summaryrefslogtreecommitdiffstats
path: root/transp-inf110-01-calc.tex
blob: bd41cfb74b6dec62057bcbfc104f428226f8829e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[mathserif,a4paper,aspectratio=169]{beamer}
%\documentclass[a4paper]{article}
%\usepackage[envcountsect,noxcolor]{beamerarticle}
\usepackage[shorthands=off,francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\DeclareUnicodeCharacter{00A0}{~}
\DeclareUnicodeCharacter{2026}{...}
\DeclareUnicodeCharacter{1E25}{\d{h}}
% Beamer theme:
\usetheme{Goettingen}
%\usecolortheme{albatross}
%\usecolortheme{lily}
%\setbeamercovered{transparent}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
%
\usepackage{graphicx}
\usepackage{tikz}
\usetikzlibrary{arrows,automata,calc}
%
\newcommand{\itempoint}{\strut\hbox{\color{beamerstructure}\donotcoloroutermaths$\blacktriangleright$}\nobreak\hskip.5em plus.5em\relax}
\renewcommand{\thefootnote}{\textdagger}
%
%
%
\title{Calculabilité}
\subtitle{INF110 (Logique et Fondements de l'Informatique)}
\author[David Madore]{David A. Madore\\
{\footnotesize Télécom Paris}\\
\texttt{david.madore@enst.fr}}
\date{2023–2024}
\mode<presentation>{%
\beamertemplatenavigationsymbolsempty
\usenavigationsymbolstemplate{\vbox{\hbox{\footnotesize\hyperlinkslideprev{$\leftarrow$}\insertframenumber/\inserttotalframenumber\hyperlinkslidenext{$\rightarrow$}}}}
}
\setbeamercolor{myhighlight}{fg=black,bg=white!90!green}
\begin{document}
\mode<article>{\maketitle}
%
\setlength\abovedisplayskip{2pt plus 2pt minus 2pt}
\setlength\belowdisplayskip{2pt plus 2pt minus 2pt}
%
\begin{frame}
\titlepage
{\footnotesize\center{\url{http://perso.enst.fr/madore/inf110/transp-inf110.pdf}}\par}
{\tiny
\immediate\write18{sh ./vc > vcline.tex}
\begin{center}
Git: \input{vcline.tex}
\end{center}
\immediate\write18{echo ' (stale)' >> vcline.tex}
\par}
\end{frame}
%
\section*{Plan}
\begin{frame}
\frametitle{Plan}
\tableofcontents
\end{frame}
%
\section{Introduction}
\begin{frame}
\frametitle{Qu'est-ce que la calculabilité ?}

\itempoint À l'interface entre \textbf{logique mathématique} et
\textbf{informatique théorique}
\begin{itemize}
\item née de préoccupations venues de la logique (Hilbert, Gödel),
\item à l'origine des 1\textsuperscript{ers} concepts informatiques
  ($\lambda$-calcul, machine de Turing).
\end{itemize}

\bigskip

\itempoint But : étudier les limites de ce que \textbf{peut ou ne peut
  pas faire un algorithme}
\begin{itemize}
\item sans limite de ressources (temps, mémoire juste « finis »),
\item sans préoccupation d'efficacité ($\neq$ complexité, algorithmique),
\item y compris résultats négatifs (« \emph{aucun} algorithme ne peut… »),
\item voire relatifs (calculabilité relative),
\item admettant diverses généralisations (calculabilité supérieure).
\end{itemize}

\end{frame}
%
\begin{frame}
\frametitle{Quelques noms}

\itempoint Muḥammad ibn Mūsá al-\b{H}wārizmī (v.780–v.850) :
$\rightsquigarrow$« algorithme »

\itempoint Blaise Pascal (1623–1662) : machine à calculer
$\rightsquigarrow$automates

\itempoint Charles Babbage (1791–1871) : \textit{Analytical Engine} (Turing-complète !)

