summaryrefslogtreecommitdiffstats
path: root/controle-20230412.tex
blob: 65a37c09defc02a34d39cad45b1729ae6815ecc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[a4paper,margin=2.5cm]{geometry}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix,calc}
\usepackage{hyperref}
%
%\externaldocument{notes-accq205}[notes-accq205.pdf]
%
\theoremstyle{definition}
\newtheorem{comcnt}{Whatever}
\newcommand\thingy{%
\refstepcounter{comcnt}\smallskip\noindent\textbf{\thecomcnt.} }
\newcommand\exercise{%
\refstepcounter{comcnt}\bigskip\noindent\textbf{Exercise~\thecomcnt.}\par\nobreak}
\renewcommand{\qedsymbol}{\smiley}
%
\newcommand{\id}{\operatorname{id}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\ord}{\operatorname{ord}}
\newcommand{\val}{\operatorname{val}}
%
\DeclareUnicodeCharacter{00A0}{~}
\DeclareUnicodeCharacter{A76B}{z}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
\newcommand{\spaceout}{\hskip1emplus2emminus.5em}
\newif\ifcorrige
\corrigetrue
\newenvironment{answer}%
{\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi%
\smallbreak\noindent{\underbar{\textit{Answer.}}\quad}}
{{\hbox{}\nobreak\hfill\checkmark}%
\ifcorrige\par\smallbreak\else\egroup\par\fi}
%
%
%
\begin{document}
\ifcorrige
\title{ACCQ205\\Final exam — answer key\\{\normalsize Algebraic curves}}
\else
\title{ACCQ205\\Final exam\\{\normalsize Algebraic curves}}
\fi
\author{}
\date{2023-04-12}
\maketitle

\pretolerance=8000
\tolerance=50000

\vskip1truein\relax

\noindent\textbf{Instructions.}

This exam consists of a single lengthy problem.  Although the
questions depend on each other, they have been worded in such a way
that the necessary information for subsequent questions is given in
the text.  Thus, failure to answer one question should not make it
impossible to proceed to later questions.

\medbreak

Answers can be written in English or French.

\medbreak

Use of written documents of any kind (such as handwritten or printed
notes, exercise sheets or books) is authorized.

Use of electronic devices of any kind is prohibited.

\medbreak

Duration: 2 hours

\ifcorrige
This answer key has 7 pages (cover page included).
\else
This exam has 4 pages (cover page included).
\fi

\vfill
{\noindent\tiny
\immediate\write18{sh ./vc > vcline.tex}
Git: \input{vcline.tex}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}

\pagebreak


%
%
%

\textit{The goal of this problem is to study a representation of lines
  in $\mathbb{P}^3$.}

\smallskip

We fix a field $k$.  Recall that \emph{points} in $\mathbb{P}^3(k)$
are given by quadruplets $(x_0{:}x_1{:}x_2{:}x_3)$ of “homogeneous
coordinates” in $k$, not all zero, defined up to a common
multiplicative constant, and that \emph{planes} in $\mathbb{P}^3(k)$
are of the form $\{(x_0{:}x_1{:}x_2{:}x_3) \in \mathbb{P}^3(k) : u_0
x_0 + \cdots + u_3 x_3 = 0\}$ (for some $u_0,\ldots,u_3$, not all
zero, defined up to a common multiplicative constant) which we can
denote as $[u_0{:}u_1{:}u_2{:}u_3]$ (a point of the
“dual” $\mathbb{P}^3$).  Our goal is to find a representation for
lines.

{\footnotesize It may be convenient, if so desired, to call $\langle
  w\rangle$ the point in projective space $\mathbb{P}^{m-1}(k)$
  defined by a vector $w\neq 0$ in $k^m$ (i.e., if $w =
  (w_0,\ldots,w_m)$ then $\langle w \rangle = (w_0{:}\cdots{:}w_m)$),
  that is, the class of $w$ under collinearity. \par}

\bigskip

\textbf{(1)} Given $x := (x_0,\ldots,x_3) \in k^4$ and $y :=
(y_0,\ldots,y_3) \in k^4$, let us define $x\wedge y := (w_{0,1},
w_{0,2}, w_{0,3}, w_{1,2}, w_{1,3}, w_{2,3}) \in k^6$ where $w_{i,j}
:= x_i y_j - x_j y_i$.  What is $(\lambda x)\wedge(\mu y)$ in relation
to $x\wedge y$?  Under what necessary and sufficient condition do we
have $x\wedge y = 0$?  What is $x\wedge(\lambda x+\mu y)$ in relation
to $x\wedge y$?

