summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--controle-20220413.tex377
-rw-r--r--controle-20230412.tex660
-rw-r--r--controle-20240410.tex767
-rw-r--r--exercices.tex368
4 files changed, 2172 insertions, 0 deletions
diff --git a/controle-20220413.tex b/controle-20220413.tex
new file mode 100644
index 0000000..699743d
--- /dev/null
+++ b/controle-20220413.tex
@@ -0,0 +1,377 @@
+%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it?
+\documentclass[12pt,a4paper]{article}
+\usepackage[francais]{babel}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+%\usepackage{ucs}
+\usepackage{times}
+% A tribute to the worthy AMS:
+\usepackage{amsmath}
+\usepackage{amsfonts}
+\usepackage{amssymb}
+\usepackage{amsthm}
+%
+\usepackage{mathrsfs}
+\usepackage{wasysym}
+\usepackage{url}
+%
+\usepackage{graphics}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tikz}
+\usetikzlibrary{matrix,calc}
+\usepackage{hyperref}
+%
+%\externaldocument{notes-accq205}[notes-accq205.pdf]
+%
+\theoremstyle{definition}
+\newtheorem{comcnt}{Tout}
+\newcommand\thingy{%
+\refstepcounter{comcnt}\smallskip\noindent\textbf{\thecomcnt.} }
+\newcommand\exercice{%
+\refstepcounter{comcnt}\bigskip\noindent\textbf{Exercice~\thecomcnt.}\par\nobreak}
+\renewcommand{\qedsymbol}{\smiley}
+%
+\newcommand{\id}{\operatorname{id}}
+\newcommand{\alg}{\operatorname{alg}}
+\newcommand{\ord}{\operatorname{ord}}
+\newcommand{\val}{\operatorname{val}}
+%
+\DeclareUnicodeCharacter{00A0}{~}
+%
+\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
+\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
+%
+\DeclareFontFamily{U}{manual}{}
+\DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{}
+\newcommand{\manfntsymbol}[1]{%
+ {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
+\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
+\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
+ \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
+%
+\newcommand{\spaceout}{\hskip1emplus2emminus.5em}
+\newif\ifcorrige
+\corrigetrue
+\newenvironment{corrige}%
+{\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi%
+\smallbreak\noindent{\underbar{\textit{Corrigé.}}\quad}}
+{{\hbox{}\nobreak\hfill\checkmark}%
+\ifcorrige\par\smallbreak\else\egroup\par\fi}
+%
+%
+%
+\begin{document}
+\ifcorrige
+\title{ACCQ205\\Contrôle de connaissances — Corrigé\\{\normalsize Courbes algébriques}}
+\else
+\title{ACCQ205\\Contrôle de connaissances\\{\normalsize Courbes algébriques}}
+\fi
+\author{}
+\date{13 avril 2022}
+\maketitle
+
+\pretolerance=8000
+\tolerance=50000
+
+\vskip1truein\relax
+
+\noindent\textbf{Consignes.}
+
+Les exercices sont totalement indépendants. Ils pourront être traités
+dans un ordre quelconque, mais on demande de faire apparaître de façon
+très visible dans les copies où commence chaque exercice.
+
+La longueur du sujet ne doit pas effrayer : l'énoncé du dernier
+exercice est long parce que beaucoup de rappels ont été faits et que
+la rédaction des questions cherche à donner tous les éléments
+nécessaires pour passer d'une question aux suivantes.
+
+La difficulté des questions étant variée, il vaut mieux ne pas rester
+bloqué trop longtemps.
+
+Si on ne sait pas répondre rigoureusement, une réponse informelle peut
+valoir une partie des points.
+
+\medbreak
+
+L'usage de tous les documents (notes de cours manuscrites ou
+imprimées, feuilles d'exercices, livres) est autorisé.
+
+L'usage des appareils électroniques est interdit.
+
+\medbreak
+
+Durée : 2h
+
+\ifcorrige
+Ce corrigé comporte 9 pages (page de garde incluse).
+\else
+Cet énoncé comporte 5 pages (page de garde incluse).
