in L_\gamma$ with $\gamma$ countable, as asserted. \bibitem[Adams1981]{Adams1981} Douglas Adams, \textit{The Hitchiker's Guide to the Galaxy}, Pocket Books (1981), ISBN 0-671-46149-4. -\bibitem[Anderaa1974]{Anderaa1974} Stål Anderaa, “Inductive - Definitions and their Closure Ordinals”, \textit{in}: Jens Erik - Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion - Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0, - 207–220. - \bibitem[Barwise1975]{Barwise1975} Jon Barwise, \textit{Admissible sets and structures, An approach to definability theory}, Perspectives in Mathematical Logic \textbf{7}, Springer-Verlag |