\begin{answer}
The $w_{i,j}$ are bilinear in $x,y$ (they are $2\times 2$
determinants) so $(\lambda x)\wedge(\mu y) = \lambda\mu(x\wedge y)$.
Vanishing of $w_{i,j}$ means $(x_i,x_j)$ is proportional to
$(y_i,y_j)$ so vanishing of all the $w_{i,j}$ means precisely that
$x$ or $y$ is zero or that $x$ and $y$ are collinear.  Again by
bilinearity, we have $x\wedge(\lambda x+\mu y) = \lambda(x\wedge x) +
\mu(x\wedge y)$ which is just $\mu(x\wedge y)$ since $x\wedge x$
is $0$.
\end{answer}

\textbf{(2)} Show that if $V \subseteq k^4$ is a $2$-dimensional
vector subspace, then the set of $x\wedge y$ for $x,y\in V$ is a
$1$-dimensional subspace of $k^6$.

\begin{answer}
Consider $u,v$ a basis of $V$: then $u\wedge v$ is nonzero, and any
element of $V$ can be written $\lambda u + \mu v$, and then $(\lambda
u + \mu v) \wedge (\lambda' u + \mu' v) = (\lambda \mu' - \lambda'
\mu)(u \wedge v)$ by (1) (or by composition of determinants).  In
other words, any $x\wedge y$ with $x,y\in V$ is collinear to $u\wedge
v$, and the latter is nonzero, and since $\lambda \mu' - \lambda' \mu$
can obviously take every value in $k$, we see that $\{x\wedge y :
x,y\in V\}$ is the line spanned by $u\wedge v$.
\end{answer}

\textbf{(3)} Deduce from (2) that if $L \subseteq \mathbb{P}^3(k)$ is
a line, then $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0
w_{1,2}{:}w_{1,3}{:}w_{2,3})$, where $w_{i,j} := x_i y_j - x_j y_i$ as
above, and where $(x_0{:}x_1{:}x_2{:}x_3)$ and
$(y_0{:}y_1{:}y_2{:}y_3)$ are two distinct points on $L$, is a
well-defined point in $\mathbb{P}^5(k)$, not depending on the chosen
points on $L$ nor on the homogeneous coordinates representing them.

\begin{answer}
Calling $\langle w\rangle$ the point in projective space
$\mathbb{P}^{m-1}(k)$ defined by a vector $w\neq 0$ in $k^m$, if $L$
is a line in $\mathbb{P}^3(k)$ we can see it as $\{\langle v\rangle :
v\in V\}$ for a $2$-dimensional vector subspace $V \subseteq k^4$, and
we have seen that $\langle x\wedge y\rangle \in \mathbb{P}^4(k)$
exists when $x$ and $y$ are not collinear (so that $x\wedge y \neq
0$), i.e., when $\langle x\rangle \neq \langle y\rangle$, and does not
depend on the $x,y \in V$.
\end{answer}

\bigskip

The $w_{i,j}$ in question are known as the \textbf{Plücker
  coordinates} of $L$.

\textbf{(4)} Show that any point $(z_0{:}z_1{:}z_2{:}z_3)$ on the
line $L$ as above satisfies
\[
w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0 = 0
\tag{$*$}
\]
— and analogously by replacing $0,1,2$ by three distinct coordinates
in $\{0,1,2,3\}$.

\begin{answer}
Expanding the $3\times 3$ determinant
\[
\left|
\begin{matrix}
x_0&y_0&z_0\\
x_1&y_1&z_1\\
x_2&y_2&z_2\\
\end{matrix}
\right|
\]
gives $w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0$.  If $\langle
z\rangle$ is in the line through $\langle x\rangle$ and $\langle
y\rangle$, meaning the three vectors $x,y,z$ are linearly dependent,
then this determinant is zero.  The same holds, of course, for any
other choice of coordinates instead of $0,1,2$.
\end{answer}

