summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid A. Madore <david+git@madore.org>2020-07-16 20:08:59 +0200
committerDavid A. Madore <david+git@madore.org>2020-07-16 20:08:59 +0200
commit083fc1226f942fe3b71bd384fcaefe761cfda4fb (patch)
tree1cf36e970b4e9dcb5fb8668a9b2da98aa743445f
parent3bd59380046bdf429fb107e2ef75012c4e533daa (diff)
downloadaccq205-083fc1226f942fe3b71bd384fcaefe761cfda4fb.tar.gz
accq205-083fc1226f942fe3b71bd384fcaefe761cfda4fb.tar.bz2
accq205-083fc1226f942fe3b71bd384fcaefe761cfda4fb.zip
Thinko.
-rw-r--r--controle-2020qcm.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/controle-2020qcm.tex b/controle-2020qcm.tex
index 229e9c9..159d749 100644
--- a/controle-2020qcm.tex
+++ b/controle-2020qcm.tex
@@ -384,7 +384,7 @@ $7$
Quel est le nombre de points sur $\mathbb{F}_5$ (i.e., “rationnels”)
du fermé de Zariski $\{(x,y) : x^2 + y^2 - 1 = 0\}$ du plan
-affine $\mathbb{A}^2(\mathbb{F}_5)$ (de coordonnées homogènes $(x,y)$)
+affine $\mathbb{A}^2(\mathbb{F}_5)$ (de coordonnées affines $(x,y)$)
sur le corps à $5$ éléments ?
\rightanswer