summaryrefslogtreecommitdiffstats
path: root/notes-geoalg-2011.tex
blob: a09a40511abd204c3b011ae27749e4f30596231a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
%% This is a LaTeX document.  Hey, Emacs, -*- latex -*- , get it?
\documentclass[12pt,a4paper]{article}
\usepackage[francais]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
%\usepackage{ucs}
\usepackage{times}
% A tribute to the worthy AMS:
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
%
\usepackage{mathrsfs}
\usepackage{wasysym}
\usepackage{url}
%
\usepackage{graphics}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usetikzlibrary{matrix}
%
\theoremstyle{definition}
\newtheorem{comcnt}{Tout}[subsection]
\newcommand\thingy{%
\refstepcounter{comcnt}\smallbreak\noindent\textbf{\thecomcnt.} }
\newtheorem{defn}[comcnt]{Définition}
\newtheorem{prop}[comcnt]{Proposition}
\newtheorem{lem}[comcnt]{Lemme}
\newtheorem{thm}[comcnt]{Théorème}
\newtheorem{cor}[comcnt]{Corollaire}
\newtheorem{rmk}[comcnt]{Remarque}
\newtheorem{scho}[comcnt]{Scholie}
\newtheorem{algo}[comcnt]{Algorithme}
\newtheorem{exmps}[comcnt]{Exemples}
\newtheorem{princ}[comcnt]{Principe}
\newcommand{\limp}{\mathrel{\Rightarrow}}
\newcommand{\liff}{\mathrel{\Longleftrightarrow}}
\newcommand{\pgcd}{\operatorname{pgcd}}
\newcommand{\ppcm}{\operatorname{ppcm}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\Frob}{\operatorname{Frob}}
\newcommand{\Frac}{\operatorname{Frac}}
\newcommand{\Spec}{\operatorname{Spec}}
\newcommand{\degtrans}{\operatorname{deg.tr}}
\newcommand{\Gal}{\operatorname{Gal}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\init}{\operatorname{in}}
\newcommand{\ord}{\operatorname{ord}}
\newcommand{\divis}{\operatorname{div}}
\newcommand{\Pic}{\operatorname{Pic}}
\renewcommand{\qedsymbol}{\smiley}
%
\DeclareUnicodeCharacter{00A0}{~}
%
\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
%
\DeclareFontFamily{U}{manual}{} 
\DeclareFontShape{U}{manual}{m}{n}{ <->  manfnt }{}
\newcommand{\manfntsymbol}[1]{%
    {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
  \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
%
%
%
\begin{document}
\title{\underline{Brouillon} de notes de cours\\de géométrie algébrique}
\author{David A. Madore}
\maketitle

\centerline{\textbf{MDI349}}

%
%
%

\section{Prolégomènes d'algèbre commutative}

\subsection{Anneaux réduits, intègres}\label{subsection-reduced-and-integral-rings}

Sauf précision expresse du contraire, tous les anneaux considérés sont
commutatifs et ont un élément unité (noté $1$).  Il existe un unique
anneau dans lequel $0=1$, c'est l'anneau réduit à un seul élément,
appelé l'\textbf{anneau nul}.

Si $k$ est un anneau, une \textbf{$k$-algèbre} (là aussi :
implicitement commutative) est la donnée d'un morphisme d'anneaux $k
\buildrel\varphi\over\to A$ (appelé \emph{morphisme structural} de
l'algèbre).  On peut multiplier un élément de $A$ par un élément
de $k$ avec : $c\cdot x = \varphi(c)\,x \in A$ (pour $c\in k$ et $x\in
A$).

\smallbreak

Anneau \textbf{réduit} = anneau dans lequel $x^n = 0$ implique $x =
0$.  En général, un $x$ (dans un anneau $A$) tel que $x^n = 0$ pour un
certain $n \in \mathbb{N}$ s'appelle un élément \textbf{nilpotent}.

Anneau \textbf{intègre} = anneau non nul dans lequel $xy = 0$ implique
$x=0$ ou $y=0$ (remarque : la réciproque vaut dans tout anneau).  En
général, un $x$ (dans un anneau $A$) tel qu'il existe $y \neq 0$ tel
que $xy = 0$ s'appelle un \textbf{diviseur de zéro}.

Élément \textbf{inversible} (ou \emph{unité}) d'un anneau $A$ =
élément $x$ tel qu'il existe $y$ vérifiant $xy = 1$.  L'ensemble
$A^\times$ ou $\mathbb{G}_m(A)$ des tels éléments forme un
\emph{groupe}, appelé groupe multiplicatif des inversibles de $A$.  Un
\textbf{corps} est un anneau tel que $A^\times = A\setminus\{0\}$.

Un corps est un anneau intègre.  Un anneau intègre est un anneau
réduit.

\smallbreak

On rappelle qu'un \textbf{idéal} d'un anneau est un sous-groupe
additif $I$ de $A$ tel que $AI \subseteq I$.  Si $(x_i)_{i\in
  \Lambda}$ sont des éléments de $A$, l'intersection de tous les
idéaux contenant les $x_i$ est un idéal et s'appelle l'idéal
\textbf{engendré} par les $x_i$ : c'est l'ensemble des toutes les
combinaisons linéaires $a_1 x_{i_1} + \cdots + a_n x_{i_n}$ avec
$a_1,\ldots,a_n \in A$ et $i_1,\ldots,i_n \in \Lambda$.  Lorsque
$\Lambda$ est fini : l'idéal $I$ engendré par $x_1,\ldots,x_n$ est
l'ensemble des toutes les combinaisons linéaires $a_1 x_1 + \cdots +
a_n x_n$ et il peut se noter $Ax_1 + \cdots + Ax_n$ ou parfois
$(x_1,\ldots,x_n)$ : on dit que $I$ est un idéal \textbf{de type
  fini}.  Si $I$ peut être engendré par un seul élément, $I = Ax$
(aussi noté $(x)$), on dit que $I$ est un idéal \textbf{principal}.

Idéal nul $(0) = \{0\}$.  Idéal plein ou idéal unité $A$ : un élément
$x$ est inversible ssi l'idéal $(x)$ qu'il engendre est l'idéal unité.

\smallbreak

Idéal \textbf{maximal} d'un anneau $A$ = un idéal $\mathfrak{m} \neq
A$ tel que si $\mathfrak{m} \subseteq \mathfrak{m}'$ (avec
$\mathfrak{m}'$ un autre idéal) alors soit
$\mathfrak{m}'=\mathfrak{m}$ soit $\mathfrak{m}'=A$).  Propriété
équivalente : c'est un idéal $\mathfrak{m}$ tel que $A/\mathfrak{m}$
soit un corps.

Idéal \textbf{premier} d'un anneau $A$ = un idéal $\mathfrak{p} \neq
A$ tel que si $x,y\not\in\mathfrak{p}$ alors $xy \not\in
\mathfrak{p}$.  Propriété équivalente : c'est un idéal $\mathfrak{p}$
tel que $A/\mathfrak{p}$ soit intègre.

Idéal \textbf{radical} d'un anneau $A$ = un idéal $\mathfrak{r}$ tel
que si $x^n \in \mathfrak{r}$ alors $x \in \mathfrak{r}$.  Propriété
équivalente : c'est un idéal $\mathfrak{r}$ tel que $A/\mathfrak{r}$
soit réduit.

\emph{Exemples :} L'idéal $7\mathbb{Z}$ de $\mathbb{Z}$ est maximal
(le quotient $\mathbb{Z}/7\mathbb{Z}$ est un corps), donc \textit{a
  fortiori} premier et radical.  L'idéal $0$ de $\mathbb{Z}$ est
premier mais non maximal (le quotient $\mathbb{Z}/0\mathbb{Z} =
\mathbb{Z}$ est un anneau intègre mais non un corps).  L'idéal
$6\mathbb{Z}$ de $\mathbb{Z}$ est radical mais n'est pas premier.
L'idéal $9\mathbb{Z}$ de $\mathbb{Z}$ n'est pas radical.

\smallbreak

Un anneau est un corps ssi son idéal $(0)$ est maximal.  Un anneau est
intègre ssi son idéal $(0)$ est premier.  Un anneau est réduit ssi son
idéal $(0)$ est radical.

Un anneau est dit \textbf{local} lorsqu'il a un unique idéal maximal.
(En particulier, un corps est un anneau local.)  Le quotient d'un
anneau local par son idéal maximal s'appelle son \emph{corps
  résiduel}.  \emph{Exercice :} l'anneau $A$ des rationnels de la
forme $\frac{a}{b}$ avec $a,b \in \mathbb{Z}$ et $b$ impair est un
anneau local dont l'idéal maximal $\mathfrak{m}$ est formé des
$\frac{a}{b}$ avec $a$ pair.  (Quel est le corps résiduel ?)

\smallbreak

On admet les résultats suivants :
\begin{prop}\label{existence-maximal-ideals}
Dans un anneau $A$, tout idéal strict (=autre que $A$) est inclus dans
un idéal maximal.
\end{prop}

\begin{prop}
Dans un anneau, l'ensemble des éléments nilpotents est un idéal :
c'est le plus petit idéal radical (intersection des idéaux radicaux).
Cet idéal est aussi l'intersection des idéaux premiers de l'anneau.
On l'appelle le \textbf{nilradical} de l'anneau.
\end{prop}

En appliquant ce dernier résultat à $A/I$, on obtient :
\begin{prop}
Si $A$ est un anneau et $I$ un idéal de $A$, l'ensemble des éléments
tels que $z^n \in I$ pour un certain $n \in \mathbb{N}$ est un idéal :
c'est le plus petit idéal radical contenant $I$.  Cet idéal est
précisément l'intersection des idéaux premiers de $A$ contenant $I$.
On l'appelle le \textbf{radical} de l'idéal $I$ et on le note $\surd
I$.
\end{prop}

L'intersection des idéaux maximaux d'un anneau s'appelle le
\textbf{radical de Jacobson} de cet anneau : il est, en général,
strictement plus grand que le nilradical.

Notons aussi la conséquence facile suivante de la
proposition \ref{existence-maximal-ideals}.
\begin{prop}\label{non-invertible-elements-and-maximal-ideals}
Dans un anneau $A$, l'ensemble des éléments non-inversibles est la
réunion de tous les idéaux maximaux.
\end{prop}
\begin{proof}
Dire que $x$ est inversible signifie que $x$ engendre l'idéal unité.
Si c'est le cas, $x$ n'appartient à aucun idéal strict de $A$, et en
particulier aucun idéal maximal.  Réciproquement, si $x$ n'est pas
inversible, l'idéal $(x)$ qu'il engendre est strict, donc inclus dans
un idéal maximal $\mathfrak{m}$
d'après \ref{existence-maximal-ideals}, donc $x$ est bien dans la
réunion des idéaux maximaux.
\end{proof}

%
\subsection{Anneaux noethériens}

Anneau \textbf{noethérien} : c'est un anneau $A$ vérifiant les
proprités équivalentes suivantes :
\begin{itemize}
\item toute suite croissante pour l'inclusion $I_0 \subseteq I_1
  \subseteq I_2 \subseteq \cdots$ d'idéaux de $A$ stationne
  (c'est-à-dire est constante à partir d'un certain rang) ;
\item tout idéal $I$ de $A$ est de type fini : il existe une famille
  \emph{finie} $(x_i)$ d'éléments de $I$ qui engendre $I$ comme
  idéal ;
\item plus précisément, si $I$ est l'idéal engendré par une famille
  $x_i$ d'éléments, on peut trouver une sous-famille finie des $x_i$
  qui engendre le même idéal $I$.
\end{itemize}

L'essentiel des anneaux utilisés en géométrie algébrique (en tout cas,
auxquels on aura affaire) sont noethériens.  L'anneau $\mathbb{Z}$ est
noethérien.  Tout corps est un anneau noethérien.  Tout quotient d'un
anneau noethérien est noethérien (attention : il n'est pas vrai qu'un
sous-anneau d'un anneau noethérien soit toujours noethérien).  Et
surtout :
\begin{prop}[théorème de la base de Hilbert]
Si $A$ est un anneau noethérien, alors l'anneau $A[t]$ des polynômes à
une indéterminée sur $A$ est noethérien.
\end{prop}

En itérant ce résultat, on voit que si $A$ est noethérien, alors
$A[t_1,\ldots,t_d]$ l'est pour tout $d\in\mathbb{N}$.  Comme un
quotient d'un anneau noethérien est encore noethérien :

\begin{defn}\label{finite-type-algebras}
Une $A$-algèbre $B$ est dite \textbf{de type fini} (comme $A$-algèbre)
lorsqu'il existe $x_1,\ldots,x_d \in B$ (qu'on dit \emph{engendrer}
$B$ comme $A$-algèbre) tel que tout élément de $B$ s'écrive
$f(x_1,\ldots,x_d)$ pour un certain polynôme $f \in
A[t_1,\ldots,t_d]$.
\end{defn}

Dire que $B$ est une $A$-algèbre de type fini engendrée par
$x_1,\ldots,x_d$ signifie donc que le morphisme $\xi\colon
A[t_1,\ldots,t_d] \to B$ défini par $f \mapsto f(x_1,\ldots,x_d)$ est
\emph{surjectif}.  Par conséquent, si $I$ désigne le noyau de ce
morphisme (c'est-à-dire l'ensemble des $f \in A[t_1,\ldots,t_d]$ qui
s'annulent en $(x_1,\ldots,x_d)$) alors $\xi$ définit un isomorphisme
$A[t_1,\ldots,t_d]/I \buildrel\sim\over\to B$.  On peut donc dire :
une $A$-algèbre de type fini est un quotient de $A[t_1,\ldots,t_d]$
(pour un certain $d$).

\begin{cor}\label{finite-type-algebras-are-noetherian}
Une algèbre de type fini sur un anneau noethérien, et en particulier
sur un corps ou sur $\mathbb{Z}$, est un anneau noethérien.
\end{cor}

%
\subsection{Localisation}\label{subsection-localization}

On dit qu'une partie $S$ d'un anneau $A$ est \emph{multiplicative}
lorsque $1\in S$ et $s,s'\in S \limp ss'\in S$.  Par exemple, le
complémentaire d'un idéal premier est, par définition,
multiplicative ; en particulier, dans un anneau intègre, l'ensemble
des éléments non nuls est une partie multiplicative.