\textbf{(5)} Deduce from (4) that the $w_{i,j}$ satisfy the following
relation:
\[
w_{0,1} w_{2,3} - w_{0,2} w_{1,3} + w_{0,3} w_{1,2} = 0
\tag{$\dagger$}
\]

\begin{answer}
By (4), we have $w_{0,1} x_2 - w_{0,2} x_1 + w_{1,2} x_0 = 0$ and
$w_{0,1} y_2 - w_{0,2} y_1 + w_{1,2} y_0 = 0$.  Adding $y_3$ times the
first to $-x_3$ times the second gives the stated
relation ($\dagger$).
\end{answer}

\bigskip

The projective algebraic variety defined by ($\dagger$) in
$\mathbb{P}^5$ is known as the \textbf{Plücker quadric}.  In other
words, we have shown above how to associate to any line $L$ in
$\mathbb{P}^3(k)$ a $k$-point $(w_{0,1}:\cdots:w_{2,3})$ on the
Plücker quadric.  We now consider the converse.

\textbf{(6)} Assuming $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0
w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $\mathbb{P}^5(k)$
satisfies ($\dagger$) (viꝫ. belongs to the Plücker quadric), and
assuming also that $w_{0,3} \neq 0$, show that the two points
$(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and
$(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$ in $\mathbb{P}^3(k)$ are
meaningful and distinct, and that the line joining them has the
Plücker coordinates $(w_{0,1}:\cdots:w_{2,3})$ that were given.
(\emph{Hint:} \underline{first} compute $(w_{0,3},w_{1,3},w_{2,3},0)
\wedge (0,w_{0,1},w_{0,2},w_{0,3})$ and then use the result, with the
Plücker relation and the fact that $w_{0,3} \neq 0$ to conclude.)

\begin{answer}
We straightforwardly compute $(w_{0,3},w_{1,3},w_{2,3},0) \wedge
(0,w_{0,1},w_{0,2},w_{0,3}) = (w_{0,3} w_{0,1}, w_{0,3} w_{0,2},
w_{0,3}^2, \penalty0 w_{1,3} w_{0,2} - w_{2,3} w_{0,1}, w_{1,3}
w_{0,3}, w_{2,3} w_{0,3})$.  By Plücker's relation ($\dagger$),
$w_{1,3} w_{0,2} - w_{2,3} w_{0,1} = w_{1,2} w_{0,3}$, so we get
$w_{0,3}$ times $(w_{0,1}, w_{0,2}, w_{0,3}, \penalty0 w_{1,2},
w_{1,3}, w_{2,3})$.  Assuming $w_{0,3} \neq 0$, this is a nonzero
vector, which implies (by question (1)) that
$(w_{0,3},w_{1,3},w_{2,3},0)$ and $(0,w_{0,1},w_{0,2},w_{0,3})$ are
nonzero and non-collinear, so that the two points
$(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and
$(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$ are meaningful and distinct, and
by the computation we have just done, the Plücker coordinates of the
line joining them is the set of coordinates $(w_{0,1}:\cdots:w_{2,3})$
that were given.
\end{answer}

\textbf{(7)} Deduce from (6) that any $(w_{0,1}{:}w_{0,2}{:}w_{0,3}{:}
\penalty0 w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $\mathbb{P}^5(k)$
satisfying ($\dagger$) (viꝫ. belonging to the Plücker quadric) is the
set of Plücker coordinates of a (clearly unique) line in
$\mathbb{P}^3(k)$.  (\emph{Hint:} what needs to be proved is that the
assumption $w_{0,3} \neq 0$ in (6) is harmless: explain how it can be
arranged by a judicious permutation of coordinates.)

\begin{answer}
We have seen in (6) that when $w_{0,3} \neq 0$ then
$(w_{0,1}{:}w_{0,2}{:}w_{0,3}{:} \penalty0
w_{1,2}{:}w_{1,3}{:}w_{2,3})$ are the Plücker coordinates of a line
in $\mathbb{P}^3(k)$.  But all $w_{i,j}$ cannot be zero (as they are
given in $\mathbb{P}^5$), and we can always permute coordinates in
such a way that any $w_{i,j} \neq 0$, which is sure to exist, becomes
$w_{0,3}$, and the formula $w_{0,1} w_{2,3} - w_{0,2} w_{1,3} +
w_{0,3} w_{1,2} = 0$ is invariant under any permutation of coordinates
(for this is is enough to check a cyclic permutation and a
transposition; keep in mind that $w_{j,i} = -w_{i,j}$ when rewriting
so as $i<j$), so we have confirmed the result in all cases.
\end{answer}

\bigskip

At this point, we have established a bijection between the set of
lines $L$ in $\mathbb{P}^3(k)$ and the set of $k$-points in the
Plücker quadric defined by ($\dagger$) in $\mathbb{P}^5$; we know how
to compute Plücker coordinates from two distinct points lying on $L$
(by definition).  We now wish to compute Plücker coordinates for a
line that is described as the the intersection of two planes.