+\fi
+
+\vfill
+{\noindent\tiny
+\immediate\write18{sh ./vc > vcline.tex}
+Git: \input{vcline.tex}
+\immediate\write18{echo ' (stale)' >> vcline.tex}
+\par}
+
+\pagebreak
+
+
+%
+%
+%
+
+\exercice
+
+Soit $k$ un corps de caractéristique $\neq 2$. Soit $C$ le fermé de
+Zariski de $\mathbb{A}^2$ sur $k$ d'équation $x^2 + y^2 = 2$ (ainsi,
+pour $k = \mathbb{R}$, les points réels de $C$ forment un cercle
+euclidien de rayon $\sqrt{2}$).
+
+(1) Décrire la complétée projective $C^+$ de $C$ (c'est-à-dire
+l'adhérence de $C$ dans $\mathbb{P}^2$ où on identifie comme
+d'habitude $\mathbb{A}^2$ à l'ouvert $T\neq 0$ du $\mathbb{P}^2$ de
+coordonnées $(T:X:Y)$ en envoyant $(x,y)$ sur $(1:x:y)$).
+
+(2) En remarquant que $P := (1,1)$ est un $k$-point de $C$ et en
+considérant une droite $D_t$ de pente $t$ variable passant par $P$,
+construire un morphisme d'un ouvert\footnote{C'est-à-dire qu'il peut
+ admettre un nombre fini de points (géométriques) où il n'est pas
+ défini.} de $\mathbb{A}^1$ vers $C$ (défini sur $k$), en envoyant
+$t$ sur le point d'intersection autre que $P$ de $C$ avec la
+droite $D_t$.
+
+(3) En déduire un morphisme $\mathbb{P}^1 \to C^+$ (défini sur $k$) en
+prolongeant le morphisme de la question précédente.
+
+(4) Donner un exemple de solution entière $(u,v,w) \in \mathbb{Z}^3$
+de l'équation $u^2 + v^2 = 2w^2$ autre que $(0,0,0)$ et $(\pm 1, \pm
+1, \pm 1)$.
+
+
+%
+%
+%
+
+\exercice
+
+Sur un corps $k$ quelconque, considérons l'application $\varphi$
+définie sur une partie de $\mathbb{P}^2$ et à valeurs dans
+$\mathbb{P}^2$ qui envoie le point de coordonnées homogènes $(X:Y:Z)$
+sur $(YZ:XZ:XY)$ si défini.
+
+(1) Quel est l'ouvert de Zariski $U$ de définition de $\varphi$ ?
+Exprimer celui-ci comme le complémentaire de trois points de
+$\mathbb{P}^2$ dont on précisera les coordonnées.
+
+(2) Quel est l'ouvert de Zariski $V$ des points (de $U$) dont l'image
+par $\varphi$ appartient à $U$ ? Exprimer celui-ci comme le
+complémentaire de trois droites de $\mathbb{P}^2$ dont on précisera
+les équations.
+
+(3) Que vaut $\varphi\circ\varphi$ sur $V$ ?
+
+
+%
+%
+%
+
+%% \exercice
+
+%% On définit deux suites de polynômes $(T_n)$ et $(U_n)$
+%% dans $\mathbb{Z}[x]$ (polynômes de Čebyšëv de première et seconde
+%% espèce) par les formules de récurrence suivantes :
+%% \[
+%% \left\{\begin{aligned}
+%% T_0(x) &= 1\\
+%% T_1(x) &= x\\
+%% T_{n+1}(x) &= 2x\, T_n(x) - T_{n-1}(x)\\
+%% \end{aligned}\right.
+%% \;\;\;\hbox{~et~}\;\;\;
+%% \left\{\begin{aligned}
+%% U_{-1}(x) &= 0\\
+%% U_0(x) &= 1\\
+%% U_{n+1}(x) &= 2x\, U_n(x) - U_{n-1}(x)\\
+%% \end{aligned}\right.
