summaryrefslogtreecommitdiffstats
path: root/notes-accq205.tex
blob: 18ebf264510d1e978c1a6a19e36ce029b6fd21d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}[subsection]
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newtheorem{defn}[comcnt]{Définition}
\newtheorem{prop}[comcnt]{Proposition}
\newtheorem{lem}[comcnt]{Lemme}
\newtheorem{thm}[comcnt]{Théorème}
\newtheorem{cor}[comcnt]{Corollaire}
\newtheorem{scho}[comcnt]{Scholie}
\renewcommand{\qedsymbol}{\smiley}
%
\newcommand{\id}{\operatorname{id}}
\newcommand{\Frac}{\operatorname{Frac}}
\newcommand{\degtrans}{\operatorname{deg.tr}}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
%
%
\begin{document}
\title{Courbes algébriques\\(notes provisoires)}
\author{David A. Madore}
\maketitle

\centerline{\textbf{ACCQ205}}

{\footnotesize
\immediate\write18{sh ./vc > vcline.tex}
\begin{center}
Git: \input{vcline.tex}
\end{center}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}



%
%
%

\section{Corps et extensions de corps}

\subsection{Anneaux, algèbres, corps, idéaux premiers et maximaux et corps des fractions}

\thingy Sauf précision expresse du contraire, tous les anneaux
considérés sont commutatifs et ont un élément unité (noté $1$).  Il
existe un unique anneau dans lequel $0=1$, c'est l'anneau réduit à un
seul élément, appelé l'\textbf{anneau nul}.  (Pour tout anneau $A$, il
existe un unique morphisme de $A$ vers l'anneau nul ; en revanche, il
n'existe un morphisme de l'anneau nul vers $A$ que si $A$ est lui-même
l'anneau nul.)

\thingy Si $k$ est un anneau, une \textbf{$k$-algèbre} (là aussi :
implicitement commutative) est la donnée d'un morphisme d'anneaux $k
\buildrel\varphi_A\over\to A$ appelé \textbf{morphisme structural} de
l'algèbre.  On peut multiplier un élément de $A$ par un élément de $k$
avec : $c\cdot x = \varphi_A(c)\,x \in A$ (pour $c\in k$ et $x\in A$).
Un morphisme de $k$-algèbres est un morphisme d'anneaux
$A\buildrel\psi\over\to B$ tel que le morphisme structural $k
\buildrel\varphi_B\over\to B$ de $B$ soit la composée $k
\buildrel\varphi_A\over\to A\buildrel\psi\over\to B$ de celui de $A$
avec le morphisme considéré.

De façon équivalente, une $k$-algèbre est un $k$-module qui est muni
d'une multiplication $k$-bilinéaire qui en fait un anneau, et les
morphismes de $k$-algèbres sont les applications $k$-linéaires qui
préservent la multiplication ; le morphisme structural peut alors se
retrouver par $c \mapsto c\cdot 1$.  Notons qu'une
$\mathbb{Z}$-algèbre est exactement la même chose qu'un anneau (raison
pour laquelle il est souvent préférable d'énoncer les résultats en
parlant de $k$-algèbres pour plus de généralité).

Dans la pratique, cependant $k$ sera généralement un corps : une
$k$-algèbre est donc un $k$-espace vectoriel muni d'une multiplication
$k$-bilinéaire qui en fait un anneau, et le morphisme structural est
automatiquement injectif si l'algèbre n'est pas l'algèbre nulle.

\thingy Un élément $a$ d'un anneau $A$ (sous-entendu : commutatif) est
dit \textbf{régulier}, resp. \textbf{inversible}, lorsque $x \mapsto
ax$ est injectif, resp. bijectif, autrement dit lorsque $ax = 0$
implique $x = 0$ (la réciproque est toujours vraie), resp. lorsqu'il
existe $x$ (appelé inverse de $a$) tel que $ax = 1$.

Un anneau dans $A$ dans lequel l'ensemble des éléments régulier est
égal à l'ensemble $A \setminus \{0\}$ des éléments non-nuls est appelé
anneau \textbf{intègre} : autrement dit, un anneau intègre est un
anneau dans lequel ($0\neq 1$ et) $ab = 0$ implique $a=0$ ou $b=0$ (la
réciproque est toujours vraie).  Par convention, l'anneau nul n'est
pas intègre.

Un idéal $\mathfrak{p}$ d'un anneau $A$ est dit \textbf{premier}
lorsque l'anneau quotient $A/\mathfrak{p}$ est un anneau intègre,
autrement dit lorsque $\mathfrak{p}\neq A$ et que $ab \in
\mathfrak{p}$ implique $a \in \mathfrak{p}$ ou $b \in \mathfrak{p}$
(la réciproque est toujours vraie).

\thingy Dans un anneau (toujours sous-entendu commutatif...),
l'ensemble noté $A^\times$ des éléments inversibles est un groupe,
aussi appelé groupe des \textbf{unités} de $A$.

Un \textbf{corps} est un anneau $k$ dans lequel l'ensemble $k^\times$
des éléments inversibles est égal à l'ensemble $k\setminus\{0\}$ des
éléments non-nuls : autrement dit, un corps est un anneau dans lequel
($0\neq 1$ et) tout élément non-nul est inversible.  De façon
équivalente, un corps est un anneau ayant exactement deux idéaux (qui
sont alors $0$ et lui-même).  Par convention, l'anneau nul n'est pas
un corps.

Un corps est, en particulier, un anneau intègre.

Un idéal $\mathfrak{m}$ d'un anneau $A$ est dit \textbf{maximal}
lorsque l'anneau quotient $A/\mathfrak{m}$ est un corps : de façon
équivalente, lorsque $\mathfrak{m}\neq A$ et que $\mathfrak{m}$ est
maximal pour l'inclusion parmi les idéaux $\neq A$.  Un idéal maximal
est, en particulier, premier.

\thingy À titre d'exemple, l'idéal $n\mathbb{Z}$ de $\mathbb{Z}$ (on
rappelle que tous les idéaux de $\mathbb{Z}$ sont de cette forme, pour
un $n \in \mathbb{N}$ défini de façon unique) est premier si et
seulement si $n = 0$ (le quotient étant $\mathbb{Z}$ lui-même) ou bien
$n$ est un nombre premier ; il est intègre exactement si $n$ est un
nombre premier (le quotient étant alors le corps
$\mathbb{Z}/n\mathbb{Z}$).

Pour donner un exemple moins évident, dans l'anneau $k[x,y]$ des
polynômes à deux indéterminées $x,y$ sur un corps $k$, l'idéal $(y)$
(des polynômes s'annulant identiquement sur l'axe des abscisses) est
premier mais non maximal puisque $k[x,y]/(y) \cong k[x]$, tandis que
l'idéal $(x,y)$ (des polynômes s'annulant à l'origine) est maximal
puisque $k[x,y]/(x,y) \cong k$.