\textbf{(8)} Rephrase (4) to deduce that, if $L$ is a line with
Plücker coordinates $(w_{0,1}:\cdots:w_{2,3})$, then the planes
$[w_{1,2} : {-w_{0,2}} : w_{0,1} : 0]$ and $[0 : w_{2,3} : {-w_{1,3}}
  : w_{1,2}]$ both contain $L$.  Now consider these as points in the
dual $\mathbb{P}^3$ and show that the Plücker coordinates of the line
$L^*$ joining the two points in question are: $[w_{2,3} : {-w_{1,3}} :
  w_{1,2} : w_{0,3} : {-w_{0,2}} : w_{0,1}]$, provided $w_{1,2} \neq
0$.

\begin{answer}
The relation ($*$) of (4), namely $w_{1,2} z_0 - w_{0,2} z_1 + w_{0,1}
z_2 = 0$, means precisely that $(z_0{:}z_1{:}z_2{:}z_3)$ is on the
plane $[w_{1,2} : {-w_{0,2}} : w_{0,1} : 0]$.  Shifting coordinates
cyclically, it is also on the plane $[0 : w_{2,3} : {-w_{1,3}} :
  w_{1,2}]$.  Computing the Plücker coordinates as defined in
questions (1) to (3) for the line through these two (dual) points
gives $[w_{1,2} w_{2,3} : {-w_{1,2} w_{1,3}} : w_{1,2}^2 : {w_{0,2}
    w_{1,3} - w_{0,1} w_{2,3}} : {-w_{0,2} w_{1,2}} : w_{0,1}
  w_{1,2}]$ provided not all are zero.  By Plücker's
relation ($\dagger$), $w_{0,2} w_{1,3} - w_{0,1} w_{2,3} = w_{0,3}
w_{1,2}$, and now we can divide all coordinates by $w_{1,2}$ if it is
nonzero, giving $[w_{2,3} : {-w_{1,3}} : w_{1,2} : w_{0,3} :
  {-w_{0,2}} : w_{0,1}]$.
\end{answer}

\textbf{(9)} Deduce from (8) that if $L$ is a line in
$\mathbb{P}^3(k)$ with Plücker coordinates $(w_{0,1} : w_{0,2} :
w_{0,3} : \penalty0 w_{1,2} : w_{1,3} : w_{2,3})$, and if $L^*$
denotes the “dual” line in the dual $\mathbb{P}^3$, that is, the line
consisting of all points corresponding to planes containing $L$, then
$L^*$ has (dual) Plücker coordinates $[w_{2,3} : {-w_{1,3}} : w_{1,2}
  : w_{0,3} : {-w_{0,2}} : w_{0,1}]$.  (\emph{Hint:} the only thing
that needs to be proved is that the assumption $w_{1,2} \neq 0$ in (8)
is harmless: explain how it can be arranged by a judicious permutation
of coordinates.)

\begin{answer}
We have seen in (8) that when $w_{1,2} \neq 0$ then the line $L^*$
dual to $L$ is given by $[w_{2,3} : {-w_{1,3}} : w_{1,2} : w_{0,3} :
  {-w_{0,2}} : w_{0,1}]$.  But all $w_{i,j}$ cannot be zero
(question (3)), and we can always permute coordinates in such a way
that any $w_{i,j} \neq 0$, which is sure to exist, becomes $w_{1,2}$,
and the formula $(w_{0,1} : w_{0,2} : w_{0,3} : \penalty0 w_{1,2} :
w_{1,3} : w_{2,3}) \mapsto [w_{2,3} : {-w_{1,3}} : w_{1,2} : w_{0,3} :
  {-w_{0,2}} : w_{0,1}]$ is covariant under any permutation of
coordinates (for this is is enough to check a cyclic permutation and a
transposition), so we have confirmed the result in all cases.
\end{answer}