+%% \]
+
+
+%
+%
+%
+
+\exercice
+
+Soit $k$ un corps de caractéristique $0$ et qu'on supposera
+algébriquement clos pour simplifier. Soient $\xi_1,\ldots,\xi_5 \in
+k$ deux à deux distincts : on appelle $p(x) = (x-\xi_1)\cdots(x-\xi_5)
+\in k[x]$ le polynôme unitaire ayant les $\xi_i$ pour racines. On
+appelle $C^+$ la courbe (dite « hyperelliptique ») obtenue en ajoutant
+un point à l'infini\footnote{Pour être tout à fait exact, il ne s'agit
+ pas de la complétée projective de $C$ dans $\mathbb{P}^2$, mais
+ d'une « désingularisation » de celle-ci (qui a cependant un unique
+ point en plus de ceux de $C$ comme la complétée projective). Les
+ questions qui suivent ont été rédigées de manière à ce que cette
+ subtilité ne pose pas de problème.} noté $\infty$ à la variété
+algébrique affine $C$ d'équation $y^2 = p(x)$ dans $\mathbb{A}^2$.
+
+On admettra sans justification les faits suivants :
+\begin{itemize}
+\item Que son corps des fonctions $K := k(C^+)$ peut se voir comme le
+ quotient $k(x)[y]/(y^2 - p(x))$ de l'anneau $k(x)[y]$ des polynômes
+ en l'indéterminée $y$ sur le corps $k(x)$ des fractions rationnelles
+ en une indéterminée $x$ sur $k$ par le polynôme $y^2 - p(x)$
+ définissant $C$, c'est-à-dire, concrètement :
+\item que tout élément de $K$ peut s'écrire de façon unique $g_0 +
+ g_1\,y$ où $g_0,g_1 \in k(x)$ sont deux fractions rationnelles
+ en $x$, l'addition se calculant en ajoutant terme à terme, et la
+ multiplication en développant le produit et en remplaçant $y^2$ par
+ $p(x)$.
+\end{itemize}
+
+On rappelle par ailleurs qu'une \emph{valuation discrète} sur $K$
+au-dessus de $k$ et une fonction $v\colon K\to
+\mathbb{Z}\cup\{+\infty\}$ qui vérifie les propriétés suivantes :
+\textbf{(o)} $v(f) = +\infty$ si et seulement si $f=0$,\quad
+\textbf{(i)} $v(f_1 + f_2) \geq \min(v(f_1), v(f_2))$ (avec
+automatiquement l'égalité lorsque $v(f_1) \neq v(f_2)$),\quad
+\textbf{(ii)} $v(f_1 f_2) = v(f_1) + v(f_2)$,\quad \textbf{(k)} $v(c)
+= 0$ si $c\in k$,\quad et enfin \textbf{(n)} il existe $f\in K$ telle
+que $v(f) = 1$. De plus, on rappelle que pour chaque point $P$
+de $C^+$ il existe une unique telle valuation discrète $v =: \ord_P$
+vérifiant en outre \textbf{(r)} $v(f) \geq 0$ si $f$ est régulière
+en $P$ (et automatiquement, $v(f) > 0$ si $f$ s'annule en $P$). Et
+réciproquement, toute valuation discrète de $K$ au-dessus de $k$ est
+de cette forme (est un $\ord_P$ pour un certain $P$).
+
+\smallbreak
+
+(1) Si $v$ est une valuation discrète de $K$ au-dessus de $k$,
+expliquer pourquoi sa restriction à $k(x)$ vérifie encore les
+propriétés (o), (i), (ii) et (k) de la définition d'une valuation
+discrète. En déduire qu'elle est de la forme $e\cdot v'$ où $v'$ est
+une valuation discrète de $k(x)$ au-dessus de $k$, et où $e\geq 1$ est
+entier.
+
+\smallbreak
+
+On rappelle que toute valuation discrète de $k(x)$ au-dessus de $k$
+est de la forme $\val_{x_0}$ pour $x_0 \in k$ ou bien $\val_\infty$,
+où $\val_{x_0}(g)$ est l'ordre d'annulation\footnote{C'est-à-dire que
+ $\val_{x_0}(g)$ est l'exposant de la plus grande puissance de
+ $x-x_0$ qui divise $g$ si $g \in k[x]$, et $\val_{x_0}(g/h) =
+ \val_{x_0}(g) - \val_{x_0}(h)$ en général.} de la fraction
+rationnelle $g$ en $x_0$, et $\val_\infty(g)$ est le degré du
+dénominateur moins le degré du numérateur. (NB : c'est seulement pour
+éviter la confusion entre valuations sur $K$ et sur $k(x)$ qu'on a
+écrit $\ord_P$ pour l'ordre d'annulation d'une fonction sur $C^+$ en
+un point $P$ de $C^+$ et $\val_Q$ pour l'ordre d'annulation d'une
+fonction sur $\mathbb{P}^1$ en un point $Q$ de $\mathbb{P}^1$. Il
+s'agit de la même construction sur deux courbes différentes.)