Dans ces conditions, on construit un anneau noté $A[S^{-1}]$ (ou
$S^{-1}A$) de la façon suivante : ses éléments sont notés $a/s$ avec
$a\in A$ et $s \in S$, où on identifie\footnote{Ce racourci de langage
  signifie qu'on considère la relation d'équivalence $\sim$ sur
  $A\times S$ définie par $(a,s) \sim (a',s')$ lorsqu'il existe $t \in
  S$ tel que $t(a's-as') = 0$, on appelle $A[S^{-1}]$ le quotient
  $(A\times S)/\sim$, et on note $a/s$ la classe de $(a,s)$ pour cette
  relation ; il faudrait encore vérifier que toutes les opérations
  proposées ensuite sont bien définies.} $a/s = a'/s'$ lorsqu'il
existe $t \in S$ tel que $t(a's-as') = 0$.  L'addition est définie par
$(a/s)+(a'/s') = (a's+as')/(ss')$ (le zéro par $0/1$, l'opposé par
$-(a/s) = (-a)/s$) et la multiplication par $(a/s)\cdot (a'/s') =
(aa')/(ss')$ (l'unité par $1/1$).  Cet anneau est muni d'un morphisme
naturel $A \buildrel\iota\over\to A[S^{-1}]$ donné par $a \mapsto
a/1$.  On l'appelle le \textbf{localisé} de $A$ inversant la partie
multiplicative $S$.  Si $A$ est une $k$-algèbre (pour un certain
anneau $k$) alors $A[S^{-1}]$ est une $k$-algèbre de façon évidente
(en composant le morphisme structural $k\to A$ par le morphisme
naturel $A \to A[S^{-1}]$).

\begin{prop}\label{properties-localization}
\begin{itemize}
\item Le morphisme naturel $A \buildrel\iota\over\to A[S^{-1}]$ est
  injectif si et seulement si $S$ ne contient aucun diviseur de zéro.
  (Extrême inverse : si $S$ contient $0$, alors $A[S^{-1}]$ est
  l'anneau nul.)
\item Tout idéal $J$ de $A[S^{-1}]$ est de la forme $J = I[S^{-1}] :=
  \{a/s : a\in I,\penalty0 s \in S\}$ où $I$ est l'image réciproque
  dans $A$ (par le morphisme naturel $\iota\colon A \to A[S^{-1}]$) de
  l'idéal $J$ considéré.
\item L'application $\mathfrak{p} \mapsto \iota^{-1}(\mathfrak{p})$
  définit une bijection entre les idéaux premiers de $A[S^{-1}]$ et
  ceux de $A$ ne rencontrant pas $S$.
\end{itemize}
\end{prop}

Cas particuliers importants : si $\mathfrak{p}$ est premier et $S =
A\setminus\mathfrak{p}$ est son com\-plé\-men\-taire, on note
$A_{\mathfrak{p}} = A[S^{-1}]$ ; c'est un anneau local (dont l'idéal
maximal est $\mathfrak{p}[S^{-1}] = \{a/s : a\in \mathfrak{p}, s
\not\in \mathfrak{p}\}$) : on l'appelle le localisé de $A$
\textbf{en} $\mathfrak{p}$.  Si $A$ est un anneau intègre et $S = A
\setminus\{0\}$ l'ensemble des éléments non nuls de $A$, on note
$\Frac(A) = A[S^{-1}]$ : c'est un corps, appelé \textbf{corps des
  fractions} de $A$.  Par exemple, $\Frac(\mathbb{Z}) = \mathbb{Q}$ et
$\Frac(k[t]) = k(t)$ pour $k$ un corps.

Toute partie $\Sigma$ de $A$ engendre une partie multiplicative $S$
(c'est l'intersection de toutes les parties multiplicatives
contenant $\Sigma$, ou simplement l'ensemble de tous les produits
possibles d'éléments de $\Sigma$) : on note généralement
$A[\Sigma^{-1}]$ pour $A[S^{-1}]$.  En particulier, lorsque $\Sigma =
\{\sigma_1,\ldots,\sigma_n\}$, on note
$A[\sigma_1^{-1},\ldots,\sigma_n^{-1}]$ ou
$A[\frac{1}{\sigma_1},\ldots,\frac{1}{\sigma_n}]$.

\begin{prop}\label{localization-inverting-one-element}
Si $A$ est un anneau et $\sigma_1,\ldots,\sigma_n \in A$, alors
\begin{itemize}
\item L'anneau $A[\frac{1}{\sigma_1},\ldots,\frac{1}{\sigma_n}]$
  s'identifie à $A[\frac{1}{f}]$ où $f = \sigma_1\cdots\sigma_n$.
\item De plus, $A[\frac{1}{f}] \cong A[z]/(zf-1)$ (ici, $A[z]$ est
  l'anneau des polynômes en une indéterminée), par un isomorphisme
  envoyant $\frac{a}{f^n}$ sur la classe de $a z^n$
\end{itemize}
\end{prop}


%
%
%

\section{Variétés algébriques affines sur un corps algé\-bri\-que\-ment clos}

Dans cette section, $k$ sera un corps algébriquement clos.

On appelle \textbf{espace affine de dimension $d$} sur $k$
l'ensemble $k^d$ (on parle de droite ou plan affine lorsque $d=1,2$).
Il sera aussi parfois noté $\mathbb{A}^d$ ou $\mathbb{A}^d(k)$ pour
des raisons qui apparaîtront plus loin.

%
\subsection{Correspondance entre fermés de Zariski et idéaux}

\textbf{Comment associer une partie de $k^d$ à un idéal de
  $k[t_1,\ldots,t_d]$ ?}

Si $\mathscr{F}$ est une partie de $k[t_1,\ldots,t_d]$, on définit un
ensemble $Z(\mathscr{F}) = \{(x_1,\ldots,x_d) \in k^d :\penalty0
(\forall f\in \mathscr{F})\, f(x_1,\ldots,x_d) = 0\}$.

Remarques évidentes : si $\mathscr{F} \subseteq \mathscr{F}'$ alors
$Z(\mathscr{F}) \supseteq Z(\mathscr{F}')$ (la fonction $Z$ est
« décroissante pour l'inclusion ») ; on a $Z(\mathscr{F}) =
\bigcap_{f\in \mathscr{F}} Z(f)$ (où $Z(f)$ est un racourci de
notation pour $Z(\{f\})$).  Plus intéressant : si $I$ est l'idéal
engendré par $\mathscr{F}$ alors $Z(I) = Z(\mathscr{F})$.  On peut
donc se contenter de regarder les $Z(I)$ avec $I$ idéal
de $k[t_1,\ldots,t_d]$.  Encore un peu mieux : si $\surd I = \{f :
(\exists n)\,f^n\in I\}$ désigne le radical de l'idéal $I$, on a
$Z(\surd I) = Z(I)$ ; on peut donc se contenter de considérer les
$Z(I)$ avec $I$ idéal radical.

On appellera \textbf{fermé de Zariski} dans $k^d$ une partie $E$ de la
forme $Z(\mathscr{F})$ pour une certaine partie $\mathscr{F}$
de $k[t_1,\ldots,t_d]$, dont on a vu qu'on pouvait supposer qu'il
s'agit d'un idéal radical.

Le vide est un fermé de Zariski ($Z(1) = \varnothing$) ; l'ensemble
$k^d$ tout entier est un fermé de Zariski ($Z(0) = k^d$).  Tout
singleton est un fermé de Zariski : en effet, $Z(\mathfrak{m}_x) =
\{x\}$, où $\mathfrak{m}_x$ est l'idéal $(t_1-x_1,\ldots,t_d-x_d)$ ;
remarquer que $\mathfrak{m}_x$ est un idéal maximal, le quotient
$k[t_1,\ldots,t_d]/\mathfrak{m}_x$ s'identifiant à $k$ par la fonction
$f \mapsto f(x)$ d'évaluation en $x$.

Si $(E_i)_{i\in \Lambda}$ sont des fermés de Zariski, alors
$\bigcap_{i\in \Lambda} E_i$ est un fermé de Zariski : plus
précisément, si $(I_i)_{i\in \Lambda}$ sont des idéaux
de $k[t_1,\ldots,t_d]$, alors $Z(\sum_{i\in\Lambda} I_i) =
\bigcap_{i\in\Lambda} Z(I_i)$.  Si $E,E'$ sont des fermés de Zariski,
alors $E \cup E'$ est un fermé de Zariski : plus précisément, si
$I,I'$ sont des idéaux de $k[t_1,\ldots,t_d]$, alors $Z(I\cap I') =
Z(I) \cup Z(I')$ (l'inclusion $\supseteq$ est évidente ; pour l'autre
inclusion, si $x \in Z(I\cap I')$ mais $x \not\in Z(I)$, il existe
$f\in I$ tel que $f(x) \neq 0$, et alors pour tout $f' \in I'$ on a
$f(x)\,f'(x) = 0$ puisque $ff' \in I\cap I'$, donc $f'(x) = 0$, ce qui
prouve $x \in Z(I')$).

\medbreak

\textbf{Comment associer un idéal de $k[t_1,\ldots,t_d]$ à une partie
  de $k^d$ ?}

Réciproquement, si $E$ est une partie de $k^d$, on note
$\mathfrak{I}(E) = \{f\in k[t_1,\ldots,t_d] :\penalty0 (\forall
(x_1,\ldots,x_d)\in E)\, f(x_1,\ldots,x_d)=0\}$.  Vérification
facile : c'est un idéal de $k[t_1,\ldots,t_d]$, et même un idéal
radical.  Remarque évidente : si $E \subseteq E'$ alors
$\mathfrak{I}(E) \supseteq \mathfrak{I}(E')$ ; on a $\mathfrak{I}(E) =
\bigcap_{x\in E} \mathfrak{m}_x$ (où $\mathfrak{m}_x$ désigne l'idéal
maximal $\mathfrak{I}(\{x\})$ des polynômes s'annulant en $x$), et en
particulier $\mathfrak{I}(E) \neq k[t_1,\ldots,t_d]$ dès que $E \neq
\varnothing$.

On a de façon triviale $\mathfrak{I}(\varnothing) =
k[t_1,\ldots,t_d]$.  De façon moins évidente, si $k$ est infini (ce
qui est en particulier le cas lorsque $k$ est algébriquement clos), on
a $\mathfrak{I}(k^d) = (0)$ (démonstration par récurrence sur $d$,
laissée en exercice).

\danger Sur un corps fini $\mathbb{F}_q$, on a
$\mathfrak{I}({\mathbb{F}_q}^d) \neq (0)$.  Par exemple, si $t$ est
une des in\-dé\-ter\-mi\-nées, le polynôme $t^q-t$ s'annule en tout
point de ${\mathbb{F}_q}^d$.

\medbreak

\textbf{Le rapport entre ces deux fonctions}

On a $E \subseteq Z(\mathscr{F})$ ssi $\mathscr{F} \subseteq
\mathfrak{I}(E)$, puisque les deux signifient « tout polynôme dans
  $\mathscr{F}$ s'annule en tout point de $E$ ».

En particulier, en appliquant cette remarque à $\mathscr{F} =
\mathfrak{I}(E)$, on a $E \subseteq Z(\mathfrak{I}(E))$ pour toute
partie $E$ de $k^d$ ; et en appliquant la remarque à $E =
Z(\mathscr{F})$, on a $\mathscr{F} \subseteq
\mathfrak{I}(Z(\mathscr{F}))$.  De $E \subseteq Z(\mathfrak{I}(E))$ on
déduit $\mathfrak{I}(E) \supseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$
(car $\mathfrak{I}$ est décroissante), mais par ailleurs
$\mathfrak{I}(E) \subseteq \mathfrak{I}(Z(\mathfrak{I}(E)))$ en
appliquant l'autre inclusion à $\mathfrak{I}(E)$ : donc
$\mathfrak{I}(E) = \mathfrak{I}(Z(\mathfrak{I}(E)))$ pour toute partie
$E$ de $k^d$ ; de même, $Z(\mathscr{F}) =
Z(\mathfrak{I}(Z(\mathscr{F})))$ pour tout ensemble $\mathscr{F}$ de
polynômes.  On a donc prouvé :

\begin{prop}
Avec les notations ci-dessus :
\begin{itemize}
\item Une partie $E$ de $k^d$ vérifie $E = Z(\mathfrak{I}(E))$ si et
  seulement si elle est de la forme $Z(\mathscr{F})$ pour un
  certain $\mathscr{F}$ (=: c'est un fermé de Zariski), et dans ce cas
  on peut prendre $\mathscr{F} = \mathfrak{I}(E)$, qui est un idéal
  radical.
\item Une partie $I$ de $k[t_1,\ldots,t_d]$ vérifie $I =
  \mathfrak{I}(Z(I))$ si et seulement si elle est de la forme
  $\mathfrak{I}(E)$ pour un certain $E$, et dans ce cas on peut
  prendre $E = Z(I)$, et $I$ est un idéal radical
  de $k[t_1,\ldots,t_d]$.
\item Les fonctions $\mathfrak{I}$ et $Z$ se restreignent en des
  bijections décroissantes réci\-proques entre l'ensemble des fermés
  de Zariski $E$ de $k^d$ et l'ensemble des idéaux (radicaux) $I$
  de $k[t_1,\ldots,t_d]$ tels que $I = \mathfrak{I}(Z(I))$.
\end{itemize}
\end{prop}

On va voir ci-dessous que les idéaux tels que $I = \mathfrak{I}(Z(I))$
sont exactement (tous) les idéaux radicaux de $k[t_1,\ldots,t_d]$.

\medbreak

\textbf{Fermés irréductibles et idéaux premiers}

On dit qu'un fermé de Zariski $E \subseteq k^d$ non vide est
\textbf{irréductible} lorsqu'on ne peut pas écrire $E = E' \cup E''$,
où $E',E''$ sont deux fermés de Zariski (forcément contenus
dans $E$...), sauf si $E'=E$ ou $E''=E$.

\emph{Contre-exemple :} $Z(xy)$ (dans le plan $k^2$ de
coordonnées $x,y$) n'est pas ir\-ré\-duc\-tible, car $Z(xy) = \{(x,y)
\in k^2 : xy=0\} = \{(x,y) \in k^2 :
x=0\penalty0\ \textrm{ou}\penalty0\ y=0\} = Z(x) \cup Z(y)$ est
réunion de $Z(x)$ (l'axe des ordonnées) et $Z(y)$ (l'axe des
abscisses) qui sont tous tous les deux strictement plus petits
que $Z(xy)$.

\begin{prop}\label{closed-irreducible-iff-prime-ideal}
Un fermé de Zariski $E \subseteq k^d$ est irréductible si, et
seulement si, l'idéal $\mathfrak{I}(E)$ est premier.
\end{prop}
\begin{proof}
Supposons $\mathfrak{I}(E)$ premier : on veut montrer que $E$ est
irréductible.  Supposons $E = E' \cup E''$ comme ci-dessus (on a vu
que $E = Z(\mathfrak{I}(E))$, $E' = Z(\mathfrak{I}(E'))$ et $E'' =
Z(\mathfrak{I}(E''))$) : on veut montrer que $E' = E$ ou $E'' = E$.
Supposons le contraire, c'est-à-dire $\mathfrak{I}(E) \neq
\mathfrak{I}(E')$ et $\mathfrak{I}(E) \neq \mathfrak{I}(E'')$.  Il
existe alors $f' \in \mathfrak{I}(E') \setminus \mathfrak{I}(E)$ et
$f'' \in \mathfrak{I}(E'') \setminus \mathfrak{I}(E)$.  On a alors
$f'f'' \not\in \mathfrak{I}(E)$ car $\mathfrak{I}(E)$ est premier, et
pourtant $f'f''$ s'annule sur $E'$ et $E''$ donc sur $E$, une
contradiction.

Réciproquement, supposons $E$ irréductible : on veut montrer que
$\mathfrak{I}(E)$ est premier.  Soient $f',f''$ tels que $f'f'' \in
\mathfrak{I}(E)$ : posons $E' = Z(\mathfrak{I}(E) + (f'))$ et $E'' =
Z(\mathfrak{I}(E) + (f''))$.  On a $E' \subseteq E$ et $E'' \subseteq
E$ puisque $E = Z(\mathfrak{I}(E))$, et en fait $E' = E \cap Z(f')$ et
$E'' = E \cap Z(f'')$ ; on a par ailleurs $E = E' \cup E''$ (car si $x
\in E$ alors $f'(x)\,f''(x) = 0$ donc soit $f'(x)=0$ soit $f''(x)=0$,
et dans le premier cas $x \in E'$ et dans le second $x \in E''$).
Puisqu'on a supposé $E$ irréductible, on a, disons, $E' = E$,
c'est-à-dire $E \subseteq Z(f')$, ce qui signifie $f' \in
\mathfrak{I}(E)$.  Ceci montre bien que $\mathfrak{I}(E)$ est premier.
\end{proof}

%
\subsection{Le Nullstellensatz}

(Nullstellensatz, littéralement, « théorème du lieu d'annulation », ou
« théorème des zéros de Hilbert ».)