\textbf{(10)} If $[u_0{:}u_1{:}u_2{:}u_3]$ and
$[v_0{:}v_1{:}v_2{:}v_3]$ are distinct planes in $\mathbb{P}^3(k)$,
how can we compute the Plücker coordinates of their line of
intersection?  (\emph{Hint:} first describe the Plücker coordinates of
the line $L^*$ joining the corresponding points in the “dual”
$\mathbb{P}^3$, and then apply the result of (9), together with
projective duality.)

\begin{answer}
Le line $L^*$ joining the points $[u_0{:}u_1{:}u_2{:}u_3]$ and
$[v_0{:}v_1{:}v_2{:}v_3]$ of the dual $\mathbb{P}^3$ is given by the
Plücker coordinates $w_{i,j} = u_i v_j - u_j v_i$.  We then obtain the
Plücker coordinates of $L$ as $(w_{2,3} : {-w_{1,3}} : w_{1,2} :
w_{0,3} : {-w_{0,2}} : w_{0,1})$ (the formula given in (9) for
computing the Plücker coordinates of $L^*$ from those of $L$: it is
involutive and projective duality ensures that it also computes the
Plücker coordinates of $L$ from those of $L^*$), in other words $(u_2
v_3 - u_3 v_2 : {-u_1 v_3 + u_3 v_1} : u_1 v_2 - u_2 v_1 : u_0 v_3 -
u_3 v_0 : {-u_0 v_2 + u_2 v_0} : u_0 v_1 - u_1 v_0)$
\end{answer}

\bigskip

\textbf{(11)} Explain how, by expanding a $4\times 4$ determinant
expressing the fact that four points $(x_0{:}x_1{:}x_2{:}x_3)$,
$(y_0{:}y_1{:}y_2{:}y_3)$, $(z_0{:}z_1{:}z_2{:}z_3)$ and
$(p_0{:}p_1{:}p_2{:}p_3)$ in $\mathbb{P}^3$ are coplanar, we can
obtain a formula for the plane through a line $L$ defined by its
Plücker coordinates and a point $(z_0{:}z_1{:}z_2{:}z_3)$ not situated
on $L$.  (It is not required to go through the full computations: just
explain how it would work.)

\begin{answer}
Consider the $4\times 4$ determinant
\[
\left|
\begin{matrix}
x_0&y_0&z_0&p_0\\
x_1&y_1&z_1&p_1\\
x_2&y_2&z_2&p_2\\
x_3&y_3&z_3&p_3\\
\end{matrix}
\right|
\]
whose vanishing expresses the fact that $x,y,z,p$ are in a common
hyperplane in $k^4$, i.e., that the points $\langle x\rangle$,
$\langle y\rangle$, $\langle z\rangle$ and $\langle p\rangle$ are
coplanar.  Expanding it with respect to the final column $p$ gives a
linear condition for $p$ to be in the plane $P$ spanned by $\langle
x\rangle$, $\langle y\rangle$, $\langle z\rangle$, whose coefficients
are $3\times 3$ determinants, which are the coordinates of the
plane $P$ in the dual $\mathbb{P}^3$.  Expanding those $3\times 3$
determinants with respect to the final column $z$ writes them in terms
of the Plücker coordinates of the line $L$ through $\langle x\rangle$,
and $\langle y\rangle$, and the point $\langle z\rangle$.

To be precise (although this was not asked), we get:
\[
\begin{aligned}
\relax [\;
& - w_{1,2} z_3 + w_{1,3} z_2 - w_{2,3} z_1 \\
:\;
& w_{2,3} z_0 + w_{0,2} z_3 - w_{0,3} z_2 \\
:\;
& w_{0,3} z_1 - w_{1,3} z_0 - w_{0,1} z_3 \\
:\;
& w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0
\;]
\end{aligned}
\]
(the last coordinate being precisely given by ($*$)).
\end{answer}

For your additional information: if $L$ and $L'$ are two lines in
$\mathbb{P}^3(k)$ with Plücker coordinates $(w_{0,1}:\cdots:w_{2,3})$
and $(w'_{0,1}:\cdots:w'_{2,3})$ respectively, then $L$ and $L'$ meet
in a common point (or equivalently, belong to a common plane)
iff\footnote{This relation (the “polarization” of the quadratic
  relation ($\dagger$)) can be interpreted by saying that the line
  in $\mathbb{P}^5$ joining the two points $(w_{0,1}:\cdots:w_{2,3})$
  and $(w'_{0,1}:\cdots:w'_{2,3})$ on the Plücker quadric is entirely
  contained in said quadric.}
\[
w_{0,1} w'_{2,3} - w_{0,2} w'_{1,3} + w_{0,3} w'_{1,2}
+ w_{2,3} w'_{0,1} - w_{1,3} w'_{0,2} + w_{1,2} w'_{0,3} = 0
\tag{$\ddagger$}
\]
(it is not required to prove this).