\bigbreak

Le résultat ensembliste suivant sera admis :
\begin{lem}[principe maximal de Hausdorff]\label{hausdorff-maximal-principle}
Soit $\mathscr{F}$ un ensemble de parties d'un ensemble $A$.  On
suppose que $\mathscr{F}$ est non vide et que pour toute partie non
vide $\mathscr{T}$ de $\mathscr{F}$ totalement ordonnée par
l'inclusion (c'est-à-dire telle que pour $I,I' \in \mathscr{T}$ on a
soit $I \subseteq I'$ soit $I \supseteq I'$) la réunion $\bigcup_{I
  \in \mathscr{T}} I$ soit contenue dans un élément de $\mathscr{F}$.
Alors il existe dans $\mathscr{F}$ un élément $M$ maximal pour
l'inclusion (c'est-à-dire que si $I \supseteq M$ avec $I \in
\mathscr{F}$ alors $I=M$).
\end{lem}

\begin{prop}\label{existence-maximal-ideals}
Dans un anneau $A$, tout idéal strict (=autre que $A$) est inclus dans
un idéal maximal.
\end{prop}
\begin{proof}
Si $I$ est un idéal strict de $A$, on applique le principe maximal de
Hausdorff à $\mathscr{F}$ l'ensemble des idéaux stricts de $A$
contenant $I$.  Si $\mathscr{T}$ est une chaîne (=partie totalement
ordonnée pour l'inclusion) de tels idéaux, la réunion $\bigcup_{I \in
  \mathscr{T}} I$ en est encore un\footnote{La réunion de deux idéaux
  n'est généralement pas un idéal, car si $x\in I$ et $x' \in I'$, la
  somme $x+x'$ n'a pas de raison d'appartenir à $I\cup I'$.  En
  revanche, si $\mathscr{T}$ est une famille d'idéaux totalement
  ordonnée par l'inclusion, alors $\bigcup_{I \in \mathscr{T}} I$ est
  un idéal : si $x\in I$ et $x' \in I'$, où $I,I'\in \mathscr{T}$, on
  peut écrire soit $I \subseteq I'$ soit $I'\subseteq I$, et dans un
  cas comme dans l'autre on a $x+x' \in \bigcup_{I \in \mathscr{T}}
  I$.} (pour voir que la réunion est encore un idéal strict, remarquer
que $1$ n'y appartient pas).  Le principe maximal de Hausdorff permet
de conclure.
\end{proof}

\thingy Si $A$ est un anneau intègre, on définit un corps $\Frac(A)$,
dit \textbf{corps des fractions} de $A$, dont les éléments sont les
symboles formels $\frac{a}{q}$ avec $a \in A$ et $q \in A
\setminus\{0\}$, en convenant d'identifier $\frac{a}{q}$ avec
$\frac{a'}{q'}$ lorsque $aq' = a'q$ (i.e., formellement, $\Frac(A)$
est le quotient de $A \times (A\setminus\{0\})$ par la relation
d'équivalence qu'on vient de dire) ; la structure d'anneau est définie
par $\frac{a}{q} + \frac{a'}{q'} = \frac{aq'+a'q}{qq'}$ et
$\frac{a}{q} \cdot \frac{a'}{q'} = \frac{aa'}{qq'}$.  On a aussi un
morphisme injectif $A \to \Frac(A)$ envoyant $a$ sur $\frac{a}{1}$, et
on identifiera $A$ à son image par ce morphisme.

À titre d'exemple, $\Frac(\mathbb{Z})$ est $\mathbb{Q}$ (c'est même la
définition de ce dernier).

\thingy\label{universal-property-of-fraction-field} Le corps des
fractions d'un anneau intègre $A$ vérifie la propriété « universelle »
suivante : si $K$ est un corps quelconque, et $\varphi\colon A \to K$
un morphisme d'anneaux injectif, il existe un unique morphisme de
corps $\hat\varphi\colon \Frac(A) \to K$ (i.e., extension de corps,
cf. ci-dessous) qui prolonge $\varphi$ (i.e., $\hat\varphi(a) =
\varphi(a)$ si $a\in A$).  En effet, il suffit de définir
$\hat\varphi(\frac{a}{q})$ par $\varphi(a)/\varphi(q)$.

\thingy Le corps des fractions de l'anneau $k[t_1,\ldots,t_n]$ des
polynômes en $n$ indéterminées $t_1,\ldots,t_n$ sur un corps $k$ est
appelé corps des \textbf{fractions rationnelles} (ou parfois
« fonctions rationnelles ») en $n$ indéterminées $t_1,\ldots,t_n$
sur $k$, et noté $k(t_1,\ldots,t_n)$.

\thingy\label{finite-integral-algebra-is-a-field} Le fait suivant sera
important : si $k$ est un corps et $K$ une $k$-algèbre \emph{de
  dimension finie} intègre, alors $K$ est, en fait, un corps.  En
effet, une application $k$-linéaire $K \to K$ injective est
automatiquement bijective, et en appliquant ce fait à la
multiplication par un $a\in K$, on voit que tout élément régulier est
inversible.

\subsection{Algèbre engendrée, extensions de corps}

\thingy Si $A$ est une $k$-algèbre (où $k$ est un anneau), et
$(x_i)_{i\in I}$ est une famille d'éléments de $A$, l'intersection de
toutes les sous-$k$-algèbres de $A$ contenant les $x_i$ est encore une
sous-$k$-algèbre de $A$ contenant les $x_i$, c'est-à-dire que c'est la
plus petite sous-$k$-algèbre de $A$ contenant les $x_i$.  On l'appelle
$k$-algèbre \textbf{engendrée} (dans $A$) par les $x_i$ et on la note
$k[x_i]_{i\in I}$.  Lorsque les $x_i$ sont en nombre fini (le cas qui
nous intéressera le plus), disons indicés par $1,\ldots,n$, on note
$k[x_1,\ldots,x_n]$, et on dit que $k[x_1,\ldots,x_n]$ est une
$k$-algèbre \textbf{de type fini} (comme $k$-algèbre).