On rappelle que $k$ est algébriquement clos !  (Pour l'instant, cela
n'a pas beaucoup servi.)

\begin{prop}[Nullstellensatz faible]
Soit $k$ un corps algébriquement clos.  Si $I$ est un idéal de
$k[t_1,\ldots,t_d]$ tel que $Z(I) = \varnothing$, alors $I =
k[t_1,\ldots,t_d]$.
\end{prop}
\begin{proof}[Démonstration dans le cas particulier où $k$ est indénombrable.]
Supposons par contraposée $I \subsetneq k[t_1,\ldots,t_d]$.  Alors il
existe un idéal maximal $\mathfrak{m}$ tel que $I \subseteq
\mathfrak{m}$, et on a $Z(\mathfrak{m}) \subseteq Z(I)$.  On va
montrer $Z(\mathfrak{m}) \neq \varnothing$.

Soit $K = k[t_1,\ldots,t_d]/\mathfrak{m}$.  Il s'agit d'un corps, qui
est de dimension au plus dénombrable (=il a une famille génératrice
dénombrable, à savoir les images des monômes dans les $t_i$) sur $k$.
Mais $K$ ne peut pas contenir d'élément transcendant $\tau$ sur $k$
car, $k$ ayant été supposé indénombrable, la famille des
$\frac{1}{\tau - x}$ pour $x\in k$ serait linéairement indépendante
(par décomposition en élément simples) dans $k(\tau)$ donc dans $K$.
Donc $K$ est algébrique sur $k$.  Comme $k$ était supposé
algébriquement clos, on a en fait $K=k$.  Les classes des
indéterminées $t_1,\ldots,t_d$ définissent alors des éléments
$x_1,\ldots,x_d \in k$, et pour tout $f \in \mathfrak{m}$, on a
$f(x_1,\ldots,x_d) = 0$.  Autrement dit, $(x_1,\ldots,x_d) \in
Z(\mathfrak{m})$, ce qui conclut.
\end{proof}

En fait, dans le cours de cette démonstration, on a montré (dans le
cas particulier où on s'est placé, mais c'est vrai en général) :
\begin{prop}[{idéaux maximaux de $k[t_1,\ldots,t_d]$}]\label{maximal-ideals-of-polynomial-algebras}
Soit $k$ un corps algé\-bri\-que\-ment clos.  Tout idéal maximal
$\mathfrak{m}$ de $k[t_1,\ldots,t_d]$ est de la forme
$\mathfrak{m}_{(x_1,\ldots,x_d)} := \{f : f(x_1,\ldots,x_d) = 0\}$
pour un certain $(x_1,\ldots,x_d) \in k^d$.
\end{prop}
\begin{proof}
En fait, on a prouvé que si $\mathfrak{m}$ est un idéal maximal, il
existe $(x_1,\ldots,x_d) \in k^d$ tels que $(x_1,\ldots,x_d) \in
Z(\mathfrak{m})$, ce qui donne $\mathfrak{m} \subseteq
\mathfrak{I}(\{(x_1,\ldots,x_d)\})$, mais par maximalité de
$\mathfrak{m}$ ceci est en fait une égalité.
\end{proof}

En particulier, le corps quotient $k[t_1,\ldots,t_d]/\mathfrak{m}$ est
isomorphe à $k$, l'isomorphisme étant donnée par l'évaluation au point
$(x_1,\ldots,x_d)$ tel que ci-dessus.

\begin{thm}[Nullstellensatz = théorème des zéros de Hilbert]
Soit $I$ un idéal de $k[t_1,\ldots,t_d]$ (toujours avec $k$ un corps
algébriquement clos) : alors $\mathfrak{I}(Z(I)) = \surd I$ (le
radical de $I$).
\end{thm}
\begin{proof}
On sait que $\surd I \subseteq \mathfrak{I}(Z(I))$ et il s'agit de
montrer la réciproque.  Soit $f \in \mathfrak{I}(Z(I))$ : on veut
prouver $f\in \surd I$.  On vérifie facilement que ceci revient à
montrer que l'idéal $I[\frac{1}{f}]$
de $k[t_1,\ldots,t_d,\frac{1}{f}]$ est l'idéal unité.  Or
$k[t_1,\ldots,t_d,\frac{1}{f}] = k[t_1,\ldots,t_d,z]/(zf-1)$
d'après \ref{localization-inverting-one-element}.  Soit $J$ l'idéal
engendré par $I$ et $zf-1$ dans $k[t_1,\ldots,t_d,z]$ : on voit que
$Z(J) = \varnothing$ (dans $k^{d+1}$), car on ne peut pas avoir
simultanément $f(x_1,\ldots,x_d) = 0$ et $z\,f(x_1,\ldots,x_d) = 1$,
donc le Nullstellensatz faible entraîne $J = k[t_1,\ldots,t_d,z]$ :
ceci donne $I[\frac{1}{f}] = k[t_1,\ldots,t_d,\frac{1}{f}]$.
\end{proof}

\begin{scho}
Si $k$ est un corps algébriquement clos, les fonctions $I \mapsto
Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
réci\-proques, décroissantes pour l'inclusion, entre les idéaux radicaux
de $k[t_1,\ldots,t_d]$ d'une part, et les fermés de Zariski de $k^d$
d'autre part.

Ces bijections mettent les \emph{points} (c'est-à-dire les singletons)
de $k^d$ en correspondance avec les idéaux maximaux de
$k[t_1,\ldots,t_d]$ (ils ont tous pour quotient $k$), et les
\emph{fermés irréductibles} en correspondance avec les idéaux
premiers.
\end{scho}

%
\subsection{L'anneau d'un fermé de Zariski}

Si $X$ est un fermé de Zariski dans $k^d$ avec $k$ algébriquement
clos, on a vu qu'il existe un unique idéal radical $I$
de $k[t_1,\ldots,t_d]$, à savoir l'idéal $I = \mathfrak{I}(X)$ des
polynômes s'annulant sur $X$, tel que $X = Z(I)$.  Le quotient
$k[t_1,\ldots,t_d] / I$ (qui est donc un anneau réduit, et intègre ssi
$X$ est irréductible) s'appelle l'\textbf{anneau des fonctions
  régulières} sur $X$ et se note $\mathcal{O}(X)$ (ou parfois $k[X]$).

Pourquoi fonctions régulières ?  On peut considérer un élément $f \in
\mathcal{O}(X)$ comme une fonction $X \to k$ de la façon suivante : si
$\tilde f \in k[t_1,\ldots,t_d]$ est un représentant de $f$
(modulo $I$) et si $x = (x_1,\ldots,x_d) \in X$, la valeur de $\tilde
f(x_1,\ldots,x_d)$ ne dépend pas du choix de $\tilde f$ représentant
$f$ puisque tout élément de $I$ s'annule en $x$ ; on peut donc appeler
$f(x)$ cette valeur.  Inversement, un $f \in \mathcal{O}(X)$ est
complètement déterminé par sa valeur sur chaque point $x$ de $X$
(rappel : $k$ est algébriquement clos ici, et c'est important !) ; en
effet, si $f$ s'annule en tout $x \in X$, tout élément de
$k[t_1,\ldots,t_d]$ représentant $f$ s'annule en tout $x \in X$,
c'est-à-dire appartient à $\mathfrak{I}(X)$, ce qui signifie justement
$f = 0$ dans $\mathcal{O}(X)$.  Moralité : on peut bien considérer les
éléments de $\mathcal{O}(X)$ comme des fonctions.  Ces fonctions sont,
tout simplement, \emph{les restrictions à $X$ des fonctions
  polynomiales sur l'espace affine $\mathbb{A}^d$}.

Dans le cas où $X = \mathbb{A}^d = k^d$ tout entier (donc $I = (0)$),
évidemment, $\mathcal{O}(\mathbb{A}^d) = k[t_1,\ldots,t_d]$.

\smallbreak

On définit un \textbf{fermé de Zariski de $X$} comme un fermé de
Zariski de $k^d$ qui se trouve être inclus dans $X$.  La bonne
nouvelle est que la correspondance entre fermés de Zariski de $k^d$ et
idéaux de $k[t_1,\ldots,t_d]$ se généralise presque mot pour mot à une
correspondance entre fermés de Zariski de $X$ et idéaux
de $\mathcal{O}(X)$ :

\begin{prop}
Avec les notations ci-dessus :
\begin{itemize}
\item Tout fermé de Zariski de $X$ est de la forme $Z(\mathscr{F}) :=
  \{x\in X :\penalty0 {(\forall f\in \mathscr{F})}\penalty100\, f(x) =
  0\}$ pour un certain ensemble $\mathscr{F}$ d'éléments
  de $\mathcal{O}(X)$.
\item En posant $\mathfrak{I}(E) := \{f\in \mathcal{O}(X) :\penalty0
  {(\forall x\in E)}\penalty100\, f(x)=0\}$, les fonctions $I \mapsto
  Z(I)$ et $E \mapsto \mathfrak{I}(E)$ définissent des bijections
  réci\-proques, décroissantes pour l'inclusion, entre les idéaux
  radicaux de $\mathcal{O}(X)$ d'une part, et les fermés de Zariski de
  $X$ d'autre part : on a $\mathfrak{I}(Z(I)) = \surd I$ pour tout
  idéal $I$ de $\mathcal{O}(X)$.
\item Ces bijections mettent les \emph{points} (c'est-à-dire les
  singletons) de $X$ en correspondance avec les idéaux maximaux de
  $\mathcal{O}(X)$ (qui sont donc tous de la forme $\mathfrak{m}_x :=
  \{f \in \mathcal{O}(X) : f(x)=0\}$ pour un $x\in X$) ; et les
  \emph{fermés irréductibles} en correspondance avec les idéaux
  premiers.
\end{itemize}
\end{prop}

\smallbreak

Soulignons en particulier que si $X'$ est un fermé de Zariski de $X$
(disons défini comme $X' = Z(I)$ où $I$ est un idéal radical
de $\mathcal{O}(X)$), alors la surjection canonique $\mathcal{O}(X)
\to \mathcal{O}(X)/I$ est un morphisme d'anneaux $\mathcal{O}(X) \to
\mathcal{O}(X')$ qu'il faut interpréter comme envoyant une fonction
régulière $f$ sur $X$ sur sa \emph{restriction} à $X'$, parfois
notée $f|_{X'}$.

%
\subsection{Variétés algébriques affines, morphismes}

On appelle provisoirement \textbf{variété algébrique affine}
dans $k^d$ (toujours avec $k$ algébriquement clos) un fermé de Zariski
$X$ de $k^d$.  Pourquoi cette terminologie redondante ?  Le terme
« fermé de Zariski » insiste sur $X$ en tant que plongée dans l'espace
affine $\mathbb{A}^d$.  Le terme de « variété algébrique affine »
insiste sur l'aspect intrinsèque de $X$, muni de ses propres fermés de
Zariski et de ses propres fonctions régulières, qu'on va maintenant
présenter.  On a vu ci-dessus comment associer à $X$ un anneau
$\mathcal{O}(X)$ des fonctions régulières, qui coïncide avec
l'ensemble des fonctions $X \to k$ qui sont restrictions de fonctions
polynomiales sur $k^d$.

On appelle \textbf{morphisme de variétés algébriques affines} sur $k$
entre un fermé de Zariski $X \subseteq k^d$ et un fermé de Zariski $Y
\subseteq k^e$ une application $X \to Y$ telle que chacune des $e$
coordonnées à l'arrivée soit une fonction régulière sur $X$.
Autrement dit, il s'agit de la donnée de $e$ éléments $f_1,\ldots,f_e$
de $\mathcal{O}(X)$ tels que $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout
$x \in X$.
\begin{prop}
Si $X = Z(I) \subseteq k^d$ et $Y = Z(J) \subseteq k^e$, et si
$(f_1,\ldots,f_e) \in \mathcal{O}(X)$, alors $f = (f_1,\ldots,f_e)$
définit un morphisme $X\to Y$ (autrement dit $(f_1(x),\ldots,f_e(x))
\in Y$ pour tout $x \in X$) \emph{si et seulement si}
$h(f_1,\ldots,f_e) = 0$ (vu comme élément de $\mathcal{O}(X)$) pour
tout $h \in J$.
\end{prop}
\begin{proof}
Il y a équivalence entre :
\begin{itemize}
\item $h(f_1,\ldots,f_e) = 0$ dans $\mathcal{O}(Y)$ pour tout $h \in J$,
\item $h(f_1(x),\ldots,f_e(x)) = 0$ pour tout $h \in J$ et $x \in X$, et
\item $(f_1(x),\ldots,f_e(x)) \in Y$ pour tout $x \in X$.
\end{itemize}
(L'équivalence entre les deux premières affirmations vient du fait que
pour $g\in \mathcal{O}(X)$, ici $g = h(f_1,\ldots,f_e)$, on a $g=0$ si
et seulement si $g(x)=0$ pour tout $x\in X$.  L'équivalence entre les
deux dernières vient du fait que $(y_1,\ldots,y_e) \in Y$ si et
seulement si $h(y_1,\ldots,y_e) = 0$ pour tout $h \in J$ par
définition de $Y = Z(J)$.)
\end{proof}

Remarquons en particulier que les fonctions régulières sur $X$
(c'est-à-dire les éléments de $\mathcal{O}(X)$) peuvent se voir comme
des morphismes $X \to \mathbb{A}^1$ de $X$ vers la droite affine.

Remarquons par ailleurs que les morphismes de variétés algébriques se
composent : donnés deux morphismes $X \to Y$ et $Y \to Z$, on peut
définir un morphisme $X \to Z$ en composant les applications.

Lorsque $f \colon X \to Y$ est un morphisme comme ci-dessus, on
définit $f^* \colon \mathcal{O}(Y) \to \mathcal{O}(X)$ de la façon
suivante : si $h \in \mathcal{O}(Y)$ est une fonction régulière vue
comme un morphisme $Y \to \mathbb{A}^1$, on définit $f^*(h) \in
\mathcal{O}(X)$ comme la fonction régulière donnée par le morphisme
composé $h\circ f \colon X \to \mathbb{A}^1$.  (Autrement dit, $f^*$
est l'application de composition à droite par $f$.)

\begin{prop}
Si $X \subseteq \mathbb{A}^d$ et $Y \subseteq \mathbb{A}^e$ sont deux
variétés algébriques affines, la correspondance $f \mapsto f^*$
définie ci-dessus définit une bijection entre les morphismes $X \to Y$
de variétés algébriques affines et les morphismes $\mathcal{O}(Y) \to
\mathcal{O}(X)$ de $k$-algèbres.
\end{prop}
\begin{proof}
Si les indéterminées $u_1,\ldots,u_e$ sont les $e$ coordonnées sur
$\mathbb{A}^e$, alors les classes de $u_1,\ldots,u_e$ définissent des
éléments de $\mathcal{O}(Y)$ : si $f \colon X \to Y$ est un morphisme
de variétés algébriques, alors les fonctions $f_1,\ldots,f_e \in
\mathcal{O}(X)$ le définissant sont simplement les images par $f^*$ de
ces éléments.  Ceci montre que $f^*$ permet de retrouver $f$ (la
correspondance $f \mapsto f^*$ est injective).  Et si $\psi \colon
\mathcal{O}(Y) \to \mathcal{O}(X)$ est un morphisme quelconque, alors
en définissant $f_1,\ldots,f_e$ comme les images de $u_1,\ldots,u_e
\in \mathcal{O}(Y)$ par $\psi$, on a $h(f_1,\ldots,f_e) = 0$ dans
$\mathcal{O}(Y)$ pour tout $h \in J$ (puisque $h(u_1,\ldots,u_e) = 0$
dans $\mathcal{O}(Y)$) donc $f_1,\ldots,f_e$ définissent bien un
morphisme $X \to Y$.
\end{proof}

\smallbreak

Une fois qu'on dispose de cette notion de morphisme, on peut par
exemple dire que deux variétés algébriques affines $X,Y$ sont
\textbf{isomorphes} lorsqu'il existe des morphismes $X \to Y$ et $Y
\to X$ dont la composée chaque sens est l'identité.  Ceci signifie,
tout simplement, que les $k$-algèbres $\mathcal{O}(X)$ et
$\mathcal{O}(Y)$ sont isomorphes.