\bigskip

\textbf{(12)} Briefly summarize all of the above, emphasizing how we
have obtained formulæ allowing algorithmic computation of all possible
geometric constructions between points, lines and planes
in $\mathbb{P}^3$.

\begin{answer}
For projective subspaces in $\mathbb{P}^3$ we can represent:
\begin{itemize}
\item \textbf{points} by their homogeneous coordinates
  $(x_0{:}x_1{:}x_2{:}x_3)$ (which are arbitrary not all zero, defined
  up to a common multiplicative constant),
\item \textbf{lines} by their Plücker coordinates
  $(w_{0,1} : w_{0,2} : w_{0,3}  :  \penalty0
  w_{1,2} : w_{1,3} : w_{2,3})$ (which are not all zero, and subject
  to the sole condition ($*$) of belonging to the Plücker quadric,
  defined up to a common multiplicative constant), or equivalently by
  their dual Plücker coordinates which are the same up to a
  permutation and some changes of sign, $[w_{2,3} : {-w_{1,3}} :
    w_{1,2} : w_{0,3} : {-w_{0,2}} : w_{0,1}]$,
\item \textbf{planes} by their dual coordinates
  $[u_0{:}u_1{:}u_2{:}u_3]$ (which are arbitrary not all zero, defined
  up to a common multiplicative constant).
\end{itemize}

We can then compute:
\begin{itemize}
\item whether a point lies on a line by checking the relation ($*$)
  and all its permutations of coordinates (cyclic permutations
  suffice),
\item whether a point lies on a plane by the relation $u_0 x_0 +
  \cdots + u_3 x_3 = 0$,
\item whether a line lies in a plane by checking whether the dual
  point of the plane lies on the dual line (this gives $w_{2,3} u_2 +
  w_{1,3} u_1 + w_{0,3} u_0 = 0$ and cyclic permutations thereof),
\item the line joining two distinct points by computing the Plücker
  coordinates as $2\times 2$ determinants as defined in question (1),
\item the plane though a line and a point not lying on it by the
  formula found as explained in question (11),
\item the intersection line of two distinct planes by computing dual
  Plücker coordinates as explained in question (10),
\item the point of intersection of a line and a plane by taking the
  dual of the formula for the plane through a line and a point,
\item a sample point on a line as $(w_{0,3} : w_{1,3} : w_{2,3} : 0)$
  or some coordinate permutation thereof (as shown in question (6)),
\item a sample plane through a line dually to the previous point,
  namely $[w_{1,2} : {-w_{0,2}} : w_{0,1} : 0]$ (as shown in
  question (8)),
\item whether two lines meet, or equivalently, belong to a common
  plane, by using the criterion stated before (12), in which case
  their point of intersection can be computed by intersecting one of
  the lines with a sample plane through the other (as explained in the
  previous items), and their common plane can be computed dually.
\end{itemize}
\end{answer}

\bigskip

\centerline{\hbox to3truecm{\hrulefill}}

\medskip

\textbf{(13)} Independently of all of the above, compute the number of
lines in $\mathbb{P}^3(\mathbb{F}_q)$ (for example by counting the
number of pairs of distinct points in $\mathbb{P}^3(\mathbb{F}_q)$ and
the number of pairs of distinct points in a given line
$\mathbb{P}^1(\mathbb{F}_q)$), where $q$ is a prime power and
$\mathbb{F}_q$ denotes the finite field with $q$ elements.

