summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--controle-20081202.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/controle-20081202.tex b/controle-20081202.tex
index cc6b8bb..cd52eaf 100644
--- a/controle-20081202.tex
+++ b/controle-20081202.tex
@@ -92,7 +92,7 @@ Les deux questions suivantes sont indépendantes.
(note : $128 = 2^7$) ?
\begin{corrige}
-(1) Comme $11$ et $31$ sont premiers entre eux,
+(1) Comme $11$ et $31$ sont premiers entre eux, le théorème chinois affirme
$\mathbb{Z}/341\mathbb{Z} \cong (\mathbb{Z}/11\mathbb{Z}) \times
(\mathbb{Z}/31\mathbb{Z})$, donc il suffit de prouver $a^{31} \equiv
a \pmod{31}$ et $a^{31} \equiv a \pmod{11}$ pour tout $a