+
+\smallbreak
+
+(2) Soit $P_i$ le point $(\xi_i,0)$ de $C$ (pour $1\leq i\leq 5$
+fixé). On cherche à calculer $\ord_{P_i}(g_0 + g_1\,y)$. Montrer que
+$\ord_{P_i}(g) = e\, \val_{\xi_i}(g)$ si $g\in k(x)$, où $e\geq 1$ est
+un entier restant à déterminer. En déduire que $\ord_{P_i}(y) =
+\frac{e}{2}$. En déduire que $\ord_{P_i}(g_0 + g_1\,y) =
+e\,\min(\val_{\xi_i}(g_0),\; \val_{\xi_i}(g_1)+\frac{1}{2})$. En
+déduire que $e=2$ exactement, et donc que $\ord_{P_i}(g_0 + g_1\,y) =
+\min(2\val_{\xi_i}(g_0),\; 2\val_{\xi_i}(g_1)+1)$.
+
+\smallbreak
+
+(3) Soit $\infty$ le point à l'infini de $C^+$ (non situé sur $C$).
+On cherche à calculer $\ord_\infty(g_0 + g_1\,y)$ de façon analogue à
+la question précédente. Montrer que $\ord_\infty(g) = e\,
+\val_\infty(g)$ si $g\in k(x)$, où $e\geq 1$ est un entier restant à
+déterminer (\textit{a priori} sans lien avec celui de la question
+précédente). En déduire que $\ord_\infty(y) = -\frac{5e}{2}$. En
+déduire que $\ord_\infty(g_0 + g_1\,y) = e\,\min(\val_\infty(g_0),\;
+\val_\infty(g_1)-\frac{5}{2})$. En déduire que $e=2$ exactement, et
+donc que $\ord_\infty(g_0 + g_1\,y) = \min(2\val_\infty(g_0),\;
+2\val_\infty(g_1)-5)$.
+
+\smallbreak
+
+(4) Soit $Q := (x_Q,y_Q)$ un point de $C$ avec $y_Q \neq 0$ (ou, ce
+qui revient au même, $x_Q \not\in \{\xi_1,\ldots,\xi_5\}$) ; on notera
+$Q' := (x_Q,-y_Q)$ son symétrique. En quels points de $C^+$ la
+fonction $h := x - x_Q$ a-t-elle un zéro ? En utilisant le fait que
+$\sum_{Q\in C^+} \ord_Q(h) = 0$, montrer que $\ord_Q(x-x_Q) =
+\ord_{Q'}(x-x_Q) = 1$. En déduire que $\ord_Q(g) = \val_{x_Q}(g)$
+pour tout $g \in k(x)$. En déduire que $\ord_Q(y - y_Q) = 1$ (on
+pourra remarquer que $y^2 - y_Q^2 = p(x) - p(x_Q)$ et que $p'(x_Q)
+\neq 0$). Montrer que si $f := g_0 + g_1\,y \in K$ n'a pas de pôle en
+$Q$ ni en $Q'$, alors $g_0,g_1$ n'ont pas de pôle en $x_P$ (on pourra
+écrire $g_0 = \frac{1}{2}(f+\tilde f)$ et $g_1 = \frac{1}{2y}(f-\tilde
+f)$ où $\tilde f = g_0 - g_1\,y$ est la composée de $f$ par la
+symétrie $(x,y) \mapsto (x,-y)$).