\begin{answer}
There are $\frac{q^4-1}{q-1} = q^3 + q^2 + q + 1$ points in
$\mathbb{P}^3(\mathbb{F}_q)$.  There are thus $(q^3 + q^2 + q + 1)(q^3
+ q^2 + q) = q (q^3 + q^2 + q + 1) (q^2 + q + 1)$ pairs of distinct
points in $\mathbb{P}^3(\mathbb{F}_q)$, each defining a line.  There
are $\frac{q^2-1}{q-1} = q + 1$ points in
$\mathbb{P}^2(\mathbb{F}_q)$.  There are thus $q(q + 1)$ pairs of
distinct points defining any given line.  Thus, there are $(q (q^3 +
q^2 + q + 1) (q^2 + q + 1)) / (q (q+1)) = (q^2 + q + 1)(q^2 + 1)$
lines in $\mathbb{P}^3(\mathbb{F}_q)$ (that is, $q^4 + q^3 + 2q^2 + q
+ 1$).
\end{answer}

\textbf{(14)} Deduce from (13) and (1)–(7) the number of
$\mathbb{F}_q$-points on the hypersurface of degree $2$ (“quadric”)
$\{X_0 X_3 + X_1 X_4 + X_2 X_5 = 0\}$ in $\mathbb{P}^5(\mathbb{F}_q)$
with coordinates $(X_0:\cdots:X_5)$.  Assuming $q \equiv 1 \pmod{4}$,
deduce the number of $\mathbb{F}_q$-points on the hypersurface of
degree $2$ (“quadric”) $\{Z_0^2 + \cdots + Z_5^2 = 0\}$ in
$\mathbb{P}^5(\mathbb{F}_q)$ with coordinates $(Z_0:\cdots:Z_5)$
(\emph{hint:} $q \equiv 1 \pmod{4}$ means $-1$ is a square in
$\mathbb{F}_q$, so we can factor $Z^2 + Z^{\prime2}$).

\begin{answer}
We have seen in (1)–(7) that $\mathbb{F}_q$-points on the Plücker
quadric are in bijection with lines in $\mathbb{P}^3(\mathbb{F}_q)$,
and in (13) that there are $(q^2 + q + 1)(q^2 + 1) = q^4 + q^3 + 2q^2
+ q + 1$ of them.  Thus, there are that many points on the Plücker
quadric.  The equation of the latter can be written in the form $X_0
X_3 + X_1 X_4 + X_2 X_5 = 0$ by a simple linear coordinate change,
i.e., projective transformation ($X_0 = w_{0,1}$, $X_1 = w_{0,2}$,
$X_2 = w_{0,3}$, $X_3 = w_{2,3}$, $X_4 = -w_{1,3}$ and $X_5 =
w_{1,2}$) which certainly does not change the number of points.

As for $Z_0^2 + \cdots + Z_5^2 = 0$, if we call $\sqrt{-1}$ some fixed
square root of $-1$ (which exists when $q \equiv 1 \pmod{4}$ as this
means that the Legendre symbol $(\frac{-1}{q})$ is $1$), we can write
$Z_0^2 + Z_1^2 = (Z_0+\sqrt{-1}\,Z_1) (Z_0-\sqrt{-1}\,Z_1)$ and
similarly for $Z_2^2 + Z_3^2$ and $Z_4^2 + Z_5^2$, and since the
linear transformation $X_0 = Z_0+\sqrt{-1}\,Z_1$, $X_1 =
Z_2+\sqrt{-1}\,Z_3$, $X_2 = Z_4+\sqrt{-1}\,Z_5$, $X_3 =
Z_0-\sqrt{-1}\,Z_1$, $X_4 = Z_2-\sqrt{-1}\,Z_3$, $X_5 =
Z_4-\sqrt{-1}\,Z_5$ is invertible, there are still the same number of
points.
\end{answer}

\bigskip

\centerline{\hbox to3truecm{\hrulefill}}

\medskip

(This question is more difficult; it is independent of (13)\&(14).)

\textbf{(15)} Let $h \in k[t_0,t_1,t_2,t_3]$ be a homogeneous
polynomial, so that it defines a Zariski closed set (hypersurface) $X
:= \{h(x_0,x_1,x_2,x_3) = 0\}$ in $\mathbb{P}^3$.  Show that the of
lines contained in $X$ defines a Zariski closed subset $Y$ of the
Plücker quadric in $\mathbb{P}^5$.  (To be completely clear, this
means\footnote{Here $k^{\alg}$ denotes the algebraic closure of $k$,
  but feel free to assume that $k$ is algebraically closed ($k =
  k^{\alg}$) in this question.}: there is a Zariski closed set $Y$ in
$\mathbb{P}^5$, defined over $k$ and contained in the Plücker quadric
$Q$ (defined by $\dagger$), such that, for $w \in Q(k^{\alg})$, we
have $w \in Y(k^{\alg})$ if and only if $L_w \subseteq X(k^{\alg})$,
where $L_w$ denotes the line in $\mathbb{P}^3(k^{\alg})$ having
Plücker coordinates $w$.)