Ceci justifie partiellement la différence de terminologie entre
« fermé de Zariski » (dans $k^d$) et « variété algébrique affine »
(sur $k$) : dans le premier cas, on insiste sur $X$ en tant que partie
de $k^d$, tandis que dans le second cas on la considère \emph{à
  isomorphisme près} de variété algébrique affine (sur $k$).

Pour souligner qu'on parle de l'ensemble des points de $X$, plutôt que
de $X$ comme variété algébrique affine, on écrit parfois $X(k)$.

\smallbreak

\textbf{Exemples :} Considérons la courbe d'équation $y^2 = x^3$,
c'est-à-dire $C = Z(g)$ où $g = y^2 - x^3 \in k[x,y]$ (anneau des
polynômes à deux indéterminées $x,y$ sur un corps algébriquement
clos $k$), et $\mathbb{A}^1$ la droite affine sur $k$.  On a
$\mathcal{O}(C) = k[x,y]/(y^2-x^3)$ et $\mathcal{O}(\mathbb{A}^1) =
k[t]$.  On définit un morphisme $\mathbb{A}^1 \buildrel f\over\to C$
par $t \mapsto (t^2,t^3)$ : ce morphisme correspond à un morphisme
d'anneaux dans l'autre sens, $\mathcal{O}(C) \buildrel f^*\over\to
\mathcal{O}(\mathbb{A}^1)$, donné par $x \mapsto t^2$ et $y \mapsto
x^3$.  Ce morphisme n'est pas un isomorphisme car $t$ n'est pas dans
l'image de $f^*$.  Ceci, bien que $\mathbb{A}^1(k) \to C(k)$ soit une
bijection au niveau des $k$-points.

Considérons la courbe $C^\sharp$ (la « cubique gauche » affine)
d'équations $y = z^3$ et $x = z^2$, c'est-à-dire $C^\sharp =
Z(x-z^2,\penalty-100 y-z^3)$.  On a un morphisme $\mathbb{A}^1 \to
C^\sharp$ envoyant $t$ sur $(t^2, t^3, t)$ : cette fois, ce morphisme
est un isomorphisme, et sa réciproque est donnée par $(x,y,z) \mapsto
z$.  L'anneau $\mathcal{O}(C^\sharp) = k[x,y,z]/(x-z^2,\penalty-100
y-z^3)$ est isomorphe à $k[t]$.  Par ailleurs, le morphisme
$\mathbb{A}^1 \to C$ décrit au paragraphe précédent peut être vu comme
la composée de l'isomorphisme $\mathbb{A}^1 \to C^\sharp$ et de la
projection $C^\sharp \to C$ décrite par $(x,y,z) \mapsto (x,y)$.

Sur le cercle $C = Z(x^2+y^2-1)$ (pas le même $C$ que dans les deux
paragraphes précédents), si $k$ est de caractéristique $\neq 5$, on
peut définir le morphisme $C \to C$ de « rotation
  d'angle $\arctan\frac{3}{4}$ » (terminologie abusive si $k$ n'est
pas un corps contenant $\mathbb{R}$) ou « multiplication par le
  point $(\frac{4}{5},\frac{3}{5})$ » par $(x,y) \mapsto (\frac{4}{5}x
- \frac{3}{5}y, \frac{3}{5}x + \frac{4}{5}y)$.  C'est un isomorphisme
de $C$ avec lui-même.  On pourrait définir l'opération de composition
$C \times C \to C$ par $((x,y),(x',y')) \mapsto (xx'-yy', xy'+yx')$
mais il faudrait pour cela avoir défini le produit de deux variétés
(pour donner un sens à $C \times C$), ce qu'on n'a pas encore fait.

\medbreak

\textbf{Variétés algébriques affines abstraites, et le spectre d'une
  algèbre.}

\textbf{Note :} On considère que deux variétés algébriques (affines)
sont « la même » lorsqu'elle sont isomorphes, alors que deux fermés de
Zariski sont « le même » lorsqu'ils sont égaux dans le $\mathbb{A}^d$
dans lequel ils vivent.  Par exemple, la cubique gauche $C^\sharp$
décrite ci-dessus, en tant que fermé de Zariski, n'est pas une droite,
mais en tant que variété algébrique affine c'est juste $\mathbb{A}^1$
puisqu'on a montré qu'elle lui était isomorphe.  Ou, si on préfère, un
fermé de Zariski de $\mathbb{A}^d$ est la donnée d'une variété
algébrique affine \emph{plus} un plongement de celle-ci
dans $\mathbb{A}^d$.

Dans cette optique, si $R$ est une $k$-algèbre de type fini (on
rappelle, cf. \ref{finite-type-algebras}, que cela signifie que $R$
est engendrée en tant qu'algèbre par un nombre fini d'éléments
$x_1,\ldots,x_d$, autrement dit que $R$ peut se voir comme le quotient
de $k[t_1,\ldots,t_d]$ par un idéal $(f_1,\ldots,f_r)$ de ce dernier)
et si $R$ est réduite, alors on peut voir $R$ comme l'anneau
$\mathcal{O}(X)$ pour une certaine variété algébrique $X$, à savoir le
$X = Z(f_1,\ldots,f_r)$ défini par les équations
$f_1=0,\ldots,\penalty-100 f_r=0$ dans $\mathbb{A}^d$.  Cette variété
est unique en ce sens que toutes les variétés $X$ telles que
$\mathcal{O}(X) = R$ sont isomorphes (puisque leurs $\mathcal{O}(X)$
sont isomorphes, justement).  On peut donc donner un nom à $X$ : c'est
le \textbf{spectre} de $R$, noté $\Spec R$.  (Par exemple, $\Spec k[t]
= \mathbb{A}^1_k$ et plus généralement $\Spec k[t_1,\ldots,t_d] =
\mathbb{A}^d_k$.  Et bien sûr, $\Spec k$ est vu comme un point.  Quant
à l'ensemble vide, c'est $\Spec 0$ où $0$ est l'anneau nul.)

Abstraitement, on peut donc dire que les variétés algébriques affines
sont les $\Spec R$ pour $R$ une $k$-algèbre réduite de type fini.

%
\subsection{La topologie de Zariski}

On appelle \textbf{ouvert de Zariski} dans $k^d$ (toujours avec $k$ un
corps algébriquement clos) le complémentaire d'un fermé de Zariski.
Autrement dit, si $I$ est un idéal de $k[t_1,\ldots,t_d]$, on définit
$U(I) = \{(x_1,\ldots,x_d) \in k^d :\penalty0 (\exists f\in I)\,
f(x_1,\ldots,x_d) \neq 0\}$ le complémentaire de $Z(I)$ : un ouvert de
Zariski de $k^d$ est un ensemble de la forme $U(I)$.  Plus
généralement, si $X$ est une variété algébrique affine, si $I$ est un
idéal de $\mathcal{O}(X)$, on définit $U(I) = \{(x_1,\ldots,x_d) \in X
:\penalty0 (\exists f\in I)\, f(x_1,\ldots,x_d) \neq 0\}$ le
complémentaire de $Z(I)$ : on appelle ces ensembles ouverts de Zariski
de $X$.

Étant donné qu'une intersection quelconque ou une réunion finie de
fermés sont des fermés, dualement, \emph{une réunion quelconque ou une
  intersection finie d'ouverts sont des ouverts} (par ailleurs,
l'ensemble vide et l'ensemble plein sont des ouverts) --- ces
propriétés sont constitutives de la notion de \emph{topologie}, en
l'occurrence la \textbf{topologie de Zariski} (sur l'ensemble $k^d$ ou
$X(k)$).

\smallbreak

Si $X'$ est un fermé de Zariski de $X$, alors les fermés et ouverts de
Zariski de $X'$ sont précisément les intersections avec $X'$ des
fermés et ouverts de Zariski de $X$.  (On dit que la topologie de $X'$
est \emph{induite} par celle de $X$.)

\smallbreak

Si $I$ est engendré par les éléments $f_1,\ldots,f_r$, on peut écrire
$U(I) = D(f_1) \cup \cdots \cup D(f_r)$ où $D(f_i) := U(\{f_i\})$ est
l'ouvert où $f_i$ ne s'annule pas.  Les $D(f)$ s'appellent parfois
\emph{ouverts principaux}, on verra plus loin pourquoi il est utile de
les distinguer ; ceci montre qu'ils forment une \emph{base d'ouverts}
(un ensemble d'ouverts stable par intersections fines est dit former
une base d'ouverts pour une topologie lorsque tout ouvert est une
réunion d'une sous-famille d'entre eux).

\begin{prop}\label{covering-by-principal-open-sets}
Si $X$ est une variété algébrique affine et $f_i \in \mathcal{O}(X)$
(pour $i \in \Lambda$ disons), alors $\bigcup_{i\in\Lambda} D(f_i) =
X$ si et seulement si les $f_i$ engendrent l'idéal unité
dans $\mathcal{O}(X)$ (c'est-à-dire ssi il existe des $g_i$, tous nuls
sauf un nombre fini, tels que $\sum_{i\in\Lambda} g_i f_i = 1$).
\end{prop}
\begin{proof}
Dire $\bigcup_{i\in\Lambda} D(f_i) = X$ équivaut à
$\bigcap_{i\in\Lambda} Z(f_i) = \varnothing$, c'est-à-dire encore
$Z(\{f_i\}) = \varnothing$, soit encore $Z(I) = \varnothing$ où $I$
est l'idéal engendré par les $f_i$, et l'énoncé découle du
Nullstellensatz faible.
\end{proof}

On aura besoin pour la suite de remarquer que $D(f) \cap D(f') =
D(ff')$.

\smallbreak

Un peu de vocabulaire de topologie : dans ce qui suit, on suppose que
$X$ est un ensemble muni d'une topologie (c'est-à-dire un ensemble de
parties de $X$ dites « ouvertes » contenant $\varnothing$ et $X$ et
telles qu'une réunion quelconque ou une intersection finie d'ouverts
sont des ouverts), sachant qu'on s'intéresse évidemment au cas de la
topologie de Zariski.

Si $x \in U \subseteq V$ avec $U$ ouvert (et $V$ une partie quelconque
de $X$), on dit que $V$ est un \textbf{voisinage} de $x$.  (Un
voisinage ouvert de $x$ est donc tout simplement la même chose qu'un
ouvert contenant $x$.)

Si $E \subseteq X$ est une partie quelconque, l'intersection de tous
les fermés (=complémentaires des ouverts) contenant $E$, c'est-à-dire
le plus petit fermé contenant $E$, s'appelle \textbf{adhérence}
de $E$, parfois notée $\overline{E}$.  Il s'agit de l'ensemble des $x
\in X$ tels que tout voisinage de $x$ rencontre $E$.  Lorsque
l'adhérence de $E$ est $X$ tout entier, on dit que $E$ est
\textbf{dense} dans $X$.

On dit que $X$ est \textbf{irréductible} lorsque toute écriture $X =
F' \cup F''$ avec $F',F''$ fermés impose $F' = X$ ou $F'' = X$ ; de
façon équivalente, cela signifie que tout ouvert non vide de $X$ est
dense.

On dit que $X$ est \textbf{connexe} lorsque ($X$ est non vide et que)
$\varnothing$ et $X$ sont les seuls ensembles à la fois ouverts et
fermés dans $X$.  (« Irréductible » est plus fort que « connexe », car
si $X$ est irréductible, tout ouvert non vide est dense, et en
particulier le seul ouvert fermé non vide est $X$ tout entier.)

\smallbreak

Dans le cas de la topologie de Zariski sur une variété algébrique
affine $X$ sur un corps algébriquement clos $k$ (c'est-à-dire,
sur $X(k)$) :
\begin{itemize}
\item $X$ est irréductible ssi $\mathcal{O}(X)$ est intègre
  (cf. \ref{closed-irreducible-iff-prime-ideal}),
\item l'adhérence de Zariski d'une partie $E \subseteq X(k)$ est
  $Z(\mathfrak{I}(E))$ (en effet, ceci est un fermé de Zariski
  contenant $E$, et si $Z(J) \supseteq E$ est un autre fermé de
  Zariski contenant $E$ alors on a vu $J \subseteq \mathfrak{I}(E)$
  donc $Z(J) \supseteq Z(\mathfrak{I}(E))$ --- ceci montre que
  $Z(\mathfrak{I}(E))$ est bien le plus petit pour l'inclusion fermé
  de Zariski contenant $E$).
\end{itemize}

Exemple (idiot) : On suppose $k$ de caractéristique zéro, disons $k =
\mathbb{C}$ ; quelle est l'adhérence de Zariski de $\mathbb{Z}$ dans
$\mathbb{A}^1(k)$ ?  Réponse : L'ensemble $\mathfrak{I}(\mathbb{Z})$
des polynômes s'annulant en chaque point de $\mathbb{Z}$ est réduit
à $(0)$ puisqu'un polynôme en une variable ne peut avoir qu'un nombre
fini de racines ; donc l'adhérence de Zariski de $\mathbb{Z}$ est
$Z(\mathfrak{I}(\mathbb{Z})) = \mathbb{A}^1(k)$ tout entier,
c'est-à-dire que $\mathbb{Z}$ est dense dans la droite affine pour la
topologie de Zariski.  Plus généralement, on peut facilement montrer
que les seuls fermés de Zariski de $\mathbb{A}^1(k)$ sont la droite
$\mathbb{A}^1(k)$ tout entière et les parties \emph{finies}.

\medbreak

\textbf{Composantes connexes.}

\begin{prop}
Si $X$ est une variété algébrique affine, alors $X$ est connexe si et
seulement si les seuls éléments $e \in \mathcal{O}(X)$ vérifiant $e^2
= e$ (appelés \textbf{idempotents}) sont $0$ et $1$.
\end{prop}

\begin{prop}
Toute variété algébrique affine $X$ est réunion d'un nombre fini de
fermés connexes.  De plus, il existe une écriture $X = \bigcup_{i=1}^n
X_i$ vérifiant $X_i \cap X_j = \varnothing$ pour $i \neq j$, et une
telle écriture est unique (à l'ordre des facteurs près) : les $X_i$
s'appellent les \textbf{composantes connexes} de $X$.
\end{prop}

\medbreak

\textbf{Composantes irréductibles.}

\begin{prop}
Toute variété algébrique affine $X$ est réunion d'un nombre fini de
fermés irréductibles.  De plus, il existe une écriture $X =
\bigcup_{i=1}^n X_i$ vérifie $X_i \not\subseteq X_j$ pour $i \neq j$,
et une telle écriture est unique (à l'ordre des facteurs près) : les
$X_i$ s'appellent les \textbf{composantes irréductibles} de $X$.
\end{prop}

\textbf{Exemple :} $Z(xy) \subseteq \mathbb{A}^2$ a pour composantes
irréductibles $Z(x)$ et $Z(y)$.  En revanche, il est connexe (=sa
seule composante connexe est lui-même) : en effet, si $U$ est un
ouvert fermé de $Z(xy)$, quitte à remplacer $U$ par son complémentaire
on peut supposer que $U$ contient $(0,0)$, et alors $U$ est un ouvert
fermé rencontrant $Z(x)$ et $Z(y)$ à la fois --- mais comme ceux-ci
sont irréductibles, et en particulier connexes, $U \cap Z(x) = Z(x)$
et $U \cap Z(y) = Z(y)$, ce qui montre $U = Z(xy)$.