\danger On prendra garde au fait que la même notation
$k[x_1,\ldots,x_n]$ peut désigner soit la $k$-algèbre engendrée
par $x_1,\ldots,x_n$ dans une $k$-algèbre $A$ plus grande, soit
l'anneau des polynômes à $n$ indéterminées $x_1,\ldots,x_n$ sur $k$.
Ces conventions sont cependant cohérentes en ce sens que l'anneau des
polynômes à $n$ indéterminées sur $k$ est bien la $k$-algèbre
engendrée par les indéterminées (cf. le point suivant).  Il faut donc
prendre garde à ce que sont $x_1,\ldots,x_n$ quand cette notation
apparaît : si aucune remarque n'est faite et que les $x_i$ n'ont pas
été introduits auparavant, il est généralement sous-entendu que ce
sont des indéterminées.

\thingy\label{subalgebra-generated-is-polynomials} La $k$-algèbre
engendrée par les $x_i$ dans $A$ peut encore se décrire concrètement
comme l'ensemble de tous les éléments de $A$ qui peuvent être obtenus
à partir de $1$ et des $x_i$ par sommes, produits par éléments de $k$
et produits binaires.  Autrement dit, ce sont les valeurs des
polynômes à coefficients dans $k$ évalués en des $x_i$.  Pour dire les
choses de façon plus sophistiquée, en supposant les $x_i$ en nombre
fini pour simplifier (et indicés par $1,\ldots,n$), il existe un
unique morphisme $k[t_1,\ldots,t_n] \to A$ envoyant $t_i$ sur $x_i$, à
savoir le morphisme « d'évaluation » qui à un $P \in
k[t_1,\ldots,t_n]$ associe $P(x_1,\ldots,x_n)$, et $k[x_1,\ldots,x_n]$
est l'\emph{image} de ce morphisme.  On peut donc dire qu'une
$k$-algèbre de type fini $k[x_1,\ldots,x_n]$ est la même chose qu'un
\emph{quotient} de l'algèbre de polynômes $k[t_1,\ldots,t_n]$ (par le
noyau du morphisme d'évaluation).

Pour ce qui est du cas infini : la $k$-algèbre $k[x_i]_{i\in I}$
engendrée par une famille quelconque $(x_i)_{i\in I}$ d'éléments de
$A$ est la \emph{réunion} des algèbres $k[x_i]_{i\in J}$ engendrées
par toutes les sous-familles finies (i.e., $J\subseteq I$ fini) de la
famille donnée.  (Autrement dit, $y \in A$ appartient à $k[x_i]_{i\in
  I}$ si et selement si il existe $J\subseteq I$ fini tel que $y$
appartienne à $k[x_i]_{i\in J}$.)

\thingy Une \textbf{extension de corps} est un morphisme d'anneaux $k
\to K$ entre corps (c'est-à-dire que $K$ est une $k$-algèbre qui est
un corps).  Un tel morphisme est automatiquement injectif (car son
noyau est un idéal d'un corps qui ne contient pas $1$), et qui peut
donc être considéré comme une inclusion : on notera soit $k \subseteq
K$ soit $K/k$ une telle extension ; lorsque l'inclusion a été fixée,
on dit aussi que $k$ est un \textbf{sous-corps} de $K$.  Un
\textbf{corps intermédiaire} à une extension $k \subseteq K$, ou
encore \textbf{sous-extension}, est, naturellement, une extension de
corps $k \subseteq E$ contenue dans $K$ ; on dit aussi que $k
\subseteq E \subseteq K$ est une \textbf{tour} d'extensions (et de
même pour n'importe quel nombre de corps intermédiaires).

\thingy\label{subfield-generated} Si $k \subseteq K$ est une extension
de corps, et $(x_i)_{i\in I}$ est une famille d'éléments de $K$,
l'intersection de tous les sous-corps de $K$ contenant $k$ et
les $x_i$ est encore un sous-corps de $K$ contenant $k$ et les $x_i$,
c'est-à-dire que c'est le plus petit corps intermédiaire contenant
les $x_i$.  On l'appelle sous-extension \textbf{engendrée} (dans $K$)
par les $x_i$ et on la note $k(x_i)_{i\in I}$.  Lorsque les $x_i$ sont
en nombre fini (le cas qui nous intéressera le plus), disons indicés
par $1,\ldots,n$, on note $k(x_1,\ldots,x_n)$, et on dit que
$k(x_1,\ldots,x_n)$ est une extension de $k$ \textbf{de type fini}
(comme extension de corps).

\danger On prendra garde au fait que la même notation
$k(x_1,\ldots,x_n)$ peut désigner soit la sous-extension engendrée
par $x_1,\ldots,x_n$ dans une extension $K$ plus grande, soit le corps
des fractions rationnelles à $n$ indéterminées $x_1,\ldots,x_n$
sur $k$.  Ces conventions sont cependant cohérentes en ce sens que le
corps des fractions rationnelles à $n$ indéterminées sur $k$ est bien
la sous-extension engendrée par les indéterminées (cf. le point
suivant).  Comme dans le cas de la $k$-algèbre engendrée, il faut donc
prendre garde à ce que sont $x_1,\ldots,x_n$ quand cette notation
apparaît : si aucune remarque n'est faite et que les $x_i$ n'ont pas
été introduits auparavant, il est généralement sous-entendu que ce
sont des indéterminées.

\thingy\label{subfield-generated-is-quotients} La sous-extension
engendrée (au-dessus de $k$) par les $x_i$ dans $K$ peut encore se
décrire concrètement comme l'ensemble de tous les éléments de $A$ qui
peuvent être obtenus à partir des éléments de $k$ et des $x_i$ par
sommes, produits et inverses (d'éléments non nuls).  Autrement dit, ce
sont les valeurs des fractions rationnelles à coefficients dans $k$
évalués en des $x_i$ (à condition d'être bien définies).

Pour ce qui est du cas infini : la sous-extension $k(x_i)_{i\in I}$
engendrée par une famille quelconque $(x_i)_{i\in I}$ d'éléments de
$K$ est la \emph{réunion} des sous-extensions $k(x_i)_{i\in J}$
engendrées par toutes les sous-familles finies (i.e., $J\subseteq I$
fini) de la famille donnée.  (Autrement dit, $y \in K$ appartient à
$k(x_i)_{i\in I}$ si et selement si il existe $J\subseteq I$ fini tel
que $y$ appartienne à $k(x_i)_{i\in J}$.)

\subsection{Extensions algébriques et degré}

\thingy\label{monogeneous-extensions-dichotomy} Si $k \subseteq K$ est
une extension de corps et $x\in K$, on a noté
(cf. \ref{subfield-generated}) $k(x)$ l'extension de $k$ engendrée
par $x$.  On dira aussi que $k \subseteq k(x)$ est une extension
\textbf{monogène}.