The important part of this question is: how can we compute equations
for $Y$ given the equation $h=0$ of $X$?

\begin{answer}
We have seen in question (6) that, so long as $w_{0,3} \neq 0$, the
line $L_w$ defined by $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0
w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $Q$ is the line through
$(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and
$(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$.  In other words, $\lambda,\mu$ it
is the line consisting of points $(\lambda w_{0,3} : \lambda w_{1,3} +
\mu w_{0,1} : \lambda w_{2,3} + \mu w_{0,2} : \mu w_{0,3})$.  This
line is included in $X$ iff $h(\lambda w_{0,3}, \lambda w_{1,3} + \mu
w_{0,1}, \lambda w_{2,3} + \mu w_{0,2}, \mu w_{0,3}) = 0$ for all
$\lambda,\mu$ in $k^{\alg}$, which just means that, seen as a
polynomial in $\lambda,\mu$ now seen as two \emph{indeterminates},
this is identically zero.  But this is a homogeneous polynomial in
$\lambda,\mu$ whose coefficients are homogeneous polynomials in the
$w_{i,j}$, so equating all these coefficients to $0$ gives homogeneous
equations in the $w_{i,j}$ (coordinates in $\mathbb{P}^5$) for $L_w$
to be included in $X$.  This only holds so long as $w_{0,3} \neq 0$
(when it is zero, some of the resulting equation will be trivial);
however, at least one $w_{i,j}$ must be zero in any case, so writing
the corresponding equations for all permutations of coordinates,
together with the equation ($\dagger$) of the Plücker quadric itself
(to ensure that the $w_{i,j}$ do correspond to a line in
$\mathbb{P}^3$) gives us the equations of the desired $Y$.

To illustrate that this is actually algorithmic, the following Sage
code computes the equations for the set $Y$ of lines inside the
“diagonal cubic surface” $X := \{x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0\}$:
{\fontsize{8}{10}\relax
\begin{verbatim}
sage: R.<x0,x1,x2,x3,w01,w02,w03,w12,w13,w23,u,v> = PolynomialRing(QQ,12)
sage: xvars = [x0,x1,x2,x3]
sage: wvars = [[0,w01,w02,w03],[-w01,0,w12,w13],[-w02,-w12,0,w23],[-w03,-w13,-w23,0]]
sage: # Plücker equation:
sage: plucker = w01*w23 - w02*w13 + w03*w12
sage: # Equation of the surface X:
sage: h = x0^3 + x1^3 + x2^3 + x3^3
sage: deg = h.degree()
sage: # All possible permutations of (0,1,2,3):
sage: perm4 = [(j0,j1,j2,j3) for j0 in range(4) for j1 in range(4) for j2 in range(4)
....:  for j3 in range(4) if len(set([j0,j1,j2,j3]))==4]
sage: # Generate the ideal I of the set Y of lines in X, as above:
sage: I = R.ideal([plucker] + [h.subs(dict([(xvars[j0],wvars[j0][j3]*u), (xvars[j1],w
....: vars[j1][j3]*u+wvars[j0][j1]*v), (xvars[j2],wvars[j2][j3]*u+wvars[j0][j2]*v), (
....: xvars[j3],wvars[j0][j3]*v)])).coefficient({u:deg-k,v:k}) for k in range(deg) fo
....: r (j0,j1,j2,j3) in perm4])
sage: # Compute its radical:
sage: I0 = I.radical()
sage: # This really means Y is 0-dimensional in projective space:
sage: I0.dimension()
7
sage: # This computes its number of geometric points (i.e., geometric lines on X):
sage: hp = I0.hilbert_polynomial() ; hp.leading_coefficient()*factorial(hp.degree()) 
27
\end{verbatim}
\par}\noindent (notation is as above except that $\lambda,\mu$ have
been called \texttt{u},\texttt{v}); the above code proves that thare
are $27$ geometric lines in the surface $\{x_0^3 + x_1^3 + x_2^3 +
x_3^3 = 0\} \subseteq \mathbb{P}^3$ (over $\mathbb{Q}$).
\end{answer}




%
%
%
\end{document}