summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid A. Madore <david+git@madore.org>2013-02-07 17:44:18 +0100
committerDavid A. Madore <david+git@madore.org>2013-02-07 17:44:18 +0100
commit60b838b3bf3f99a0091edc6b04a5541b5a1fd37d (patch)
treedfff461a4563100e5337cc0ed004581e6d895109
parent72ac39542e5c463de5751c1392cf17220334c02b (diff)
downloadordinal-zoo-60b838b3bf3f99a0091edc6b04a5541b5a1fd37d.tar.gz
ordinal-zoo-60b838b3bf3f99a0091edc6b04a5541b5a1fd37d.tar.bz2
ordinal-zoo-60b838b3bf3f99a0091edc6b04a5541b5a1fd37d.zip
Fix spelling mistake on Stål Aanderaa's name.
-rw-r--r--ordinal-zoo.tex14
1 files changed, 7 insertions, 7 deletions
diff --git a/ordinal-zoo.tex b/ordinal-zoo.tex
index 54cdc13..e6377a0 100644
--- a/ordinal-zoo.tex
+++ b/ordinal-zoo.tex
@@ -277,7 +277,7 @@ $\Sigma^1_1$-inductively definable subsets of $\omega$
also \cite[example 4.14 on p. 370]{Simpson1978}).
That this ordinal is gerater than that of •\ref{PiOneOne}:
-\cite[corollary 1 to theorem 6 on p.213]{Anderaa1974}; also see:
+\cite[corollary 1 to theorem 6 on p.213]{Aanderaa1974}; also see:
\cite[theorem 6.5]{Simpson1978}.
This is the smallest ordinal $\omega_1^{\mathsf{E}_1^\#}$ not the
@@ -547,6 +547,12 @@ so $A \in L_\gamma$ with $\gamma$ countable, as asserted.
\begin{thebibliography}{}
+\bibitem[Aanderaa1974]{Aanderaa1974} Stål Aanderaa, “Inductive
+ Definitions and their Closure Ordinals”, \textit{in}: Jens Erik
+ Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion
+ Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0,
+ 207–220.
+
\bibitem[AbramsonSacks1976]{AbramsonSacks1976} Fred G. Abramson \&
Gerald E. Sacks, “Uncountable Gandy Ordinals”, \textit{J. London
Math. Soc. (2)} \textbf{14} (1976), 387–392.
@@ -564,12 +570,6 @@ so $A \in L_\gamma$ with $\gamma$ countable, as asserted.
\bibitem[Adams1981]{Adams1981} Douglas Adams, \textit{The Hitchiker's
Guide to the Galaxy}, Pocket Books (1981), ISBN 0-671-46149-4.
-\bibitem[Anderaa1974]{Anderaa1974} Stål Anderaa, “Inductive
- Definitions and their Closure Ordinals”, \textit{in}: Jens Erik
- Fenstad \& Peter G. Hinman (eds.), \textit{Generalized Recursion
- Theory} (Oslo, 1972), North-Holland (1974), ISBN 0-7204-2276-0,
- 207–220.
-
\bibitem[Barwise1975]{Barwise1975} Jon Barwise, \textit{Admissible
sets and structures, An approach to definability theory},
Perspectives in Mathematical Logic \textbf{7}, Springer-Verlag