On se pose la question de mieux comprendre cette extension.  Pour
cela, on introduit l'unique morphisme $\varphi\colon k[t] \to K$, où
$k[t]$ est l'anneau des polynômes en une indéterminée $t$ sur $k$, qui
envoie $t$ sur $x$, c'est-à-dire, le morphisme « d'évaluation »
envoyant $P$ sur $P(x)$ pour chaque $P \in k[t]$.  Le noyau de
$\varphi$ est un idéal de $k[t]$.  Exactement l'un des deux cas
suivants se produit :
\begin{itemize}
\item Soit $\varphi$ est injectif (=son noyau est nul), auquel cas on
  dit que $x$ est \textbf{transcendant} sur $k$.  Dans ce cas, d'après
  la propriété universelle du corps des fractions
  (cf. \ref{universal-property-of-fraction-field}), $\varphi$ se
  prolonge de manière unique en une extension de corps $k(t) \to K$
  (où $k(t)$ est le corps des fractions rationnelles en l'indéterminée
  $t$ sur $k$), envoyant $P/Q \in k(t)$ sur $P(x)/Q(x) \in K$, et
  l'image de $k(t)$ dans $K$ est précisément $k(x)$
  (cf. \ref{subfield-generated-is-quotients}).  Ceci permet
  d'identifier $k(x)$ avec le corps des fractions rationnelles en une
  indéterminée (i.e., de considérer $x$ comme une indéterminée).
\item Soit le noyau de $\varphi$ est engendré par un unique polynôme
  unitaire $\mu_x\in k[t]$, qu'on appelle le \textbf{polynôme minimal}
  de $x$, et alors $x$ est dit \textbf{algébrique} (ou
  \textbf{entier}) sur $k$.  Alors l'image $k[x]$ de $\varphi$
  (cf. \ref{subalgebra-generated-is-polynomials}) s'identifie à
  $k[t]/(\mu_x)$, une $k$-algèbre de dimension $\deg\mu_x$ finie
  sur $k$, qu'on appelle le \textbf{degré} de $x$ ; mais comme $k[x]$
  est intègre (puisque c'est une sous-algèbre d'un corps), et de
  dimension finie, c'est un corps
  (cf. \ref{finite-integral-algebra-is-a-field}) : on a donc $k(x) =
  k[x] = k[t]/(\mu_x)$ dans cette situation.  De plus, le polynôme
  $\mu_x$ est irréductible dans $k[t]$ (sans quoi on aurait deux
  éléments dont le produit est nul dans $K$).
\end{itemize}
On remarquera que les éléments de $k$ eux-mêmes sont exactement les
algébriques de degré $1$ sur $k$.

\thingy\label{monogeneous-extensions-dichotomy-bis} La dichotomie
décrite ci-dessus admet une sorte de réciproque : d'une part, si $t$
est une indéterminée, alors dans $k(t)$ (le corps des fractions
rationnelles) l'élément $t$ est bien transcendant sur $k$ (en fait,
toute fraction rationnelle non constante est transcendante sur $k$) ;
d'autre part, si $\mu$ est un polynôme unitaire irréductible sur $k$,
alors $k[t]/(\mu)$ est une $k$-algèbre de dimension finie intègre donc
(cf. \ref{finite-integral-algebra-is-a-field}) une extension de corps
de $k$ dans laquelle la classe $x := \bar t$ de l'indéterminée $t$ est
algébrique de polynôme minimal $\mu$ : ce corps $k(x) = k[t]/(\mu)$
est appelé \textbf{corps de rupture} du polynôme irréductible $\mu$
sur $k$ (lorsque $\mu$ n'est pas unitaire, on peut encore parler de
corps de rupture quitte à diviser par le coefficient dominant ; en
revanche, l'irréductibilité est essentielle), et il va de soi que le
corps de rupture coïncide avec $k$ si et seulement si $\mu$ est de
degré $1$ (précisément, si $\mu = t-a$ alors l'élément $x := \bar t$
de $k(x) = k[t]/(\mu)$ s'identifie avec $a \in k$).

\thingy Une extension de corps $k\subseteq K$ est dite
\textbf{algébrique} lorsque chaque élément de $K$ est algébrique
sur $k$.  On dit aussi que $K$ est algébrique « au-dessus de » $k$ ou
« sur » $k$.

Un corps $k$ est dit \textbf{algébriquement clos} lorsque la seule
extension algébrique de $k$ est $k$ lui-même : d'après les remarques
précédentes, cela revient à dire que les seuls polynômes unitaires
irréductibles dans $k[t]$ sont les $t-a$.

\thingy Si $k\subseteq K$ est une extension de corps, on peut
considérer $K$ comme un $k$-espace vectoriel, et sa dimension (finie
ou infinie) est notée $[K:k]$ et appelée \textbf{degré} de
l'extension.  Une extension de degré fini est aussi dite
\textbf{finie}.  Il va de soi qu'une sous-extension d'une extension
finie est encore finie.

Il résulte de l'identification de $k(x)$ à $k[t]/(\mu_x)$ que, si $x$
est un élément algébrique sur $k$, alors $[k(x):k]$ est fini et égal
au degré $\deg\mu_x =: \deg(x)$ de $x$.  \textit{A contrio}, si $x$
est transcendant, alors $[k(x):k]$ est infini.  En particulier, on a
montré que : \emph{l'extension monogène $k\subseteq k(x)$ est finie si
  et seulement si $x$ est algébrique sur $k$}.

\thingy On aura également besoin du fait que si $k \subseteq K
\subseteq L$ sont deux extensions imbriquées alors
$[L:k] = [K:k] \, [L:K]$ (au sens où le membre de gauche est fini si
et seulement si les deux facteurs du membre de droite le sont, et dans
ce cas leur produit lui est égal).  Cela résulte du fait plus précis
que si $(x_i)_{i\in I}$ est une $k$-base de $K$ et $(y_j)_{j\in J}$
une $K$-base de $L$, alors $(x_i y_j)_{(i,j)\in I\times J}$ est une
$k$-base de $L$ (vérification aisée).

\thingy\label{basic-facts-algebraic-extensions} Les faits suivants sont à noter :

(1) Une extension de corps engendrée par un nombre fini d'éléments
algébriques est finie (en effet, si $x_1,\ldots,x_n$ sont algébriques
sur $k$, alors chaque extension $k(x_1,\ldots,x_{i-1}) \subseteq
k(x_1,\ldots,x_i)$ est monogène algébrique, donc finie, donc leur
composée est fini).

(2) Une extension $k\subseteq K$ est finie si et seulement si elle est
à la fois algébrique et de type fini.  (Le sens « si » résulte de
l'affirmation (1) ; pour le sens « seulement si », remarquer que pour
tout $x\in K$, l'extension $k\subseteq k(x)$ est finie donc
algébrique, et qu'une base de $K$ comme $k$-espace vectoriel engendre
certainement $K$ comme extension de corps de $k$.)