%
\subsection{Fonctions régulières sur un ouvert, morphismes}

Soit $X$ une variété algébrique affine sur $k$, et $f \in
\mathcal{O}(X)$.  On définira \textbf{l'anneau des fonctions
  régulières} sur l'ouvert principal $D(f) = X \setminus Z(f)$ comme
le localisé $\mathcal{O}(X)[\frac{1}{f}]$ inversant $f$ de l'anneau
$\mathcal{O}(X)$ des fonctions régulières sur $X$.  Autrement dit
(cf. \ref{subsection-localization}), les fonctions régulières sont
$D(f)$ sont définies comme des fractions de fonctions régulières
sur $X$ admettant une puissance de $f$ au dénominateur.

On peut bien les voir comme des fonctions : si $x \in D(f)$, cela
signifie que $x \in X$ et que $f(x) \neq 0$, ce qui permet d'évaluer
en $x$ une fonction de la forme $\frac{g}{f^n}$.

\textbf{Exemple :} Les fonctions régulières sur
$\mathbb{A}^1\setminus\{0\}$ (la droite affine privée de l'origine,
c'est-à-dire $D(t)$ dans $\mathbb{A}^1 = \Spec k[t]$) sont les
fonctions rationnelles de la forme $\frac{g}{t^n}$ avec $n\geq 0$
(=les fonctions rationnelles n'ayant pas d'autre pôle qu'en zéro).
Plus généralement, toute fonction rationnelle $h \in k(t)$ peut être
considérée comme une fonction régulière sur un certain ouvert
de $\mathbb{A}^1$, à savoir l'ouvert où le dénominateur de $h$ ne
s'annule pas.

\smallbreak

Si $I = (f_1,\ldots,f_r)$ est un idéal de $\mathcal{O}(X)$, avec $X$
une variété algébrique affine, on appelle \textbf{fonction régulière}
sur $U := U(I) = D(f_1) \cup \cdots \cup D(f_r) = X \setminus Z(I)$ la
donnée d'une fonction $h \colon U \to k$ telle que la restriction de
$h$ à chaque $D(f_i)$ soit une fonction régulière.  \emph{Fait :} Ceci
ne dépend pas du choix des $f_i$ engendrant l'idéal $I$.  Ces
fonctions régulières forment un anneau, noté $\mathcal{O}(U)$.

\smallbreak

Si $U$ est un ouvert de Zariski d'une variété algébrique affine $X$,
et $V$ un ouvert de Zariski d'une variété algébrique affine $Y
\subseteq \mathbb{A}^e$, on appelle \textbf{morphisme} $U \to V$ une
application $U \to V$ telle que chacune des $e$ coordonnées à
l'arrivée soit une fonction régulière sur $U$.  Autrement dit, il
s'agit de la donnée de $e$ éléments $f_1,\ldots,f_e$ de
$\mathcal{O}(U)$ tels que $(f_1(x),\ldots,f_e(x)) \in V$ pour tout $x
\in U$.  Comme précédemment, les fonctions régulières ne sont autres
que les morphismes vers $\mathbb{A}^1$.  On appellera
\textbf{isomorphisme} entre $U$ et $V$ la donnée de morphismes $U \to
V$ et $V \to U$ dont la composée chaque sens est l'identité.

On appelle \textbf{variété algébrique quasi-affine}, un ouvert d'une
variété algébrique affine (considérée à isomorphisme près) comme on
vient de le décrire.

\begin{prop}\label{morphisms-to-affines}
Si $U$ est une variété algébrique \emph{quasi-affine} et $Y$ une
variété algébrique \emph{affine}, alors les morphismes $U \to Y$ sont
en correspondance avec les morphismes $\mathcal{O}(Y) \to
\mathcal{O}(U)$ (de $k$-algèbres) en envoyant $f\colon U\to Y$ sur
$f^* \colon \mathcal{O}(Y) \to \mathcal{O}(U)$ (défini comme le
morphisme qui envoie une fonction régulière $h \colon Y \to
\mathbb{A}^1$ sur $f^*(h) := h\circ f \colon U\to \mathbb{A}^1$).
\end{prop}

Les ouverts \emph{principaux} (les $D(f)$), en fait, n'apportent rien
de nouveau :
\begin{prop}\label{principal-open-sets-are-affine}
Si $f\in \mathcal{O}(X)$ avec $X$ une variété algébrique affine, alors
l'ouvert principal $D(f) = X \setminus Z(f)$ est isomorphe à la
variété algébrique affine $\Spec \mathcal{O}(X)[\frac{1}{f}]$.
\end{prop}

En revanche, pour un ouvert quelconque, on obtient véritablement des
choses nouvelles.

\danger La proposition \ref{morphisms-to-affines} cesse d'être vraie
si on considère des morphismes entre deux variétés algébriques
quasi-affines quelconques.  Par exemple, le plan affine $\mathbb{A}^2
= \Spec k[x,y]$ et le complémentaire $\mathbb{A}^2\setminus\{(0,0)\}$
de l'origine dans le plan affine ont exactement le même anneau des
fonctions régulières, pourtant, ces deux variétés quasi-affines ne
sont pas isomorphes.

Si $U$ est une variété algébrique quasi-affine, il existe un morphisme
naturel $\psi\colon U \to \Spec \mathcal{O}(U)$ d'après la
proposition \ref{morphisms-to-affines}, à savoir celui qui correspond
à l'identité sur $\mathcal{O}(U)$.  On dit que la variété algébrique
quasi-affine $U$ est \textbf{affine} lorsque $\psi$ est un
isomorphisme (de façon équivalente, lorsque $U$ est isomorphe à une
variété algébrique affine telle qu'on l'a définie précédemment).

La proposition \ref{principal-open-sets-are-affine} a pour conséquence
utile le fait que tout point d'une variété algébrique quasi-affine a
un \emph{voisinage} affine (autrement dit, « pour l'étude locale, les
  affines suffisent »).


%
%
%

\section{L'espace projectif et les variétés quasiprojectives}

\subsection{L'espace projectif sur un corps}

Si $k$ est un corps, on note $\mathbb{P}^d(k)$ (ou juste
$\mathbb{P}^d$ si $k$ est algébriquement clos et sous-entendu)
l'ensemble des $(d+1)$-uplets d'éléments \emph{non tous nuls} de $k$
modulo la relation d'équivalence $(x_0,\cdots,x_d) \sim
(x'_0,\cdots,x'_d)$ ssi les vecteurs $(x_0,\cdots,x_d)$ et
$(x'_0,\cdots,x'_d)$ sont colinéaires.  On note $(x_0:\cdots:x_d)$
(certains auteurs préfèrent $[x_0,\ldots,x_d]$) la classe de
$(x_0,\ldots,x_d)$ pour cette relation d'équivalence.  On peut voir
$\mathbb{P}^d(k)$ comme l'ensemble des droites vectorielles (=passant
par l'origine) de $k^{d+1}$.

Idée intuitive : tout point de $\mathbb{P}^d(k)$, selon
que $x_0 \neq 0$ ou $x_0 = 0$, peut être mis sous la forme
$(1:x_1:\cdots:x_d)$ (avec $x_1,\ldots,x_d$ quelconques) ou bien
$(0:x_1:\cdots:x_d)$ (avec $x_1,\ldots,x_d$ non tous nuls).  Le point
$(x_1,\ldots,x_d)$ de $\mathbb{A}^d$ sera identifié au point
$(1:x_1:\cdots:x_d)$ de $\mathbb{P}^d$, tandis que les points de la
forme $(0:x_1:\ldots:x_d)$ sont appelés « points à l'infini » (et
collectivement, « hyperplan à l'infini »).  On peut donc écrire
$\mathbb{P}^d(k) = \mathbb{A}^d(k) \cup \mathbb{P}^{d-1}(k)$ (réunion
disjointe de l'ensemble $Z(x_0)(k)$ des points où $x_0 \neq 0$ et de
celui $D(x_0)(k)$ des points où $x_0 = 0$) ; moralement, on aura envie
que $\mathbb{A}^d$ soit un ouvert dans $\mathbb{P}^d$ et
$\mathbb{P}^{d-1}$ son fermé complémentaire.  Noter que le choix de
$x_0$ est arbitraire : on peut voir $\mathbb{P}^d$ comme réunion de
$d+1$ espaces affines $\mathbb{A}^d$ (à savoir
$D(x_0),\ldots,D(x_d)$).

%
\subsection{Polynômes homogènes, fermés et ouverts de Zariski de $\mathbb{P}^d$,
  Nullstellensatz projectif}

On veut voir $\mathbb{P}^d$ comme une variété algébrique (au moins
pour $k$ algébriquement clos pour le moment).  Il faudra une notion
d'ouverts et une notion de fonctions régulières.

On dit qu'un $f \in k[t_0,\ldots,t_d]$ est \textbf{homogène de
  degré $\ell$} lorsque tous les monômes qui le constituent ont le
même degré total $\ell$.  L'intérêt de cette remarque est que si
$(x_0:\cdots:x_d) \in \mathbb{P}^d(k)$ avec $k$ un corps, et $f \in
k[t_0,\ldots,t_d]$ est homogène, le fait que $f(x_0,\ldots,x_d) = 0$
ou $\neq 0$ ne dépend pas du choix du représentant choisi de
$(x_0:\cdots:x_d)$.  On peut donc définir $Z(f) = \{(x_0:\cdots:x_d)
\in \mathbb{P}^d(k) : f(x_0,\ldots,x_d) = 0\}$ et $D(f)$ son
complémentaire.

On apppelle \textbf{partie homogène de degré $\ell$} d'un polynôme $f
\in k[t_0,\ldots,t_d]$ la somme de tous ses monômes de degré
total $\ell$.  Évidemment, tout polynôme est la somme de ses parties
homogènes.  Le produit de deux polynômes homogènes de degrés
respectifs $\ell$ et $\ell'$ est homogène de degré $\ell+\ell'$.

On dit qu'un idéal $I$ de $k[t_0,\ldots,t_d]$ est \textbf{homogène}
lorsqu'il peut être engendré par des polynômes homogènes (cela ne
signifie pas, évidemment, qu'il ne contient que des polynômes
homogènes, ni même que \emph{tout} ensemble de générateurs de $I$ soit
constitué de polynômes homogènes).  De façon équivalente, il s'agit
d'un idéal tel que pour tout $f\in I$, toute partie homogène de $f$
est encore dans $I$.  (Démonstration de l'équivalence : si toute
partie homogène d'un élément de $I$ appartient encore à $I$, en
prenant un ensemble quelconque de générateurs de $I$, les parties
homogènes de ceux-ci appartiennent encore à $I$ et sont encore
génératrices puisqu'elles engendrent les générateurs choisis, donc $I$
admet bien un ensemble de générateurs homogènes ; réciproquement, si
$I$ est engendré par $f_1,\ldots,f_r$ homogènes de degrés
$\ell_1,\ldots,\ell_r$ et si $h$ appartient à $I$, disons $h = \sum_i
g_i f_i$, alors pour tout $\ell$, la partie homogène de degré $\ell$
de $h$ est $h^{[\ell]} = \sum_i g_i^{[\ell-\ell_i]} f_i$ où
$g_i^{[\ell-\ell_i]}$ désigne la partie homogène de degré
$\ell-\ell_i$ de $g_i$, donc $h^{[\ell]}$ appartient aussi à $I$.)

(Concrètement, dire que $I$ est homogène signifie --- au moins lorsque
$I$ est radical et que $k$ est algébriquement clos --- que le fermé
\emph{affine} qu'il définit dans $\mathbb{A}^{d+1}$ est un
\emph{cône}, c'est-à-dire stable par homothéties.  L'ensemble $Z(I)$
défini ci-dessus va être ce cône vu comme un ensemble de droites
vectorielles donc comme un objet géométrique dans $\mathbb{P}^d$.)

Pour $I$ idéal homogène de $k[t_0,\ldots,t_d]$, on définit $Z(I)$
comme l'intersection des $Z(f)$ pour $f\in I$ homogène, ou simplement,
d'après ce qui précède, l'intersection des $Z(f)$ pour $f$ parcourant
un ensemble de générateurs homogènes de $I$.  Les $Z(I)$ s'appellent
les fermés [de Zariski] de $\mathbb{P}^d$.  Inversement, si $E$ est
une partie de $\mathbb{P}^d$, on appelle $\mathfrak{I}(E)$ l'idéal
(par définition homogène) engendré par les polynômes homogènes $f$
s'annulant en tout point de $E$ (c'est-à-dire tels que $Z(f) \supseteq
E$).

\begin{thm}
Si $k$ est un corps algébriquement clos :
\begin{itemize}
\item (Nullstellensatz faible projectif.)  Pour $I$ un idéal homogène
  de $k[t_0,\ldots,t_d]$, on a $Z(I) = \varnothing$ dans
  $\mathbb{P}^d$ ssi il existe un entier naturel $\ell$ tel que $I$
  contienne tous les monômes en $t_0,\ldots,t_d$ de degré total $\ell$
  (et, par conséquent, de tout degré plus grand).  Un tel idéal
  s'appelle \textbf{irrelevant} [avec un bel anglicisme].
\item (Nullstellensatz projectif.)  Les fonctions $I \mapsto Z(I)$ et
  $E \mapsto \mathfrak{I}(E)$ définissent des bijections réciproques,
  décroissantes pour l'inclusion, entre les idéaux homogènes radicaux
  de $k[t_0,\ldots,t_d]$ autres que $(t_0,\ldots,t_d)$ d'une part, et
  les fermés de Zariski de $\mathbb{P}^d(k)$ d'autre part.
\item Ces bijections mettent en corrrespondance les idéaux homogènes
  premiers de $k[t_0,\ldots,t_d]$ avec les fermés irréductibles
  de $\mathbb{P}^d$.
\end{itemize}
\end{thm}

\begin{rmk}
Pour qu'un idéal homogène $I$ de $k[t_0,\ldots,t_d]$ contienne tous
les monômes à partir d'un certain degré total $\ell$ (c'est-à-dire,
qu'il soit irrelevant), il faut et il suffit qu'il contienne tous les
$t_i^n$ à partir d'un certain $n$.  (En effet, un sens est trivial, et
pour l'autre sens, si $I$ contient tous les $t_i^n$, alors il contient
tout monôme de degré $(d+1)n$, puisqu'un tel monôme contient au moins
un $t_i$ à la puissance $n$.)  Comme il n'y a qu'un nombre fini des
$t_i$, on peut aussi intervertir les quantificateurs : c'est encore la
même chose que de dire que pour chaque $i$, l'idéal $I$ contient une
certaine puissance $t_i^{n_i}$ de $t_i$.
\end{rmk}

\smallbreak

Les ouverts de Zariski de $\mathbb{P}^d$ sont bien sûr, par
définition, les complémentaires $U(I)$ des fermés de Zariski $Z(I)$.
Ils peuvent toujours s'écrire de la forme $D(f_1) \cup \cdots \cup
D(f_r)$ où $f_1,\ldots,f_r$ sont des polynômes homogènes en
$t_0,\ldots,t_d$.


%
\subsection{Le lien affine-projectif}\label{subsection-affine-vs-projective}

On a déjà signalé que $\mathbb{P}^d$ est la réunion des $d+1$ ouverts
$D(t_0),\ldots,D(t_d)$, qu'on veut considérer comme $d+1$ espaces
affines, ou $d+1$ copies de l'espace affine $\mathbb{A}^d$.  Il faut
considérer que les coordonnées affines sur $D(t_i)$ sont les
$\frac{t_j}{t_i}$ avec $j\neq i$ (ce qui fait $d$ coordonnées).