+
+\smallbreak
+
+(5) Pour $n \in \mathbb{N}$, on s'intéresse à l'espace vectoriel
+$\mathscr{L}(n[\infty])$ des fonctions rationnelles $f = g_0 + g_1\,y$
+sur $C^+$ ayant au plus un pôle d'ordre $\leq n$ en $\infty$
+(c'est-à-dire $\ord_\infty(f) \geq -n$) et aucun pôle ailleurs
+(c'est-à-dire $\ord_Q(f) \geq 0$ pour tout $Q \in C$). Montrer que
+cela équivaut à : $g_0 \in k[x]$ polynôme de degré $\leq\frac{n}{2}$
+et $g_1 \in k[x]$ polynôme de degré $\leq\frac{n-5}{2}$. En déduire
+que la dimension $\ell(n[\infty])$ de $\mathscr{L}(n[\infty])$ vaut
+$\max(0,\lfloor\frac{n}{2}\rfloor+1) +
+\max(0,\lfloor\frac{n-5}{2}\rfloor+1)$ où $\lfloor v\rfloor$ désigne
+la partie entière de $v$. En déduire que
+\[
+\ell(n[\infty]) =
+\left\{
+\begin{array}{ll}
+1,1,2&\hbox{~si $n=0,1,2$ respectivement}\\
+n-1&\hbox{~si $n\geq 3$}\\
+\end{array}
+\right.
+\]
+(on pourra par exemple calculer les valeurs pour $n=0,1,2,3,4,5$
+séparément et, pour $n\geq 5$, distinguer $n$ pair et $n$ impair). On
+rappelle que le théorème de Riemann-Roch prédit $\ell(n[\infty]) = n +
+1 - g$ si $n$ est assez grand, où $g$ est le genre de la courbe : que
+vaut $g$ ici ?
+
+\smallbreak
+
+Pour la question suivante, on rappelle que la différentielle $df$
+d'une fonction $f$ a pour ordre $\ord_Q(df) = \ord_Q(f) - 1$ si
+$\ord_Q(f) \neq 0$, et $\ord_Q(df) \geq 0$ dès que $\ord_Q(f) \geq 0$.
+On rappelle par ailleurs que $f \mapsto df$ est $k$-linéaire et que
+$d(ff') = f\,df' + f'\,df$.
+
+\smallbreak
+
+(6) Calculer $\ord_Q(dx)$ en tout $Q \in C^+$ (y compris $\infty$ et
+les cinq points $P_1,\ldots,P_5$) ; on pourra remarquer que $d(x-c) =
+dx$. En déduire que le diviseur canonique de $\omega := \frac{dx}{y}$
+vaut $2[\infty]$, c'est-à-dire que $\ord_Q(\omega) = 0$ en tout point
+$Q$ sauf $\ord_\infty(\omega) = 2$. Le théorème de Riemann-Roch
+prédit plus exactement $\ell(n[\infty]) - \ell((2-n)[\infty])) = n + 1
+- g$ pour tout $n \in \mathbb{Z}$ : vérifier directement cette
+affirmation à l'aide du résultat calculé à la question (5).
+
+\smallbreak
+
+(7) Aux questions (2) et (3), on a calculé exactement $\ord_Q(f)$
+(pour $f$ quelconque, écrit sous la forme $g_0 + g_1 y$) si $Q$ est
+l'un des six points $P_1,\ldots,P_5,\infty$, en calculant séparément
+$\ord_Q(g)$ si $g\in k(x)$ et $\ord_Q(y)$. À la question (4), on a
+étudié $\ord_Q$ pour un quelconque autre point, on a calculé
+$\ord_Q(g)$ et $\ord_Q(y - y_Q)$. Ceci permet-il de calculer
+$\ord_Q(f)$ en général ? Si non, donner un exemple de fonction $f \in
+K$ dont le calcul ne découle pas de ces valeurs.
+
+
+
+%
+%
+%
+\end{document}
diff --git a/controle-20230412.tex b/controle-20230412.tex
new file mode 100644
index 0000000..65a37c0
--- /dev/null
+++ b/controle-20230412.tex
@@ -0,0 +1,660 @@
+%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it?