(3) Une extension de corps engendrée par une famille quelconque
d'éléments algébriques est algébrique (en effet, si $K = k(x_i)_{i\in
  I}$ et $y \in K$, alors, cf. \ref{subfield-generated-is-quotients},
$y$ appartient à $k(x_i)_{i\in J}$ pour une sous-famille finie des
$x_i$, et d'après le (1), cette extension est finie sur $k$ donc
$k(y)$ l'est, c'est-à-dire que $y$ est algébrique sur $k$).
Concrètement, donc, les sommes, différences, produits et inverses de
quantités algébriques sur $k$ sont algébriques sur $k$.

(4) Si $k\subseteq K$ et $K\subseteq L$ sont algébriques alors
$k\subseteq L$ l'est (en effet, si $y \in L$, et si $x_1,\ldots,x_n
\in K$ sont les coefficients du polynôme minimal de $y$ sur $L$, alors
$y$ est algébrique sur $k(x_1,\ldots,x_n)$, qui est une extension
finie de $k$ d'après (1), donc $k(x_1,\ldots,x_n,y)$ est une extension
finie de $k(x_1,\ldots,x_n)$ donc de $k$, donc $k(y)$ est une
extension finie de $k$, donc $y$ est algébrique sur $k$).

\thingy L'observation (3) ci-dessus entraîne que si $k\subseteq K$ est
une extension de corps, l'extension de $k$ engendrée par tous les
éléments de $K$ algébriques sur $k$ est tout simplement
l'\emph{ensemble} de tous les éléments de $K$ algébriques sur $k$,
c'est-à-dire que cet ensemble est un corps, qui est manifestement la
plus grande extension intermédiaire algébrique sur $k$ : on l'appelle
la \textbf{fermeture algébrique} de $k$ dans $K$ (la précision
« dans $K$ » est importante).

Si c'est précisément $k$, on dit que $k$ est \textbf{algébriquement
  fermé} dans $K$ : autrement dit, cela signifie que tout élément
de $K$ est soit transcendant sur $k$ soit élément de $k$ (=algébrique
de degré $1$).  Un corps algébriquement clos est algébriquement fermé
dans toute extension, mais un corps peut être algébriquement fermé
dans une extension sans pour autant être algébriquement clos (par
exemple $\mathbb{Q}$ dans le corps $\mathbb{Q}(t)$ des fractions
rationnelles).

\thingy\label{upgrade-algebraic-with-indeterminates} On peut aussi
remarquer le fait suivant : si $K$ est algébrique au-dessus de $k$,
alors $K(t_1,\ldots,t_n)$ où les $t_i$ sont des indéterminées (ou, de
façon équivalente, des éléments algébriquement indépendants sur $K$
d'un corps plus gros,
cf. \ref{remark-indeterminates-versus-transcendentals}) est algébrique
sur $k(t_1,\ldots,t_n)$.  (En effet, $K(t_1,\ldots,t_n)$ est engendré
sur $k(t_1,\ldots,t_n)$ par tous les éléments de $K$, qui sont
algébriques sur $k$, donc certainement aussi sur $k(t_1,\ldots,t_n)$,
et on applique \ref{basic-facts-algebraic-extensions}(3).)


\subsection{Bases et degré de transcendance}

\begin{defn}
Si $k\subseteq K$ est une extension de corps, une famille finie
$x_1,\ldots,x_n$ d'éléments de $K$ est dite \textbf{algébriquement
  indépendante} (il serait plus logique de dire « collectivement
  transcendante ») sur $k$ lorsque le seul polynôme $P \in
k[t_1,\ldots,t_n]$ à coefficients dans $k$ et tel que
$P(x_1,\ldots,x_n) = 0$ (relation de « dépendance algébrique » sur $k$
entre les $x_i$) est le polynôme nul ; autrement dit, lorsque le
morphisme « d'évaluation » $k[t_1,\ldots,t_n] \to K$ (avec
$k[t_1,\ldots,t_n]$ l'anneau des polynômes en $n$ indéterminées)
envoyant $P$ sur $P(x_1,\ldots,x_n)$ est injectif.  En particulier,
chacun des $x_i$ est transcendant sur $k$ ; et un unique élément $x$
de $K$ est algébriquement indépendant sur $k$ si et seulement si il
est transcendant sur $k$.

On dit d'une famille infinie $(x_i)$ d'éléments de $K$ qu'elle est
algébriquement indépendante sur $k$ lorsque toute sous-famille finie
d'entre eux l'est (i.e., il n'existe pas de relation de dépendance
algébrique entre les $x_i$, c'est-à-dire entre un nombre fini d'entre
eux).

Une famille $(x_i)$ d'éléments de $K$ est appelée \textbf{base de
  transcendance} de $K$ sur $k$ lorsqu'elle est algébriquement
indépendante sur $k$ et que $K$ est algébrique au-dessus de
l'extension $k(x_i)$ de $k$ engendrée par les $x_i$.
\end{defn}

\thingy\label{remark-indeterminates-versus-transcendentals} Il est trivialement le cas que $t_1,\ldots,t_n$ sont
algébriquement indépendants si $t_1,\ldots,t_n$ sont des
indéterminées, c'est-à-dire, si $k(t_1,\ldots,t_n)$ est le corps des
fractions rationnelles en $n$ indéterminées.  Réciproquement, si
$x_1,\ldots,x_n$ sont algébriquement indépendants, alors
$k(x_1,\ldots,x_n)$ s'identifie au corps des fractions rationnelles en
$n$ indéterminées comme dans le cas $n=1$ déjà vu
en \ref{monogeneous-extensions-dichotomy} ci-dessus (en envoyant
$P/Q$, avec $P,Q\in k[t_1,\ldots,t_n]$ et $Q\neq 0$, sur
$P(x_1,\ldots,x_n)/Q(x_1,\ldots,x_n)$).

(On peut encore dire la même chose pour un nombre infini de $x_i$, à
condition de définir le corps des fractions rationnelles en un nombre
infini d'indéterminées, comme « réunion », techniquement la limite
inductive, des corps de fractions rationnelles sur une sous-famille
finie quelconque d'entre elles.)

\thingy Lorsque les $(x_i)$ sont algébriquement indépendants, on dit
aussi que l'extension $k \subseteq k(x_i)$ est \textbf{transcendante
  pure} : autrement dit, une extension transcendante pure est un corps
de fractions rationnelles en un nombre quelconque (peut-être infini,
cf. ci-dessus) de variables.