Le lien affine-projectif est explicité par les affirmations
suivantes :
\begin{itemize}
\item Si $f \in k[t_0,\ldots,t_d]$ est homogène de degré $\ell$,
  l'intersection de $Z(f) \subseteq \mathbb{P}^d$ avec $D(t_i)$ est
  donnée par $Z(\frac{f}{t_i^\ell}) \subseteq \mathbb{A}^d$ en voyant
  $\frac{f}{t_i^\ell}$ comme un polynôme en les $\frac{t_j}{t_i}$.
\item Plus généralement, si $X = Z(I) \subseteq \mathbb{P}^d$ est le
  fermé de Zariski défini par un idéal homogène $I$ de
  $k[t_0,\ldots,t_d]$, l'intersection de $X$ avec $D(t_i)$ est la
  variété affine $Z(I_{t_i}) \subseteq \mathbb{A}^d$ où $I_{t_i}$ est
  l'idéal engendré par les $\frac{f_j}{t_i^{\ell_j}}$ pour $f_j$
  parcourant des générateurs homogènes de $I$ et $\ell_j = \deg f_j$
  (l'idéal $I_{t_i}$ ne dépend pas du choix des $f_j$).
\item Bon à savoir : si $I$ est un idéal homogène de
  $k[t_0,\ldots,t_d]$, alors
  $k[\frac{t_0}{t_i},\ldots,\frac{t_d}{t_i}]/I_{t_i}$, où $I_{t_i}$
  est défini ci-dessus, est l'ensemble des éléments homogènes de degré
  zéro de $(k[t_0,\ldots,t_d]/I)[\frac{1}{\bar t_i}]$.  L'un ou
  l'autre, donc, est vu comme l'ensemble des fonctions régulières sur
  $Z(I) \cap D(t_i)$.
\item Inversement, donnée un fermé de Zariski $X = Z(I) \subseteq
  \mathbb{A}^d$ de l'espace affine, où $I$ est un idéal radical de
  $k[\tau_1,\ldots,\tau_d]$, on peut définir une variété projective
  $X^+ = Z(I^+)$ dont l'idéal $I^+$ est engendré par les $f^+ :=
  t_0^{\deg f} f(\frac{t_1}{t_0},\ldots,\frac{t_d}{t_0}) \in
  k[t_0,\ldots,t_d]$ pour tous les $f\in I$ (c'est-à-dire les
  polynômes homogénéisés) : on peut montrer qu'il s'agit précisément
  de l'adhérence de $X$ dans $\mathbb{P}^d$.  Malheureusement, il ne
  suffit pas en général de prendre un ensemble de générateurs de $I$
  pour que leurs homogénéisés engendrent $I^+$ (penser à $I =
  (\tau_2-\tau_1^2,\; \tau_3-\tau_1^3)$ qui contient
  $\tau_3-\tau_1\tau_2$ alors que $(t_0 t_2 - t_1^2,\; t_0 t_3 -
  t_1^3)$ ne contient pas $t_0 t_3-t_1 t_2$, il faut le mettre
  explicitement dans $I^+$).  Il y a cependant un cas favorable :
  lorsque $X = Z(f)$ est une hypersurface, alors $X^+ = Z(f^+)$.
\end{itemize}


%
\subsection{Variétés projectives et quasi\-projectives, morphismes}

On appelle \textbf{variété algébrique projective},
resp. \textbf{variété algébrique quasiprojective} un fermé de Zariski
de l'espace projectif $\mathbb{P}^d$, resp. un ouvert de Zariski d'une
telle variété (autrement dit, l'intersection d'un ouvert et d'un fermé
de Zariski de $\mathbb{P}^d$).

Si $X$ est une variété algébrique projective (resp. quasiprojective)
dans $\mathbb{P}^d$ et qu'on note $D(t_0),\ldots,D(t_d)$ les $d+1$
ouverts $\{t_0\neq 0\},\ldots,\{t_d\neq 0\}$ chacun identifié à un
espace affine $\mathbb{A}^d$, alors, comme expliqué
en \ref{subsection-affine-vs-projective}, chacun des $X\cap D(t_i)$
peut être considéré comme une variété algébrique affine
(resp. quasi-affine).

Comment définir un morphisme entre variétés algébriques projectives ou
quasiprojectives ?  Moralement, on veut le définir comme une
application qui est « localement » un morphisme entre variétés
algébriques affines.

On peut par exemple définir une \textbf{fonction régulière} $h$ sur
une variété projective ou quasiprojective $X$ comme une fonction
$h\colon X \to \mathbb{A}^1$ telle que $h|_{X \cap D(t_i)}$ soit une
fonction régulière sur $X \cap D(t_i)$ pour chaque $i$.  Pour les
morphismes, la situation est un peu plus compliquée car il faut
considérer non seulement des recouvrements au départ mais aussi à
l'arrivée.

Voici une \underline{première définition possible} : si $X \subseteq
\mathbb{P}^d$ et $Y \subseteq \mathbb{P}^e$ sont deux variétés
quasiprojectives, un \textbf{morphisme} $X \to Y$ est une fonction
$h\colon X \to Y$ telle qu'il existe un recouvrement $X =
\bigcup_\lambda V_\lambda$ [qu'on peut toujours supposer fini] de $X$
par des ouverts de Zariski $V_\lambda$, chacun complètement contenu
dans un $D(t_{i_\lambda}) \cong \mathbb{A}^d$ (ce qui permet de
considérer au moins $V_\lambda$ ou $X \cap D(t_{i_\lambda})$ comme une
variété quasi-affine) et tel que $h(V_\lambda)$ soit contenu dans un
$D(u_{j_\lambda}) \cong \mathbb{A}^e$ de $\mathbb{P}^e$ où on a noté
$(u_0:\cdots:u_e)$ les coordonnées sur $\mathbb{P}^e$ (ceci permet de
considérer $Y \cap D(u_{j_\lambda})$ comme une variété quasi-affine),
avec $h|_{V_\lambda} \colon V_\lambda \to (Y \cap D(u_{j_\lambda}))$
un morphisme (pour chaque $\lambda$).

Décrivons une \underline{autre définition possible}, qui soit un peu
plus opérationnelle (on admettra, entre autres choses, que ces
définitions sont bien équivalentes !).  Si $X \subseteq \mathbb{P}^d$
est une variété quasiprojective, on considère des $(e+1)$-uplets de
polynômes homogènes $f_0,\ldots,f_e$ \emph{de même degré} en $d+1$
variables $t_0,\ldots,t_d$.  Un tel $(e+1)$-uplet $f =
(f_0:\cdots:f_e)$ définit une application $V \to \mathbb{P}^e$ par $x
\mapsto (f_0(x):\cdots:f_e(x))$, où $V$ est l'ensemble (ouvert de
Zariski) des points $x$ de $X$ tels que $f_0(x), \ldots, f_e(x)$ ne
s'annulent pas simultanément.  Un morphisme $X \to \mathbb{P}^e$ est
une application $h\colon X \to \mathbb{P}^e$ tel que des restrictions
$h|_{V_\lambda}\colon V_\lambda \to \mathbb{P}^e$ puissent s'écrire
sous la forme précédente, pour des ouverts $V_\lambda$ recouvrant $X$.
Si de plus l'image est contenue dans une variété quasiprojective $Y
\subseteq \mathbb{P}^e$, on pourra dire qu'il s'agit d'un morphisme $X
\to Y$.

Concrètement, donc, selon cette seconde définition, se donner un
morphisme $X \to \mathbb{P}^e$, si $X = Z(I)$ est une variété
projective avec $I$ idéal radical homogène de $k[t_0,\ldots,t_d]$,
revient à se donner un certain nombre d'écritures
$(f^{(\lambda)}_0:\cdots:f^{(\lambda)}_e)$ telles que (i) pour
chaque $\lambda$, les polynômes
$f^{(\lambda)}_0,\cdots,f^{(\lambda)}_e$ sont homogènes de même degré,
(ii) les $f^{(\lambda)}_i$ et $I$ (tous ensemble) engendrent un idéal
irrelevant (ce qui par le Nullstellensatz revient à dire que pour tout
point de $X = Z(I)$ il y a au moins un $f^{(\lambda)}_i$ qui ne
s'annule pas), et (iii) $f^{(\lambda)}_i f^{(\mu)}_j - f^{(\lambda)}_j
f^{(\mu)}_i$ appartient à $I$ pour tous $\lambda,\mu,i,j$ (ce qui
revient à dire que $(f^{(\lambda)}_0:\cdots:f^{(\lambda)}_e)$ et
$(f^{(\mu)}_0:\cdots:f^{(\mu)}_e)$ définissent bien la même fonction).
Pour définir un morphisme $X \to Y$ avec $Y = Z(J)$ une autre variété
projective, on demande de plus (iv) que, pour chaque $\lambda$, les
$f^{(\lambda)}_0,\ldots,f^{(\lambda)}_e$ vérifient, modulo $I$, les
équations données par des générateurs de $J$.

\medbreak

Avant de donner des exemples, citons le fait suivant, qui aide à
comprendre qu'on a énormément de rigidité dans la définition d'un
morphisme (notamment, une fois donnée la restriction de celui-ci à un
ouvert dense $V$, le morphisme est complètement défini) :
\begin{prop}
Si $h,h' \colon X \to Y$ sont deux morphismes entre variétés
quasiprojectives et si $h,h'$ coïncident sur une partie \emph{dense}
de $X$ (pour la topologie de Zariski), alors $h = h'$.  Plus
généralement, l'ensemble des points où $h$ et $h'$ coïncident est un
fermé de $X$.
\end{prop}

On rappelle que si $X$ est irréductible, alors tout ouvert de $X$ non
vide est dense (c'est même équivalent).

\medbreak

\textbf{Exemples} de morphismes :

¶ Soit $C^+$ le cercle, cette fois projectif, d'équation $x^2 + y^2 =
z^2$ (équation homogénéisée de $x^2 + y^2 = 1$) dans $\mathbb{P}^2$ de
coordonnées homogènes $(z:x:y)$ (sur un corps $k$ de
caractéristique $\neq 2$), et soit le $\mathbb{P}^1$ de coordonnées
$(t_0:t_1)$.  On définit un morphisme $\mathbb{P}^1 \to C^+$ par
$(t_0:t_1) \mapsto (t_0^2+t_1^2 : t_0^2-t_1^2 : 2t_0t_1)$.  Il est
clair que ces équations définissent un morphisme $\mathbb{P}^1 \to
\mathbb{P}^2$ car $t_0^2+t_1^2 , t_0^2-t_1^2 , 2t_0t_1$ engendrent
tous les monômes de degré $2$ donc un idéal irrelevant ; ensuite,
comme $(t_0^2-t_1^2)^2 + (2t_0t_1)^2 = (t_0^2+t_1^2)^2$, ce morphisme
arrive bien dans $C^+$.

Dans l'autre sens : on définit un morphisme $C^+ \to \mathbb{P}^1$ de
la façon suivante : on commence par l'équation $(z:x:y) \mapsto
(x+z:y)$, mais ceci ne définit un morphisme que sur l'ouvert
complémentaire de $Z(x+z,y)$ (c'est-à-dire du point
$(z:x:y)=(1:-1:0)$).  Il faut donc trouver une autre équation, ou
plutôt une autre forme, sur un ouvert qui contienne ce point.  Ce
n'est pas difficile : en se disant que de façon assez générale on a
$(x+z:y) = ((x+z)(x-z):y(x-z)) = (x^2-z^2:y(x-z)) = (-y^2:y(x-z)) =
(y:z-x)$, on va considérer $(z:x:y) \mapsto (y:z-x)$, qui est, cette
fois, défini sur le complémentaire de $Z(y,z-x)$, c'est-à-dire de du
point $(z:x:y) = (1:1:0)$.  Le calcul qu'on vient de faire montre que
$(x+z:y) = (y:z-x)$ sur l'intersection des deux ouverts, donc ces deux
équations se recollent bien en un unique morphisme $C^+ \to
\mathbb{P}^1$.

La composée des morphismes qu'on vient de définir est l'identité :
dans le sens $\mathbb{P}^1 \to C^+ \to \mathbb{P}^1$, c'est clair car
l'identité s'obtient bien en recollant $(t_0:t_1) \mapsto (2t_0^2 :
2t_0 t_1)$ et $(t_0:t_1) \mapsto (2t_0 t_1 : 2t_1^2)$.  Dans le sens
$C^+ \to \mathbb{P}^1 \to C^+$, on constate que la composée de
$(z:x:y) \mapsto (x+z:y)$ avec $(t_0:t_1) \mapsto (t_0^2+t_1^2 :
t_0^2-t_1^2 : 2t_0t_1)$ donne $(z:x:y) \mapsto (x^2+2xz+z^2+y^2 :
x^2+2xz+z^2-y^2 : 2xy+2yz)$ ce qui, modulo $x^2+y^2-z^2$, vaut
$(2z(x+z) : 2x(x+z) : 2y(z+x))$, soit $(z:x:y)$ dès que $x+z\neq 0$.
Comme l'ouvert $\{x+z\neq0\}$ est dense, ceci suffit à montrer qu'on a
affaire à l'identité.

On a donc prouvé que le cercle (projectif !) $C^+$ d'équation $x^2+y^2
= z^2$ est isomorphe à $\mathbb{P}^1$.

\smallbreak

¶ Un exemple avec des variétés ouvertes : $\mathbb{A}^{d+1}
\setminus\{(0,0)\} \to \mathbb{P}^d$ donné par $(x_0,\ldots,x_d)
\mapsto (x_0:\cdots:x_d)$.



%
%
%

\section{Géométrie algébrique sur un corps non algébriquement clos}

\subsection{Crash-course de théorie de Galois}

Rappel : corps parfait = corps de caractéristique $0$ \emph{ou} de
caractéristique $p$ tel que tout élément ait une racine $p$-ième =
corps tel que tout polynôme irréductible soit à racines simples sur la
clôture algébrique.  Exemples : $\mathbb{R}$, $\mathbb{Q}$,
$\mathbb{F}_q$ sont parfaits comme l'est tout corps algébriquement
clos.  Contre-exemple : $\mathbb{F}_p(t)$ n'est pas parfait ($t$ n'a
pas de racine $p$-ième).

Si $k$ est un corps parfait (et qu'on en fixe une fois pour toutes une
clôture algébrique), on note $\Gal(k)$ ou $\Gamma_k$ et on appelle
\textbf{groupe de Galois absolu} de $k$ le groupe des automorphismes
de corps de sa clôture algébrique qui laissent $k$ fixe
(i.e. $\sigma(x) = x$ pour tout $x\in k$).

\textbf{Exemples :} Si $\Gamma_{\mathbb{R}} = \{\id_{\mathbb{C}},
(z\mapsto\bar z)\}$ est le groupe cyclique d'ordre $2$.  Si $k$ est
algébriquement clos, $\Gamma_k$ est trivial.  Si $k = \mathbb{F}_q$
est fini, $\Gamma_{\mathbb{F}_q}$ contient au moins toutes les
puissances $\Frob_q^i \colon x \mapsto x^{q^i}$ du Frobenius
$\Frob_q\colon x \mapsto x^q$ ; il contient en fait d'autres éléments,
mais « en gros » il n'y a que les puissances du Frobenius (au sens :
la restriction de tout $\sigma \in \Gamma_{\mathbb{F}_q}$ à un
$\mathbb{F}_{q^n}$ est de la forme $\Frob_q^i$ pour un certain $i \in
\mathbb{Z}$ (qu'on peut voir dans $\mathbb{Z}/n\mathbb{Z}$ si on
préfère) ; en tout cas, pour voir qu'un élément de $k^{\alg}$ (ou de
n'importe quoi qui sera considéré plus bas) est fixé/stable par
$\Gamma_{\mathbb{F}_q}$, il suffit de vérifier qu'il est fixé/stable
par $\Frob_q$.

\begin{thm}\label{rational-iff-fixed-by-galois}
Si $k$ est un corps parfait de clôture algébrique $k^{\alg}$, un
élément $x$ de $k^{\alg}$ appartient à $k$ si [et seulement si, mais
  ça c'est juste la définition de $\Gamma_k$] on a $\sigma(x) = x$
pour tout $\sigma \in \Gamma_k$.
\end{thm}

Slogan : « rationnel = fixé par Galois ».