\itempoint Ada (née Byron) Countess of Lovelace (1815–1852) : programmation

\itempoint Richard Dedekind (1831–1916) : définitions primitives récursives

\itempoint David Hilbert (1862–1943) : \textit{Entscheidungsproblem}
(décider la vérité)

\itempoint Jacques Herbrand (1908–1931) : fonctions générales récursives

\itempoint Kurt Gödel (1906–1978) : incomplétude en logique

\itempoint Alonzo Church (1903–1995) : $\lambda$-calcul

\itempoint Alan M. Turing (1912–1954) : machine de Turing, problème de l'arrêt

\itempoint Emil Post (1897–1954) : ensembles calculablement énumérables

\itempoint Stephen C. Kleene (1909–1994) : $\mu$-récursion, th. de récursion, forme normale

\end{frame}
%
\begin{frame}
\frametitle{Fonction calculable}

« Définition » : une fonction $f$ est \textbf{calculable}
quand il existe un algorithme qui
\begin{itemize}
\item prenant en entrée un $x$ du domaine de définition de $f$,
\item \textbf{termine en temps fini},
\item et renvoie la valeur $f(x)$.
\end{itemize}

\bigskip

Difficultés :
\begin{itemize}
\item Comment définir ce qu'est un algorithme ?
\item Quel type de valeurs ?
\item Et si l'algorithme ne termine pas ?
\item Distinction entre intention (l'algorithme) et extension (la fonction).
\end{itemize}

\end{frame}
%
\begin{frame}
\frametitle{Sans préoccupation d'efficacité}

\itempoint La calculabilité \alert{ne s'intéresse pas à l'efficacité}
des algorithmes qu'elle étudie, uniquement leur \textbf{terminaison en
  temps fini}.

\medskip

P.ex. : pour savoir si $n$ est premier, on peut tester si $i\times
j=n$ pour tout $i$ et $j$ allant de $2$ à $n-1$.  (Hyper inefficace ?
On s'en fout.)

\bigskip

\itempoint La calculabilité \alert{n'a pas peur des grands entiers}.

\medskip

P.ex. : \textbf{fonction d'Ackermann} définie par :
\[
\begin{aligned}
A(m,n,0) &= m+n \\
A(m,1,k+1) &= m \\
A(m,n+1,k+1) &= A(m,\,A(m,n,k+1),\,k)
\end{aligned}
\]
définition algorithmique par récursion, donc calculable.

\smallskip

Mais $A(2,6,3) = 2^{2^{2^{2^{2^2}}}} = 2^{2^{65\,536}}$ et $A(2,4,4) =
A(2,65\,536,3)$ est inimaginablement grand (et que dire de
$A(100,100,100)$ ?).

$\Rightarrow$ Ingérable sur un vrai ordinateur.

\end{frame}
%
\begin{frame}
\frametitle{Approches de la calculabilité}

\itempoint Approche informelle : \textbf{algorithme = calcul
  finitiste} mené par un humain ou une machine, selon des instructions
précises, en temps fini, sur des données finies

\medskip

\itempoint Approche pragmatique : tout ce qui peut être fait sur un
langage de programmation « Turing-complet » (Python, Java, C, Caml…)
idéalisé
\begin{itemize}
\item sans limites d'implémentation (p.ex., entiers arbitraires !),
\item sans source de hasard ou de non-déterminisme.
\end{itemize}

\medskip

\itempoint Approches formelles, p.ex. :
\begin{itemize}
\item fonctions générales récursives (Herbrand-Gödel-Kleene),
\item $\lambda$-calcul (Church) ($\leftrightarrow$ langages fonctionnels),
\item machine de Turing (Turing),
\item machines à registres (Post…).
\end{itemize}

\bigskip

\itempoint\textbf{« Thèse » de Church-Turing} : \alert{tout ceci
  donne la même chose}.

\end{frame}
%
\begin{frame}
\frametitle{Thèse de Church-Turing}

\itempoint\textbf{Théorème} (Post, Turing) : les fonctions (disons
$\mathbb{N} \dasharrow \mathbb{N}$) \textbf{(1)} générales récursives,
\textbf{(2)} exprimables en $\lambda$-calcul, et
\textbf{(3)} calculables par machine de Turing, coïncident toutes.

\smallskip

$\Rightarrow$ On parle de \alert{calculabilité au sens de Church-Turing}.

\bigskip

\itempoint\textbf{Observation} : tous les langages de programmation
informatiques généraux usuels, idéalisés, calculent aussi exactement
ces fonctions.