La question de déterminer si une extension de corps est transcendante
pure peut être extrêmement difficile ; à titre d'exemple, le corps
$\mathbb{R}(x,y : x^2+y^2-1)$ des fractions de
$\mathbb{R}[x,y]/(x^2+y^2-1)$ est une extension transcendante pure de
$\mathbb{R}$, car il est en fait isomorphe à $\mathbb{R}(t)$ où $t =
\frac{y}{x+1}$ (de réciproque $x = \frac{1-t^2}{1+t^2}$ et $y =
\frac{2t}{1+t^2}$) : on reviendra sur cet exemple.

Certains auteurs disent parfois par abus de langage (ces notes
tâcheront de l'éviter) que $k \subseteq k(x_1,\ldots,x_n)$ est
transcendante pure pour dire en fait que les $x_1,\ldots,x_n$ sont
algébriquement indépendants.  L'exemple ci-dessus montre que c'est
abusif ; cependant, on verra que ce ne l'est plus si on sait que le
degré de transcendance est bien $n$.

Si $x_i$ est une base de transcendance de $K$ sur $k$, celle-ci
« décompose » l'extension $k \subseteq K$ en deux : l'extension $k
\subseteq k(x_i)$ est transcendante pure, et l'extension $k(x_i)
\subseteq K$ est algébrique.

\begin{prop}\label{transcendence-basis-facts}
Soit $k \subseteq K$ une extension de corps.

(1a) Toute famille algébriquement indépendante sur $k$ d'éléments
de $K$ se complète en une base de transcendance de $K$ sur $k$.  (Ceci
s'applique notamment à la famille vide, donc il existe toujours une
base de transcendance de $K$ sur $k$.)  (1b) De toute famille qui
engendre $K$ en tant qu'extension de corps de $k$ (ou même : qui
engendre un corps intermédiaire $E$ au-dessus duquel $K$ est
algébrique) on peut extraire une base de transcendance.

(2) \textit{Lemme d'échange :} Si $z_1,\ldots,z_n$ est une base de
transcendance finie de $K$ sur $k$ et $t$ un élément de $K$ tel que
$z_1,\ldots,z_\ell,t$ soient algébriquement indépendants sur $k$ (pour
un certain $\ell$, qui peut être $0$), alors il existe $j$ entre
$\ell+1$ et $n$ tel qu'en remplaçant $z_j$ par $t$ dans la base de
transcendance $z_1,\ldots,z_n$ on obtienne encore une base de
transcendance.

(3) Deux bases de transcendance de $K$ sur $k$ ont toujours le même
cardinal.
\end{prop}
\begin{proof}
(1a) Le principe de maximalité de
  Hausdorff (\ref{hausdorff-maximal-principle}, appliqué à l'ensemble
  $\mathscr{F}$ des familles algébriquement indépendantes sur $k$)
  montre que toute famille algébriquement indépendante est contenue
  dans une famille algébriquement indépendante maximale.  Montrons
  qu'une telle famille est une base de transcendance : si $(x_i)_{i\in
    I}$ est une famille algébriquement indépendante maximale, on veut
  donc prouver que $K$ est algébrique sur $k(x_i)_{i\in I}$ ; pour
  cela, soit $t \in K$, on veut montrer qu'il n'est pas transcendant
  sur $k(x_i)_{i\in I}$.  Mais s'il l'est, on observe que la famille
  obtenue en rajoutant $t$ à la famille $(x_i)_{i \in I}$ est encore
  algébriquement indépendante : en effet, si on avait un polynôme
  $P(t,(x_i))$ qui l'annulât, en considérant $P$ comme polynôme de la
  seule variable $t$ (dont il dépend effectivement, sinon il donnerait
  une relation de dépendance algébrique sur $k$ entre les $x_i$, chose
  qui n'existe pas) on contredirait la transcendance de $t$ sur
  $k(x_i)_{i\in I}$.  Par maximalité de $(x_i)_{i\in I}$, ceci ne peut
  pas se produire : donc $K$ est bien algébrique sur $k(x_i)_{i\in I}$
  et $(x_i)_{i\in I}$ est une base de transcendance.

(1b) Soit maintenant $(x_i)_{i\in J}$ une famille génératrice (i.e.,
  $K = k(x_i)_{i \in J}$) ou telle que $K$ soit algébrique sur $E =
  k(x_i)_{i \in J}$ : soit $I$ une partie maximale de $J$ telle que
  $(x_i)_{i\in I}$ soit algébriquement indépendante (de nouveau on
  utilise le principe de maximalité), et on va montrer qu'il s'agit
  d'une base de transcendance.  Si ce n'est pas le cas, l'extension
  $K$ de $k(x_i)_{i\in I}$ n'est pas algébrique, donc
  (cf. \ref{basic-facts-algebraic-extensions}(3)) elle ne peut pas
  être engendrée uniquement par des éléments algébriques, autrement
  dit il existe $j\in J$ (et évidemment $j\not\in I$) tel que $x_j$
  soit transcendant sur $k(x_i)_{i\in I}$, et par ce qu'on vient
  d'expliquer la famille obtenue en rajoutant $j$ à $I$ contredit la
  maximalité de $I$.

(2) Soit $z_1,\ldots,z_n$ une base de transcendance (finie) et $t \in
  K$ tel que $z_1,\ldots,z_\ell,t$ soient algébriquement indépendants.
  Puisque $t \in K$ est algébrique sur $k(z_1,\ldots,z_n)$, on peut
  trouver une relation de dépendance algébrique $P(t,z_1,\ldots,z_n) =
  0$ ; comme $z_1,\ldots,z_\ell,t$ sont algébriquement indépendants
  par hypothèse, le polynôme $P$ ne peut pas dépendre que de ces
  variables, donc il doit faire intervenir $z_j$ pour un certain $j$
  entre $\ell+1$ et $n$.  Soit $z'_i$ défini par $z'_i = z_i$ si
  $i\neq j$ et $z'_j = t$.  La relation $P(t,z_1,\ldots,z_n) = 0$, ou,
  quitte à échanger deux variables, $\hat P(z_j,z'_1,\ldots,z'_n) =
  0$, se lit aussi comme affirmant que $z_j$ est algébrique sur
  $k(z'_1,\ldots,z'_n)$ : il s'ensuit que $K$ est algébrique sur
  $k(z'_1,\ldots,z'_n)$ (puisqu'il est algébrique sur
  $k(z_1,\ldots,z_n)$ et qu'on vient de voir que ce dernier est
  algébrique sur $k(z'_1,\ldots,z'_n)$,
  cf. \ref{basic-facts-algebraic-extensions} (3) et (4)).  D'autre
  part, les $z'_i$ sont algébriquement indépendants : car s'ils ne
  l'étaient pas, comme les $z_1,\ldots,z_n$ le sont, une relation
  $Q(z'_1,\ldots,z'_n)=0$ ferait intervenir $z'_j = t$, c'est-à-dire
  que $t$ serait algébrique sur les autres $z'_i$, donc $z_j$ serait
  algébrique sur les $z'_i = z_i$ pour $i \neq j$ (vu qu'on sait déjà
  qu'il est algébrique sur tous les $z'_i$), or par hypothèse ce n'est
  pas le cas.  On a bien prouvé que les $z'_i$ forment une base de
  transcendance de $K$ sur $k$.