+\documentclass[12pt,a4paper]{article}
+\usepackage[a4paper,margin=2.5cm]{geometry}
+\usepackage[english]{babel}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+%\usepackage{ucs}
+\usepackage{times}
+% A tribute to the worthy AMS:
+\usepackage{amsmath}
+\usepackage{amsfonts}
+\usepackage{amssymb}
+\usepackage{amsthm}
+%
+\usepackage{mathrsfs}
+\usepackage{wasysym}
+\usepackage{url}
+%
+\usepackage{graphics}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tikz}
+\usetikzlibrary{matrix,calc}
+\usepackage{hyperref}
+%
+%\externaldocument{notes-accq205}[notes-accq205.pdf]
+%
+\theoremstyle{definition}
+\newtheorem{comcnt}{Whatever}
+\newcommand\thingy{%
+\refstepcounter{comcnt}\smallskip\noindent\textbf{\thecomcnt.} }
+\newcommand\exercise{%
+\refstepcounter{comcnt}\bigskip\noindent\textbf{Exercise~\thecomcnt.}\par\nobreak}
+\renewcommand{\qedsymbol}{\smiley}
+%
+\newcommand{\id}{\operatorname{id}}
+\newcommand{\alg}{\operatorname{alg}}
+\newcommand{\ord}{\operatorname{ord}}
+\newcommand{\val}{\operatorname{val}}
+%
+\DeclareUnicodeCharacter{00A0}{~}
+\DeclareUnicodeCharacter{A76B}{z}
+%
+\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
+\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
+%
+\DeclareFontFamily{U}{manual}{}
+\DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{}
+\newcommand{\manfntsymbol}[1]{%
+ {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
+\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
+\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
+ \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
+%
+\newcommand{\spaceout}{\hskip1emplus2emminus.5em}
+\newif\ifcorrige
+\corrigetrue
+\newenvironment{answer}%
+{\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi%
+\smallbreak\noindent{\underbar{\textit{Answer.}}\quad}}
+{{\hbox{}\nobreak\hfill\checkmark}%
+\ifcorrige\par\smallbreak\else\egroup\par\fi}
+%
+%
+%
+\begin{document}
+\ifcorrige
+\title{ACCQ205\\Final exam — answer key\\{\normalsize Algebraic curves}}
+\else
+\title{ACCQ205\\Final exam\\{\normalsize Algebraic curves}}
+\fi
+\author{}
+\date{2023-04-12}
+\maketitle
+
+\pretolerance=8000
+\tolerance=50000
+
+\vskip1truein\relax
+
+\noindent\textbf{Instructions.}
+
+This exam consists of a single lengthy problem. Although the
+questions depend on each other, they have been worded in such a way
+that the necessary information for subsequent questions is given in
+the text. Thus, failure to answer one question should not make it
+impossible to proceed to later questions.
+
+\medbreak
+
+Answers can be written in English or French.
+
+\medbreak
+
+Use of written documents of any kind (such as handwritten or printed
+notes, exercise sheets or books) is authorized.
+
+Use of electronic devices of any kind is prohibited.
+
+\medbreak
+
+Duration: 2 hours
+
+\ifcorrige
+This answer key has 7 pages (cover page included).
+\else
+This exam has 4 pages (cover page included).
+\fi
+
+\vfill
+{\noindent\tiny
+\immediate\write18{sh ./vc > vcline.tex}
+Git: \input{vcline.tex}
+\immediate\write18{echo ' (stale)' >> vcline.tex}
+\par}
+
+\pagebreak
+
+
+%
+%
+%
+
+\textit{The goal of this problem is to study a representation of lines
+ in $\mathbb{P}^3$.}
+
+\smallskip
+
+We fix a field $k$. Recall that \emph{points} in $\mathbb{P}^3(k)$
+are given by quadruplets $(x_0{:}x_1{:}x_2{:}x_3)$ of “homogeneous
+coordinates” in $k$, not all zero, defined up to a common
+multiplicative constant, and that \emph{planes} in $\mathbb{P}^3(k)$
+are of the form $\{(x_0{:}x_1{:}x_2{:}x_3) \in \mathbb{P}^3(k) : u_0
+x_0 + \cdots + u_3 x_3 = 0\}$ (for some $u_0,\ldots,u_3$, not all
+zero, defined up to a common multiplicative constant) which we can
+denote as $[u_0{:}u_1{:}u_2{:}u_3]$ (a point of the
+“dual” $\mathbb{P}^3$). Our goal is to find a representation for
+lines.