Si $k \subseteq K$ est une extension algébrique (on note parfois ça
$K/k$, mauvaise notation car elle fait penser à un quotient), si $k$
est parfait alors $K$ l'est aussi, et $\Gamma_{K}$ est un sous-groupe
de $\Gamma_k$.  Ce sous-groupe est \emph{distingué} exactement lorsque
$\sigma(K) = K$ (c'est-à-dire $K$ est \emph{globalement} stable
par $\sigma$, pas nécessairement fixé point à point) pour tout
$\sigma\in\Gamma_k$ : dans ce cas on dit que $K$ est une
\textbf{extension galoisienne} de $k$, et on pose $\Gal(k\subseteq K)
= \Gamma_k/\Gamma_{K}$, qui s'appelle groupe de Galois de l'extension
$k \subseteq K$.  Il peut se voir comme l'ensemble des automorphismes
de $K$ laissant $k$ fixe.  Remarque : si $\Gamma_k$ est abélien (c'est
le cas de $\mathbb{F}_q$), \emph{toute} extension algébrique de $k$
est galoisienne.

\begin{thm}
\begin{itemize}
\item Si $k\subseteq K$ est une extension finie (donc algébrique)
  galoisienne, alors un élément $x$ de $K$ appartient à $k$ si [et
    seulement si] on a $\sigma(x) = x$ pour tout $\sigma \in
  \Gal(k\subseteq K)$.  De plus, il y a une bijection entre extensions
  intermédiaires $k \subseteq E \subseteq K$ et sous-groupes de
  $\Gal(k\subseteq K)$ donnée par $E \mapsto \Gamma_E/\Gamma_K =
  \Gal(E\subseteq K)$ et réciproquement $H \mapsto \{x \in K
  :\penalty-100 (\forall \sigma \in H)\, \sigma(x)=x\}$.  (Note :
  l'extension $E \subseteq K$ est toujours galoisienne (on rappelle
  que $k \subseteq K$ était supposée l'être !), et $k \subseteq E$
  l'est lorsque $\Gal(E\subseteq K)$ est distingué dans
  $\Gal(k\subseteq K)$.)
\item Version absolue : pour $k$ parfait, il y a une bijection entre
  les extensions finies (et en particulier, algébriques) $k\subseteq
  K$ de $k$ dans une clôture algébrique $k^{\alg}$ fixée, et les
  sous-groupes de $\Gamma_k$ qui sont « ouverts » au sens où ils
  contiennent un $\Gamma_{k'}$ pour $k'$ extension finie de $k$.
\end{itemize}
\end{thm}

La première partie du résultat suivant est une conséquence triviale
de \ref{rational-iff-fixed-by-galois}, la seconde est beaucoup plus
subtile.
\begin{thm}
Pour $k$ parfait :
\begin{itemize}
\item Si $x \in \mathbb{A}^d(k^{\alg})$ est fixé par $\Gamma_k$, alors
  $x \in \mathbb{A}^d(k)$ (au sens où ses coordonnées affines sont
  dans $k$).
\item Si $x \in \mathbb{P}^d(k^{\alg})$ est fixé par $\Gamma_k$, alors
  $x \in \mathbb{P}^d(k)$ (au sens où \emph{il admet} des coordonnées
  homogènes dans $k$).
\end{itemize}
\end{thm}



\subsection{Variétés sur un corps non algébriquement clos}

Soit $k$ un corps parfait.  Si $I$ est un idéal de
$k[t_1,\ldots,t_d]$, on définit l'idéal $I_{k^{\alg}} := I\cdot
k^{\alg}[t_1,\ldots,t_d]$ engendré par $I$ dans
$k^{\alg}[t_1,\ldots,t_d]$.

\begin{prop}
\begin{itemize}
\item L'idéal $I_{k^{\alg}}$ est radical si et seulement si $I$ l'est.
\item Un idéal $J$ de $k^{\alg}[t_1,\ldots,t_d]$ est de la forme
  $I_{k^{\alg}}$ pour $I$ idéal de $k[t_1,\ldots,t_d]$ si et seulement
  si $\sigma(J) = J$ pour tout $\sigma \in \Gamma_k$.  Lorsque c'est
  le cas, $I = J \cap k[t_1,\ldots,t_d]$.
\item Lorsque $J$ est radical, c'est le cas (=$J$ est de la
  forme $I_{k^{\alg}}$) si et seulement si $\sigma(Z(J)) = Z(J)$ dans
  $\mathbb{A}^d(k^{\alg})$.  Remarque : $Z(J) = Z(I)$ dans
  $\mathbb{A}^d(k^{\alg})$.
\item On a des bijections réciproques, décroissantes pour l'inclusion,
  entre idéaux radicaux de $k[t_1,\ldots,t_d]$ et fermés de Zariski de
  $\mathbb{A}^d(k^{\alg})$ stables par Galois, donnée par $I \mapsto
  Z(I_{k^{\alg}})$ et $E \mapsto \mathfrak{I}(E) \cap
  k[t_1,\ldots,t_d]$.
\end{itemize}
\end{prop}

On qualifiera un fermé de Zariski $X$ de $\mathbb{A}^d(k^{\alg})$
stable par Galois de $k$-variété algébrique affine ou variété
algébrique affine \emph{sur $k$} (moralité : c'est une variété dont
les équations peuvent être définies sur $k$).  On qualifie alors les
éléments de $X \cap k^d$ (c'est-à-dire les points de $X$ dont les
coordonnées sont dans $k$, ou les solutions \emph{dans $k$} des
équations de $X$) de $k$-points de $X$, et on note généralement $X(k)$
cet ensemble.  (Ainsi, $X(k^{\alg})$ est la même chose que $X$.)

\emph{Attention}, $X(k)$ ne détermine pas $X$ ; notamment, cet
ensemble peut très bien être vide sans que $X$ le soit (car le
Nullstellensatz ne fonctionne que sur un corps algébriquement clos).
Par exemple, $Z(x^2+y^2+1) \subseteq \mathbb{A}^2$ définit une variété
algébrique affine sur $\mathbb{R}$ qui n'a aucun $\mathbb{R}$-point.

La même chose fonctionne en projectif : on a des bijections
réciproques, décroissantes pour l'inclusion, entre idéaux homogènes
radicaux de $k[t_0,\ldots,t_d]$ autres que $(t_0,\ldots,t_d)$ et
fermés de Zariski de $\mathbb{P}^d(k^{\alg})$ stables par Galois,
donnée par $I \mapsto Z(I_{k^{\alg}})$ et $E \mapsto \mathfrak{I}(E)
\cap k[t_0,\ldots,t_d]$.

On appelle variété quasiprojective sur $k$ une variété quasiprojective
$X$ (dans $\mathbb{P}^d$) sur $k^{\alg}$ qui soit stable par Galois
(moralité : c'est une variété dont les équations peuvent être définies
sur $k$).  On peut donc définir une action de Galois sur
$X(k^{\alg})$, et $X(k)$ est l'ensemble des points fixés par Galois
(et pour toute extension $k'$ de $k$, l'ensemble $X(k')$ est le
sous-ensemble de $X(k^{\alg})$ fixé par $\Gamma_{k'}$).

Pour éviter les confusions, on note souvent $X_{k^{\alg}}$ la variété
sur $k^{\alg}$ définie par $X$ (c'est-à-dire celle où on oublie la
structure sur $k$ / l'action de Galois).

\medbreak

\underline{Attention :} si un idéal $I \subseteq k[t_1,\ldots,t_d]$ est premier
(cela signifie qu'il est radical et que la variété $X = Z(I) \subseteq
\mathbb{A}^d$ définie sur $k$ est irréductible au sens où elle n'est
pas réunion de deux fermés plus petits définis sur $k$), cela
n'implique pas que $I_{k^{\alg}}$ soit premier, c'est-à-dire que
$X_{k^{\alg}}$ soit irréductible ; par contre, la réciproque est
vraie.  On dit parfois que $X$ est \emph{absolument irréducible} ou
\emph{géométriquement irréductible} lorsque $X_{k^{\alg}}$ est
irréductible.  Contre-exemple : $Z(x^2+y^2)$ dans $\mathbb{A}^2$
sur $\mathbb{R}$ n'est pas absolument irréductible puisque sur
$\mathbb{C}$ il est réunion des deux droites $Z(x+iy)$ et $Z(x-iy)$,
mais sur $\mathbb{R}$ il est irréductible car tout fermé défini
sur $\mathbb{R}$ qui contient une de ces droites doit contenir
l'autre.

\medbreak

Quant aux idéaux \emph{maximaux} de $k[t_1,\ldots,t_d]$, ils
correspondent aux \emph{orbites} sous $\Gamma_k$, c'est-à-dire aux
ensembles (nécessairement finis) de $k^{\alg}$-points tels que
n'importe lequel puisse être envoyé sur n'importe lequel par un
élément de $\Gamma_k$ (c'est-à-dire, si on préfère, qu'aucun
sous-ensemble non-vide n'est stable par $\Gamma_k$).  (On peut, si on
le souhaite, considérer que ce sont là les « points » de l'espace
affine $\mathbb{A}^d$, auquel cas on les appelle « points fermés »
pour bien les distinguer des « $k$-points », c'est-à-dire les éléments
de $k^d$, ou orbites réduites à un seul élément.)  Une remarque
analogue vaut pour des variétés algébriques sur $k$ plus générales :
les idéaux maximaux de $k[t_1,\ldots,t_d]/I$, pour $I$ idéal radical
de $k[t_1,\ldots,t_d]$, correspondent aux orbites sous $\Gamma_k$ de
$Z(I)(k^{\alg})$.



\subsection{Morphismes entre icelles}

Si $X$ et $Y$ sont deux variétés quasiprojectives sur un corps
parfait $k$, un morphisme $X_{k^{\alg}} \buildrel f\over\to
Y_{k^{\alg}}$ sera considéré comme un morphisme $X \to Y$ de
$k$-variétés lorsqu'il vérifie les conditions équivalentes suivantes :
\begin{itemize}
\item Il existe des équations à coefficients dans $k$ définissant $f$.
\item Le morphisme $f$ commute à l'action de Galois, au sens où
  $\sigma(f(x)) = f(\sigma(x))$ pour tout $x \in X(k^{\alg})$.
\end{itemize}

(Cas particulier éclairant : si $f \in \mathbb{F}_{q^n}[t]$, alors
$f(t)^q = f(t^q)$ si et seulement si $f \in \mathbb{F}_q[t]$.)

En particulier, $f$ définit une application $X(k) \to Y(k)$, mais la
donnée de celle-ci \emph{ne suffit pas} à caractériser $f$ (penser au
fait que $X(k)$ peut très bien être vide !).

\medbreak

Pour les fonctions régulières, on a ce qu'on imagine : un morphisme $X
\to \mathbb{A}^1$ est la même chose qu'une fonction régulière sur
$X_{k^{\alg}}$ stable par Galois, et c'est ce qu'on appelle une
fonction régulière sur $X$.  Lorsque $X = Z(I) \subseteq \mathbb{A}^d$
est affine (avec $I = \mathfrak{I}(X)$ idéal de $k[t_1,\ldots,t_d]$),
les fonctions régulières sur $X$ sont les éléments de $\mathcal{O}(X)
:= k[t_1,\ldots,t_d]/I$, qui est donc plus petit que
$\mathcal{O}(X_{k^{\alg}}) = k^{\alg}[t_1,\ldots,t_d]/I_{k^{\alg}}$.
En général, on peut toujours définir une fonction régulière sur $X$
par recollement de fonctions régulières sur des ouverts affines
(c'est-à-dire : on peut le faire \emph{sur $k$}, il n'y a pas besoin
de passer à la clôture algébrique).



%
%
%

\section{Quelques résultats fondamentaux de la géométrie algébrique}

\subsection{L'opposition affine-projectif}

\begin{thm}\label{projective-to-affine-morphisms-are-constant}
Tout morphisme d'une variété projective connexe vers une variété
affine est constant.  (En particulier, toute fonction régulière sur
une variété projective, c'est-à-dire morphisme vers $\mathbb{A}^1$,
est constant sur chaque composante connexe.)
\end{thm}


%
\subsection{La dimension}

\textbf{Rappel :} Si $K$ est un corps contenant un corps $k$, on dit
que des éléments $x_i$ de $K$ sont \textbf{algébriquement
  indépendants} (comprendre : « collectivement transcendants »)
sur $k$ lorsque les seuls polynômes $f \in k[t_1,\ldots,t_d]$ tel que
$f(x_{i_1},\ldots,x_{i_d}) = 0$ pour certains $i_1,\ldots,i_d$ deux à
deux distincts sont les polynômes nuls.  Ceci est équivalent au fait
que le sous-corps $k(x_i)$ de $K$ engendré par les $x_i$ avec $k$ est
isomorphe au corps des fractions rationnelles sur autant
d'indéterminées que de $x_i$ (il est plus simple de penser au cas où
les $x_i$ sont en nombre fini, qui nous suffira).  On appelle
\textbf{base de transcendance} de $K$ sur $k$ un ensemble maximal
d'éléments algébriquement indépendants, c'est-à-dire, un ensemble de
$x_i$ algébriquement indépendants sur $k$ et tels que $K$ soit
algébrique sur le sous-corps $k(x_i)$ qu'ils engendrent au-dessus
de $k$.  Une base de transcendance de $K$ sur $k$ existe toujours, et
toutes ont le même cardinal : on appelle celui-ci \textbf{degré de
  transcendance} de $K$ sur $k$ et on le note $\degtrans_k(K)$.

Par exemple, $\degtrans_k k(t_1,\ldots,t_d) = d$ (où
$k(t_1,\ldots,t_d)$ désigne le corps des fractions rationnelles en $d$
indéterminées sur $k$).  Lorsque $K$ est algébrique sur $k$, on a
$\degtrans_k K = 0$ et réciproquement.  Par ailleurs, lorsque $k
\subseteq K \subseteq L$ sont trois corps, on a toujours $\degtrans_k L
= \degtrans_k K + \degtrans_K L$.

\begin{defn}\label{definition-rational-function-and-dimension}
Si $X$ est une variété \emph{irréductible} sur un corps $k$, on appelle
\textbf{fonction rationnelle} sur $X$ une fonction régulière sur un
ouvert non-vide=dense quelconque de $X$, en identifiant deux fonctions
si elles coïncident sur l'intersection de leur domaine de définition ;
on note $k(X)$ l'ensemble des fonctions régulières sur $X$.  Lorsque
$X$ est une variété affine irréductible, $k(X)$ est le corps des
fractions (noté $k(X)$) de $\mathcal{O}(X)$ (=l'anneau des fonctions
régulières sur $X$, qui est intègre).  De façon générale, $k(X)$
coïncide avec $k(U)$ pour n'importe quel ouvert non-vide=dense $U$
de $X$ (on peut donc définir $k(X) = \Frac \mathcal{O}(U)$ pour $U$ un
ouvert affine dense de $X$).