(3) Tout d'abord, s'il existe une base de transcendance finie
  $z_1,\ldots,z_n$, alors toute famille algébriquement indépendante
  $x_1,\ldots,x_{n'}$ vérifie $n' \leq n$.  En effet, si $n'>n$, le
  lemme d'échange permet de remplacer un des $z_i$, mettons $z_1$, par
  $x_1$, puis un des $z_i$ autre que $z_1$, mettons $z_2$, par $x_2$,
  et ainsi de suite, toujours en obtenant des bases de transcendance.
  Finalement, on voit que $x_1,\ldots,x_n$ est une base de
  transcendance, contredisant le fait supposé que les $x_i$ pour
  $n<i\leq n'$ sont encore transcendants dessus.  (Ici, on a supposé
  la famille $x_1,\ldots,x_{n'}$ finie, mais de façon générale on voit
  que toute sous-famille finie d'une famille algébriquement
  indépendante doit avoir au plus $n$ éléments donc toute famille
  algébriquement indépendante est finie.)

Enfin, si on a une base de transcendance infinie $(x_i)_{i\in I}$,
d'après ce qu'on vient de voir, toute autre base de transcendance
$(y_j)_{j\in J}$ est également infinie ; par ailleurs, tout élément
$y_j$ de $K$ est algébrique sur le sous-corps engendré par une
sous-famille \emph{finie} des $x_i$, donc on a une application de $J$
vers les parties finies de $I$ telle que l'image réciproque d'une
partie finie donnée de $I$ soit finie, et ceci prouve bien que $I$ et
$J$ ont même cardinal (en utilisant le fait que, pour $I$ infini, $I$
est équipotent à l'ensemble de ses parties finies).
\end{proof}

\begin{defn}
Si $k \subseteq K$ est une extension de corps, le cardinal d'une base
de transcendance de $K$ sur $k$ (dont on vient de montrer qu'il ne
dépend pas du choix de celle-ci) s'appelle \textbf{degré de
  transcendance} de $K$ sur $k$ et se note $\degtrans_k(K)$.
\end{defn}

\begin{prop}
Si $k \subseteq K \subseteq L$ est une tour d'extensions, alors
$\degtrans_k(L) = \degtrans_k(K) + \degtrans_K(L)$.
\end{prop}
\begin{proof}
Si $(x_i)_{i\in I}$ est une base de transcendance de $K$ sur $k$ et
$(y_j)_{j\in J}$ de $L$ sur $K$, alors leur réunion (évidemment
disjointe !) est une base de transcendance de $L$ sur $k$ : en effet,
d'une part, une relation de dépendance algébrique sur $k$ entre les
$x_i$ et les $y_j$ est \textit{a fortiori} une relation de dépendance
algébrique sur $K$ entre les $y_j$, qui n'existe pas, c'est-à-dire
plus exactement qui ne peut pas faire intervenir les $y_j$, donc est
une relation de dépendance algébrique sur $k$ entre les $x_i$, qui
n'existe pas non plus, c'est-à-dire plus exactement qu'elle est nulle,
et ceci montre que la réunion considérée est algébriquement
indépendante ; d'autre part, $L$ est algébrique sur $K(y_j)$, qui est
lui-même algébrique sur $k(x_i,y_j)$ car $K$ l'est sur $k(x_i)$
(cf. \ref{upgrade-algebraic-with-indeterminates}), donc $L$ est
algébrique sur $k(x_i,y_j)$
(cf. \ref{basic-facts-algebraic-extensions}(4)).
\end{proof}


\subsection{Corps de rupture, corps de décomposition, clôture algébrique}

\begin{defn}
Soit $K$ un corps et $\mu \in K[t]$ un polynôme irréductible.  On
appelle \textbf{corps de rupture} de $\mu$ sur $K$ une extension $K
\subseteq L$ telle que $\mu$ admette une racine $x$ dans $K$ pour
laquelle $L = K(x)$.  (Bien sûr, $\mu$ est alors le polynôme minimal
de $x$ sur $K$.)
\end{defn}

On a déjà introduit le terme « corps de rupture »
en \ref{monogeneous-extensions-dichotomy-bis}, mais il s'agit bien de
la même notion, plus précisément :
\begin{prop}\label{existence-uniqueness-rupture-field}
Soit $K$ un corps et $\mu \in K[t]$ un polynôme irréductible.  Alors :
(1) il existe un corps de rupture de $\mu$ sur $K$, à savoir
$K[t]/(\mu)$.  (2) Si $K \subseteq L$ est un corps de rupture de $\mu$
sur $K$ avec $L = K(x)$, et si $K \subseteq L'$ est une extension dans
laquelle $\mu$ a une racine $x'$, alors il existe un unique morphisme
de corps\footnote{On rappelle qu'un morphisme de corps est
  automatiquement injectif.} $L \to L'$ qui soit l'identité sur $K$ et
envoie $x$ sur $x'$.  (3) Si en outre $K \subseteq L'$ est aussi un
corps de rupture de $\mu$ sur $K$, le morphisme en question est un
isomorphisme ; autrement dit : si $K \subseteq L$ et $K \subseteq L'$
sont deux corps de rupture de $\mu$ sur $K$ avec $L = K(x)$ et $L' =
K(x')$, il existe un unique morphisme $L \to L'$ qui soit l'identité
sur $K$ et envoie $x$ sur $x'$, et c'est un isomorphisme ; notamment,
deux corps de rupture de $\mu$ sur $K$ sont isomorphes.
\end{prop}
\begin{proof}
L'affirmation (1) a déjà été démontrée
en \ref{monogeneous-extensions-dichotomy-bis}, en appelant $x$ la
classe de $t$ dans $K[t]/(\mu)$.  Pour ce qui est de (2), il suffit de
le prouver pour $L = K[t]/(\mu)$, or le morphisme $L \to L'$ recherché
doit provenir d'un morphisme $K[t] \to L'$ envoyant $t$ sur $x'$, ce
morphisme existe bien et est unique (il s'agit de l'évaluation
en $x'$), et il passe au quotient de façon unique (puisque $x'$ a pour
polynôme minimal $\mu$ sur $K$).  Enfin, pour ce qui est de (3), le
morphisme est un isomorphisme (i.e., est surjectif) puisque son image
est un corps contenant $K$ et $x'$ et qu'on a $L' = K(x')$.
\end{proof}