+
+{\footnotesize It may be convenient, if so desired, to call $\langle
+ w\rangle$ the point in projective space $\mathbb{P}^{m-1}(k)$
+ defined by a vector $w\neq 0$ in $k^m$ (i.e., if $w =
+ (w_0,\ldots,w_m)$ then $\langle w \rangle = (w_0{:}\cdots{:}w_m)$),
+ that is, the class of $w$ under collinearity. \par}
+
+\bigskip
+
+\textbf{(1)} Given $x := (x_0,\ldots,x_3) \in k^4$ and $y :=
+(y_0,\ldots,y_3) \in k^4$, let us define $x\wedge y := (w_{0,1},
+w_{0,2}, w_{0,3}, w_{1,2}, w_{1,3}, w_{2,3}) \in k^6$ where $w_{i,j}
+:= x_i y_j - x_j y_i$. What is $(\lambda x)\wedge(\mu y)$ in relation
+to $x\wedge y$? Under what necessary and sufficient condition do we
+have $x\wedge y = 0$? What is $x\wedge(\lambda x+\mu y)$ in relation
+to $x\wedge y$?
+
+\begin{answer}
+The $w_{i,j}$ are bilinear in $x,y$ (they are $2\times 2$
+determinants) so $(\lambda x)\wedge(\mu y) = \lambda\mu(x\wedge y)$.
+Vanishing of $w_{i,j}$ means $(x_i,x_j)$ is proportional to
+$(y_i,y_j)$ so vanishing of all the $w_{i,j}$ means precisely that
+$x$ or $y$ is zero or that $x$ and $y$ are collinear. Again by
+bilinearity, we have $x\wedge(\lambda x+\mu y) = \lambda(x\wedge x) +
+\mu(x\wedge y)$ which is just $\mu(x\wedge y)$ since $x\wedge x$
+is $0$.
+\end{answer}
+
+\textbf{(2)} Show that if $V \subseteq k^4$ is a $2$-dimensional
+vector subspace, then the set of $x\wedge y$ for $x,y\in V$ is a
+$1$-dimensional subspace of $k^6$.
+
+\begin{answer}
+Consider $u,v$ a basis of $V$: then $u\wedge v$ is nonzero, and any
+element of $V$ can be written $\lambda u + \mu v$, and then $(\lambda
+u + \mu v) \wedge (\lambda' u + \mu' v) = (\lambda \mu' - \lambda'
+\mu)(u \wedge v)$ by (1) (or by composition of determinants). In
+other words, any $x\wedge y$ with $x,y\in V$ is collinear to $u\wedge
+v$, and the latter is nonzero, and since $\lambda \mu' - \lambda' \mu$
+can obviously take every value in $k$, we see that $\{x\wedge y :
+x,y\in V\}$ is the line spanned by $u\wedge v$.
+\end{answer}
+
+\textbf{(3)} Deduce from (2) that if $L \subseteq \mathbb{P}^3(k)$ is
+a line, then $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0
+w_{1,2}{:}w_{1,3}{:}w_{2,3})$, where $w_{i,j} := x_i y_j - x_j y_i$ as
+above, and where $(x_0{:}x_1{:}x_2{:}x_3)$ and
+$(y_0{:}y_1{:}y_2{:}y_3)$ are two distinct points on $L$, is a
+well-defined point in $\mathbb{P}^5(k)$, not depending on the chosen
+points on $L$ nor on the homogeneous coordinates representing them.
+
+\begin{answer}
+Calling $\langle w\rangle$ the point in projective space
+$\mathbb{P}^{m-1}(k)$ defined by a vector $w\neq 0$ in $k^m$, if $L$
+is a line in $\mathbb{P}^3(k)$ we can see it as $\{\langle v\rangle :
+v\in V\}$ for a $2$-dimensional vector subspace $V \subseteq k^4$, and
+we have seen that $\langle x\wedge y\rangle \in \mathbb{P}^4(k)$
+exists when $x$ and $y$ are not collinear (so that $x\wedge y \neq
+0$), i.e., when $\langle x\rangle \neq \langle y\rangle$, and does not
+depend on the $x,y \in V$.
+\end{answer}
+
+\bigskip
+
+The $w_{i,j}$ in question are known as the \textbf{Plücker
+ coordinates} of $L$.
+
+\textbf{(4)} Show that any point $(z_0{:}z_1{:}z_2{:}z_3)$ on the
+line $L$ as above satisfies
+\[
+w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0 = 0
+\tag{$*$}
+\]
+— and analogously by replacing $0,1,2$ by three distinct coordinates
+in $\{0,1,2,3\}$.