\bigskip

\itempoint\textbf{Thèse philosophique} : la calculabilité de C-T
définit précisément la notion d'algorithme finitiste.

\bigskip

\itempoint\textbf{Conjecture physique} : la calculabilité de C-T
correspond aux calculs réalisables mécaniquement dans l'Univers (en
temps/énergie finis mais illimités).

{\footnotesize $\uparrow$ (même avec un ordinateur quantique)}

\bigskip

Pour toutes ces raisons, le sujet mérite d'être étudié !

\end{frame}
%
\begin{frame}
\frametitle{Données finies}

Un algorithme travaille sur des \textbf{données finies}.

\medskip

Qu'est-ce qu'une « donnée finie » ?  Tout objet représentable
informatiquement : booléen, entier, chaîne de caractères, structure,
liste/tableau de ces choses, ou même plus complexe (p.ex., graphe).

\medskip

$\rightarrow$ Comment y voir plus clair ?

\bigskip

Deux approches opposées :
\begin{itemize}
\item\textbf{typage} : distinguer toutes ces données,
\item\textbf{codage de Gödel} : tout représenter comme des entiers !
\end{itemize}

\bigskip

Le typage est plus élégant, plus satisfaisant, plus proche de
l'informatique réelle.

\smallskip

Le codage de Gödel simplifie l'approche/définition de la calculabilité
(on étudie juste des fonctions $\mathbb{N} \dasharrow \mathbb{N}$).

\end{frame}
%
\begin{frame}
\frametitle{Codage de Gödel (« tout est un entier »)}

\itempoint Représenter \textbf{n'importe quelle donnée finie par un
  entier}.

\bigskip

\itempoint Codage des couples : par exemple,
\[
\langle m,n\rangle := m + \frac{1}{2}(m+n)(m+n+1)
\]
définit une bijection calculable $\mathbb{N}^2 \to \mathbb{N}$.

\bigskip

\itempoint Codage des listes finies : par exemple,
\[
\langle\!\langle a_0,\ldots,a_{k-1}\rangle\!\rangle
:= \langle a_0, \langle a_1, \langle\cdots,\langle a_{k-1},0\rangle+1\cdots\rangle+1\rangle+1
\]
définit une bijection calculable $\{\text{suites finies dans $\mathbb{N}$}\} \to \mathbb{N}$.

\bigskip

\itempoint Il sera aussi utile de représenter les programmes par des
entiers.

\bigskip

\itempoint Les détails du codage sont \textbf{sans importance}.

\bigskip

\itempoint\alert{Ne pas utiliser dans la vraie vie} (hors calculabilité) !

\end{frame}
%
\begin{frame}
\frametitle{Fonctions partielles}

\itempoint Même si on s'intéresse à des algorithmes qui
\textbf{terminent}, la définition de la calculabilité \alert{doit
  forcément} passer aussi par ceux qui ne terminent pas.

{\footnotesize (Aucun langage Turing-complet ne peut exprimer
  uniquement des algorithmes qui terminent toujours, à cause de
  l'indécidabilité du problème de l'arrêt.)\par}

\bigskip

\itempoint Lorsque l'algorithme censé calculer $f(n)$ ne termine pas,
on dira que $f$ n'est pas définie en $n$, et on notera $f(n)\uparrow$.
Au contraire, s'il termine, on note $f(n)\downarrow$.

\bigskip

\itempoint Notation : $f\colon \mathbb{N} \dasharrow \mathbb{N}$ :
une fonction $D \to \mathbb{N}$ définie sur une partie $D \subseteq
\mathbb{N}$.

\itempoint Notation : $f(n) \downarrow$ signifie « $n \in D$ », et $f(n)
\uparrow$ signifie « $n \not\in D$ ».

\itempoint Notation : $f(n) \downarrow = g(m)$ signifie
« $f(n)\downarrow$ et $g(m)\downarrow$ et $f(n) = g(m)$ ».

\itempoint Convention : $f(n) = g(m)$ signifie « $f(n)\downarrow$ ssi
$g(m)\downarrow$, et $f(n) = g(m)$ si $f(n)\downarrow$ ».  (Certains
préfèrent $f(n) \simeq g(m)$ pour ça.)

\end{frame}
%
\end{document}