\begin{defn}
Soit $K$ un corps et $f \in K[t]$ un polynôme quelconque.  On appelle
\textbf{corps de décomposition} de $f$ sur $K$ une extension $K
\subseteq L$ telle que $f$ soit complètement décomposé sur $L$, i.e.,
$f = c\prod_{i=1}^n (t-x_i)$ (avec $c$ le coefficient dominant de $f$,
et $x_1,\ldots,x_n$ ses racines avec multiplicité) et que $L =
K(x_1,\ldots,x_n)$.
\end{defn}

\begin{prop}\label{existence-uniqueness-decomposition-field}
Soit $K$ un corps et $f \in K[t]$ un polynôme.  Alors : (1) Il existe
un corps de décomposition de $f$ sur $K$.  (2) Si $K \subseteq L$ est
un corps de décomposition de $f$ sur $K$, et si $K \subseteq L'$ est
une extension dans laquelle $f$ est complètement décomposé, il existe
un morphisme de corps $L \to L'$ qui soit l'identité sur $K$ ; de
plus, (2b) dans les conditions, si $f$ est irréductible, et si $x$ et
$x'$ sont une racine de $f$ dans $L$ et $L'$ respectivement, on peut
de plus choisir l'isomorphisme pour envoyer $x$ sur $x'$.  (3) Si en
outre $K \subseteq L'$ est aussi un corps de décomposition de $f$
sur $K$, tout morphisme comme en (2) est un isomorphisme ; autrement
dit : si $K \subseteq L$ et $K \subseteq L'$ sont deux corps de
décomposition de $f$ sur $K$, il existe un morphisme $L \to L'$ qui
soit l'identité sur $K$, et un tel morphisme est un isomorphisme ;
notamment, deux corps de décomposition de $f$ sur $K$ sont isomorphes.
\end{prop}
\begin{proof}
Pour montrer (1), (2) et (2b), on procède par récurrence sur le degré
de $f$.  Si $\deg f = 1$, toutes les affirmations sont triviales
($K$ lui-même est un corps de décomposition de $f$ sur $K$, et c'est
le seul).  Sinon, soit $f_1$ un facteur irréductible de $f$ sur $K$
(qui est $f$ lui-même si $f$ est irréductible) et soit $E$ le corps de
rupture de $f_1$, dans lequel $f_1$ admet une racine, disons $x_1$, et
si on cherche à prouver (2b) on prendra $x_1 = x$ : comme $x_1$ est
racine de $f$ dans $E$, on peut écrire $f = (t-x_1) f_2$ dans $E[t]$,
avec $\deg f_2 < \deg f =: n$, ce qui permet par récurrence
d'appliquer les conclusions à $f_2$.

Pour montrer (1), on utilise l'hypothèse de récurrence pour construire
un corps de décomposition $L$ de $f_2$ sur $E$ : disons $L =
E(x_2,\ldots,x_n)$ avec $x_2,\ldots,x_n$ les racines de $f_2$, et il
est clair que $f$ est complètement décomposé sur $L$ et on a $L =
K(x_1,\ldots,x_n)$, donc $L$ est un corps de décomposition de $f$
sur $K$.  Pour montrer (2) et (2b), soit $x'$ une racine de $f$
dans $L'$ : d'après \ref{existence-uniqueness-rupture-field}(2), il
existe un unique plongement de $E$ dans $L'$ envoyant $x_1$ sur $x'$ :
quitte à identifier $E$ à son image, on peut considérer qu'il s'agit
de l'identité ; comme $L$ est un corps de décomposition de $f_2$
sur $E$, par l'hypothèse de récurrence, il existe un morphisme $L \to
L'$ qui soit l'identité sur $E$, donc sur $K$, ce qui prouve (2), et
ce morphisme envoie $x_1$ sur $x'$ (on les a identifiés), ce qui
prouve aussi (2b).

Enfin, pour ce qui est de (3), le morphisme est un isomorphisme (i.e.,
est surjectif) puisque son image est un corps contenant $K$ et toutes
les racines $x'_1,\ldots,x'_n$ de $f$ dans $L'$, or on a $L =
K(x'_1,\ldots,x'_n)$.
\end{proof}

\begin{defn}
Soit $K$ un corps.  On appelle \textbf{clôture algébrique} de $K$ une
extension $K \subseteq L$ algébrique telle que tout polynôme de $K[t]$
soit complètement décomposé sur $L$.
\end{defn}

De toute évidence, un corps est algébriquement clos si et seulement si
il est égal à sa propre clôture algébrique.

\begin{prop}[théorème de Steinitz]
Soit $K$ un corps quelconque.  Alors il existe une clôture algébrique
de $K$, et de plus, si $L$ et $L'$ sont deux clôtures algébriques
de $K$, il existe un isomorphisme entre elles qui soit l'identité
sur $K$.  Enfin, une clôture algébrique de $K$ est algébriquement
close.
\end{prop}
\begin{proof}[Esquisse de démonstration]
L'existence se montre comme
\ref{existence-uniqueness-decomposition-field}(1) avec un argument de
passage à l'infini : pour chaque polynôme $f \in K[t]$, on construit
un corps de décomposition de ce polynôme au-dessus de tous les coprs
de décomposition précédemment obtenus, et tous ces corps sont
algébriques d'après \ref{basic-facts-algebraic-extensions} (3) et (4).
L'unicité se montre comme
\ref{existence-uniqueness-decomposition-field}(2), de nouveau en
passant à l'infini : quitte à supposer que $L$ a été construit comme
on vient de l'indiquer, pour chaque polynôme $f \in K[t]$, on
construit un morphisme entre le corps de décomposition de ce polynôme
au-dessus de tous les précédents, et un sous-corps de $L'$, jusqu'à
obtenir un morphisme de $L$ dans $L'$ (qui est l'identité au-dessus
de $K$), qui est forcément un isomorphisme puisque $L'$ est
algébrique, donc engendré par tous les éléments algébriques au-dessus
de $K$.

Enfin, si $M$ est une clôture algébrique de $L$, qui est lui-même une
clôture algébrique de $K$, on voit que $M$ est algébrique sur $K$
d'après \ref{basic-facts-algebraic-extensions}(4), donc tout élément
de $M$ est racine d'un polynôme à coefficients dans $K$, donc il est
déjà dans $L$, et en fait $L = M$, ce qui montre que $L$ est
algébriquement clos.
\end{proof}


%
%
%
\end{document}