On appelle \textbf{dimension de $X$} le degré de transcendance sur $k$
de $k(X)$.
\end{defn}

Pour $\mathbb{A}^d$ ou $\mathbb{P}^d$, le corps des fractions
rationnelles est $k(t_1,\ldots,t_d)$ et
$k(\frac{t_1}{t_0},\ldots,\frac{t_d}{t_0})$.  La dimension de
$\mathbb{A}^d$ ou $\mathbb{P}^d$ est donc $d$.  De façon générale,
d'après ce qu'on vient de dire, la dimension d'une variété
irréductible est égale à celle de n'importe lequel de ses ouverts
non-vides.

(Lorsque $X$ n'est pas irréductible, on appelle dimension de $X$ la
plus grande dimension d'une composante irréductible de $X$.  Parfois
on convient que la dimension du vide est $-1$.)

La dimension de $X$ est une notion « géométrique » : on a $\dim X =
\dim X_{k^{\alg}}$.

\begin{thm}[Hauptidealsatz de Krull]\label{hauptidealsatz}
Soit $X$ une variété irréductible de dimension $d$ et $f \in
\mathcal{O}(X)$ un élément qui n'est pas inversible (c'est-à-dire
$Z(f) \neq\varnothing$) et pas nul.  Alors chaque composante
irréductible de $Z(f)$ est de dimension $d-1$.

Variante projective : si $X$ est une variété irréductible de
dimension $d$ dans $\mathbb{P}^e$ et $f$ homogène non constant (en
$e+1$ variables).  Alors chaque composante irréductible de $X \cap
Z(f)$ est de dimension $d-1$, \emph{et de plus $X \cap Z(f)$ n'est pas
  vide}\footnote{On rappelle que « non vide » signifie ici que la
  variété a des points sur $k^{\alg}$ algébriquement clos, pas
  nécessairement qu'elle a des $k$-points.} lorsque $d\geq 1$.
\end{thm}

\begin{cor}
Si $f_1,\ldots,f_r$ sont des polynômes homogènes en $e+1$ variables,
avec $r \leq e$, alors $Z(f_1,\ldots,f_r) \neq \varnothing$,
c'est-à-dire que sur $k$ corps algébriquement clos, les $r$ équations
$f_i=0$ ont une solution (non-nulle) commune.
\end{cor}

De plus, $Z(f_1,\ldots,f_r)$ est de dimension \emph{au moins} $e-r$.
Il peut évidemment être de dimension plus grande (les $f_i$ pourraient
être tous égaux, par exemple).  Lorsqu'il est exactement de dimension
$e-r$, on dit que les $f_i$ sont \emph{en intersection complète}
(projective, globale).

\begin{cor}
Si $X$ est une variété algébrique (quasiprojective) irréductible de
dimension $d$, alors le seul fermé $Y$ de $X$ tel que $\dim Y = d$ est
$X$ lui-même.  Par ailleurs, il existe toujours des fermés
irréductibles $Y$ de dimension $d-1$ dans $X$.

(Autrement dit, on peut définir la dimension de $X$ comme $1 +
\max\dim Y$ où le $\max$ est pris sur tous les fermés irréductibles
de $X$.)
\end{cor}

\begin{thm}
Soit $f\colon Z\to X$ un morphisme de variétés algébriques
(quasiprojectives) irréductibles, surjectif (au sens où pour tout $x
\in X$ il existe $z \in Z$ tel que $x = f(z)$, $x,z$ étant des points
sur un corps $k^{\alg}$ algébriquement clos,, cf. la section
suivante), et soit $d = \dim X$ et $e = \dim Z$.  Alors $e \geq d$, et
de plus :
\begin{itemize}
\item Si $x \in X$, alors toute composante de $f^{-1}(x)$ (cf. section
  suivante) est de dimension \emph{au moins} $e-d$.
\item Il existe un ouvert non vide (donc dense) $U \subseteq X$ tel
  que $\dim f^{-1}(x) = e - d$ (au sens où toute composante
  irréductible de $f^{-1}(x)$ a cette dimension) si $x \in U$.
\end{itemize}
\end{thm}


%
\subsection{L'image d'un morphisme}\label{image-of-a-morphism}

Si $X \buildrel f\over\to Y$ est un morphisme entre variétés
quasiprojectives et $Y' \subseteq Y$ un fermé ou un ouvert (ou
l'intersection d'un fermé et d'un ouvert) dans $Y$, il est facile de
définir l'\emph{image réciproque} de $Y'$ par $f$ : il suffit de
« tirer » les équations de $Y'$ de $Y$ à $X$, c'est-à-dire écrire les
équations $h\circ f = 0$ pour chaque équation $h = 0$ de $Y'$ (et
pareil avec $\neq 0$ si on a affaire à un ouvert).

Définir l'\emph{image (directe)} d'un $X' \subseteq X$ est plus
délicat.  Quitte à restreindre $f$ à $X'$, on peut supposer $X' = X$,
et la question devient celle définir l'image de $f$ : notamment, quel
est l'ensemble des $y \in Y$ tels qu'il existe $x \in X$ ($x,y$ des
points sur $k^{\alg}$) pour lequel $f(x) = y$ ?

\begin{thm}[Chevalley]\label{image-of-a-morphism-chevalley}
\begin{itemize}
\item L'image d'un morphisme $X \buildrel f\over\to Y$ entre variété
  quasiprojectives est localement fermée dans $Y$, au sens suivant :
  il existe $Y' \subseteq Y$ l'intersection d'un ouvert et d'un fermé
  dans $Y$ (c'est-à-dire une sous-variété quasiprojective de $Y$)
  telle que $y \in Y'$ si et seulement si il existe $x \in X$ pour
  lequel $f(x) = y$.
\item Si $X$ est projective, alors l'image d'un morphisme $X \buildrel
  f\over\to Y$ est un \emph{fermé} dans $Y$.
\item Variante : si $X$ est projective et $Y$ quasiprojective, la
  seconde projection $X\times Y \to Y$ est une application fermée au
  sens où l'image d'un fermé de $X \times Y$ dans $Y$ est un fermé.
\end{itemize}
\end{thm}


%
\subsection{Vecteurs tangents, points lisses, et différentielles}
\label{subsection-tangent-vectors-and-smooth-points}

Si $X = Z(I) \subseteq \mathbb{A}^d$ est une variété affine où $I$ est
un idéal radical engendré par $f_1,\ldots,f_r \in k[t_1,\ldots,t_d]$,
et si $x \in X(k)$ (on prendra généralement $k$ algébriquement clos
ici), on appelle \textbf{vecteur tangent à $X$ en $x$} un élément du
noyau de la matrice $\frac{\partial f_i}{\partial
  t_j}(x_1,\ldots,x_d)$, c'est-à-dire un $d$-uplet $v_1,\ldots,v_d$
tel que $\sum_{j=1}^d \frac{\partial f_i}{\partial
  t_j}(x_1,\ldots,x_d)\, v_j = 0$.  Intuitivement, il faut comprendre
un tel élément comme un vecteur basé en $(x_1,\ldots,x_d)$ et le
reliant à $(x_1+v_1 \varepsilon, \ldots, x_d+v_d\varepsilon)$ avec
$\varepsilon$ infinitésimal ($\varepsilon^2=0$).  L'espace vectoriel
des vecteurs tangents à $X$ en $x$ (ou simplement \textbf{espace
  tangent à $X$ en $x$}) se note $T_x X$.

Si $X$ est une variété algébrique quasiprojective quelconque, on
rappelle que tout point $x \in X$ a un voisinage affine $V$, et on
définit alors $T_x X = T_x V$.  (Cette définition passe sous silence
un certain nombre de choses, par exemple la manière dont on identifie
$T_x V$ et $T_x V'$ si $V,V'$ sont deux voisinages affines différents
du même point $x$, à commencer par le fait qu'ils ont la même
dimension : cela est en fait justifié par la notion de différentielle
d'un morphisme, expliquée plus bas.)

\medbreak

\begin{prop}
Si $X$ est une variété algébrique quasiprojective sur un corps $k$,
pour tout $x \in X$ on a $\dim_k T_x X \geq \dim X$.
\end{prop}

Un point $x$ tel que l'espace tangent $T_x X$ à $X$ en ce point soit
d'une dimension (comme espace vectoriel) égale à la dimension de $X$
(comme variété algébrique), c'est-à-dire la dimension maximale que
peut avoir cet espace tangent, est appelé un point \textbf{lisse} (ou
\textbf{régulier}, ou \textbf{nonsingulier}) de $X$.  Lorsque tout
point de $X$ (sur un corps algébriquement clos !) est lisse, on dit
que $X$ lui-même est lisse (ou régulier) (sur son corps de base).

(Pour une variété réductible, un point situé sur une seule composante
irréductible est dit lisse lorsqu'il est lisse sur la composante en
question ; et un point situé sur plusieurs composantes irréductibles à
la fois n'est jamais lisse --- on peut prendre ça comme définition ou
le montrer en prenant comme définition de la lissité le fait que la
dimension de l'espace tangent au point considéré soit égale à la plus
grande dimension d'une composante irréductible passant par ce point.)

\begin{prop}
Soit $X$ une variété quasiprojective sur un corps algébriquement
clos $k$ : alors les points lisses de $X$ forment un ouvert de
Zariski.
\end{prop}
\begin{proof}
L'affirmation est locale, donc on peut supposer $X$ affine.  Si $X$
est de codimension $r$ (c'est-à-dire de dimension $d-r$
dans $\mathbb{A}^d$), le fait que $x$ soit lisse se traduit par le
fait que la matrice des dérivées partielles en $x$ des équations
définissant $X$ est de rang \emph{au moins} $r$ (sachant qu'elle ne
peut pas être strictement supérieure).  Or ceci se traduit par le fait
qu'il existe un mineur $r\times r$ de cette matrice qui ne s'annule
pas : la réunion des ouverts définis par tous les mineurs $r\times r$
(qui sont bien polynomiaux dans les variables) donne bien une
condition ouverte de Zariski.
\end{proof}

\begin{rmk}
\begin{itemize}
\item D'après \ref{hauptidealsatz}, une hypersurface $Z(f)$
  dans $\mathbb{A}^d$, pour $f$ non constant, est de dimension $d-1$,
  donc elle est lisse ssi aucun point de $Z(f)$ n'annule simultanément
  les $d$ dérivées partielles de $f$.  Grâce au Nullstellensatz, ceci
  peut encore se reformuler en : $Z(f)$ est lisse ssi les polynômes
  $f$ et $\frac{\partial f}{\partial t_i}$ (soit $d+1$ polynômes au
  total) engendrent l'idéal unité de $k[t_1,\ldots,t_d]$.
\item Variante projective : pour $f$ homogène de degré non nul dans
  $k[t_0,\ldots,t_d]$, on peut montrer que $Z(f) \subseteq
  \mathbb{P}^d$ est lisse ssi les polynômes $\frac{\partial
    f}{\partial t_i}$ n'ont aucun zéro commun sur $k$ (algébriquement
  clos !), car un zéro commun des $\frac{\partial f}{\partial t_i}$
  est forcément zéro de $f = \sum_{i=0}^d t_i \frac{\partial
    f}{\partial t_i}$.  Grâce au Nullstellensatz projectif, on peut
  encore reformuler cela en : les $\frac{\partial f}{\partial t_i}$
  engendrent un idéal irrelevant.
\item Quand $X = Z(f_1,\ldots,f_r)$ (affine, disons
  dans $\mathbb{A}^d$) est définie par plusieurs polynômes
  $f_1,\ldots,f_r$, \emph{si} la matrice $\frac{\partial f_i}{\partial
    t_j}$ est de rang $r$ en un point de $X = Z(f_1,\ldots,f_r)$, on
  peut conclure que ce point est lisse et que $X$ est de
  dimension $d-r$.  En revanche, lorsque le rang est plus petit
  que $r$, on ne peut pas conclure sauf en connaissant la dimension
  de $X$.
\end{itemize}
\end{rmk}

\begin{prop}
Soit $X$ une variété quasiprojective : alors il existe un point lisse
de $X$ sur un corps algébriquement clos $k$ --- par conséquent, sur il
existe un ouvert dense de points lisses sur une variété
quasiprojective irréductible.
\end{prop}

Ceci permet parfois de calculer la dimension d'une variété, en
reformulant en : la dimension d'une variété irréductible $X$ est le
\emph{minimum} des dimensions des espaces vectoriels $T_x X$ (donc,
dans $\mathbb{A}^d$, la codimension est le plus grand rang possible
que prend la matrice des dérivés partielles).

\medbreak

\textbf{Différentielle d'un morphisme.} Si $h\colon X\to Y$ est un
morphisme entre variétés quasiprojectives sur un corps algébriquement
clos $k$ et $x \in X$, on a une application $dh_x\colon T_x X \to
T_{h(x)} Y$ qui est définie de la façon suivante.  Quitte à remplacer
$X$ par un voisinage affine de $x$ et $Y$ par un voisinage affine de
$h(x)$, on peut supposer que $X$ et $Y$ sont affines.  Dans ce cadre,
si $X$ est défini par des équations\footnote{Ce genre de formulation
  sous-entend non seulement que $X = Z(f_1,\ldots,f_r)$ mais, plus
  fortement, que l'idéal $(f_1,\ldots,f_r)$ est \emph{radical},
  c'est-à-dire que c'est $\mathfrak{I}(X)$.} $f_1=\cdots=f_r = 0$
dans $\mathbb{A}^d$ (de sorte que $T_x X$ se voit comme l'ensemble des
$(v_i)$ tels que $\sum_{j=1}^d \frac{\partial f_i}{\partial
  t_j}(x_1,\ldots,x_d)\, v_j = 0$) et $Y$ par $g_1=\cdots=g_s = 0$
dans $\mathbb{A}^e$ (de sorte que $T_y Y$ se voit comme l'ensemble des
$(w_i)$ tels que $\sum_{j=1}^e \frac{\partial g_i}{\partial
  u_j}(y_1,\ldots,y_d)\, w_j = 0$), et le morphisme $h$ par des
polynômes $(h_1,\ldots,h_e)$ (vérifiant $g_i(h_1,\ldots,h_e) = 0$)
envoyant $(x_1,\ldots,x_d)$ sur
$(h_1(x_1,\ldots,x_d),\ldots,\penalty-100 h_e(x_1,\ldots,x_d))$, alors
$dh_x$ envoie $(v_1,\ldots,v_d)$ sur $(w_1,\ldots,w_e)$ où $w_i =
\sum_{j=1}^d \frac{\partial h_i}{\partial t_j}\, v_j$ (et la condition
souhaitée, $\sum_{i=1}^e w_j \frac{\partial g_i}{\partial
  u_j}(y_1,\ldots,y_d) = 0$ est une conséquence de la formule des
dérivées composées appliquée à $g_i(h_1,\ldots,h_e) = 0$ : on a
$\sum_{j=1}^e \frac{\partial g_i}{\partial u_j} \frac{\partial
  h_j}{\partial t_l} = 0$).  Cette application $dh_x$ est linéaire
(pour chaque $x$ donné) : on l'appelle \textbf{différentielle} du
morphisme $h$ au point $x$.

\textbf{Lissité des morphismes.}  On ne définira le concept de
morphisme lisse entre variétés quasiprojectives $X \to Y$ que lorsque
$Y$ elle-même est lisse.  Plus exactement, on dit qu'un morphisme $X
\buildrel h\over\to Y$ est \emph{lisse} en un point $x \in X$ tel que
$Y$ soit lisse en $h(x)$, lorsque $dh_x \colon T_x X \to T_{h(x)} Y$
est \emph{surjective}.  On dit qu'un morphisme $X \to Y$, avec $Y$
lisse, est lisse (partout) lorsque la différentielle est surjective en
tout point.  Une conséquence importante de la lissité de $h$ est que
la fibre $h^{-1}(y)$ est elle-même lisse (en tant que variété, un
fermé à l'intérieur de $X$) pour chaque $y\in Y$.


%
%
%
\end{document}