diff options
| author | David A. Madore <david+git@madore.org> | 2020-07-16 20:08:59 +0200 |
|---|---|---|
| committer | David A. Madore <david+git@madore.org> | 2020-07-16 20:08:59 +0200 |
| commit | 083fc1226f942fe3b71bd384fcaefe761cfda4fb (patch) | |
| tree | 1cf36e970b4e9dcb5fb8668a9b2da98aa743445f | |
| parent | 3bd59380046bdf429fb107e2ef75012c4e533daa (diff) | |
| download | accq205-083fc1226f942fe3b71bd384fcaefe761cfda4fb.tar.gz accq205-083fc1226f942fe3b71bd384fcaefe761cfda4fb.tar.bz2 accq205-083fc1226f942fe3b71bd384fcaefe761cfda4fb.zip | |
Thinko.
| -rw-r--r-- | controle-2020qcm.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/controle-2020qcm.tex b/controle-2020qcm.tex index 229e9c9..159d749 100644 --- a/controle-2020qcm.tex +++ b/controle-2020qcm.tex @@ -384,7 +384,7 @@ $7$ Quel est le nombre de points sur $\mathbb{F}_5$ (i.e., “rationnels”) du fermé de Zariski $\{(x,y) : x^2 + y^2 - 1 = 0\}$ du plan -affine $\mathbb{A}^2(\mathbb{F}_5)$ (de coordonnées homogènes $(x,y)$) +affine $\mathbb{A}^2(\mathbb{F}_5)$ (de coordonnées affines $(x,y)$) sur le corps à $5$ éléments ? \rightanswer |