+
+\begin{answer}
+Expanding the $3\times 3$ determinant
+\[
+\left|
+\begin{matrix}
+x_0&y_0&z_0\\
+x_1&y_1&z_1\\
+x_2&y_2&z_2\\
+\end{matrix}
+\right|
+\]
+gives $w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0$. If $\langle
+z\rangle$ is in the line through $\langle x\rangle$ and $\langle
+y\rangle$, meaning the three vectors $x,y,z$ are linearly dependent,
+then this determinant is zero. The same holds, of course, for any
+other choice of coordinates instead of $0,1,2$.
+\end{answer}
+
+\textbf{(5)} Deduce from (4) that the $w_{i,j}$ satisfy the following
+relation:
+\[
+w_{0,1} w_{2,3} - w_{0,2} w_{1,3} + w_{0,3} w_{1,2} = 0
+\tag{$\dagger$}
+\]
+
+\begin{answer}
+By (4), we have $w_{0,1} x_2 - w_{0,2} x_1 + w_{1,2} x_0 = 0$ and
+$w_{0,1} y_2 - w_{0,2} y_1 + w_{1,2} y_0 = 0$. Adding $y_3$ times the
+first to $-x_3$ times the second gives the stated
+relation ($\dagger$).
+\end{answer}
+
+\bigskip
+
+The projective algebraic variety defined by ($\dagger$) in
+$\mathbb{P}^5$ is known as the \textbf{Plücker quadric}. In other
+words, we have shown above how to associate to any line $L$ in
+$\mathbb{P}^3(k)$ a $k$-point $(w_{0,1}:\cdots:w_{2,3})$ on the
+Plücker quadric. We now consider the converse.
+
+\textbf{(6)} Assuming $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0
+w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $\mathbb{P}^5(k)$
+satisfies ($\dagger$) (viꝫ. belongs to the Plücker quadric), and
+assuming also that $w_{0,3} \neq 0$, show that the two points
+$(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and
+$(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$ in $\mathbb{P}^3(k)$ are
+meaningful and distinct, and that the line joining them has the
+Plücker coordinates $(w_{0,1}:\cdots:w_{2,3})$ that were given.
+(\emph{Hint:} \underline{first} compute $(w_{0,3},w_{1,3},w_{2,3},0)
+\wedge (0,w_{0,1},w_{0,2},w_{0,3})$ and then use the result, with the
+Plücker relation and the fact that $w_{0,3} \neq 0$ to conclude.)
+
+\begin{answer}
+We straightforwardly compute $(w_{0,3},w_{1,3},w_{2,3},0) \wedge
+(0,w_{0,1},w_{0,2},w_{0,3}) = (w_{0,3} w_{0,1}, w_{0,3} w_{0,2},
+w_{0,3}^2, \penalty0 w_{1,3} w_{0,2} - w_{2,3} w_{0,1}, w_{1,3}
+w_{0,3}, w_{2,3} w_{0,3})$. By Plücker's relation ($\dagger$),
+$w_{1,3} w_{0,2} - w_{2,3} w_{0,1} = w_{1,2} w_{0,3}$, so we get
+$w_{0,3}$ times $(w_{0,1}, w_{0,2}, w_{0,3}, \penalty0 w_{1,2},
+w_{1,3}, w_{2,3})$. Assuming $w_{0,3} \neq 0$, this is a nonzero
+vector, which implies (by question (1)) that
+$(w_{0,3},w_{1,3},w_{2,3},0)$ and $(0,w_{0,1},w_{0,2},w_{0,3})$ are
+nonzero and non-collinear, so that the two points
+$(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and
+$(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$ are meaningful and distinct, and
+by the computation we have just done, the Plücker coordinates of the
+line joining them is the set of coordinates $(w_{0,1}:\cdots:w_{2,3})$
+that were given.
+\end{answer}
+
+\textbf{(7)} Deduce from (6) that any $(w_{0,1}{:}w_{0,2}{:}w_{0,3}{:}
+\penalty0 w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $\mathbb{P}^5(k)$
+satisfying ($\dagger$) (viꝫ. belonging to the Plücker quadric) is the
+set of Plücker coordinates of a (clearly unique) line in
+$\mathbb{P}^3(k)$. (\emph{Hint:} what needs to be proved is that the
+assumption $w_{0,3} \neq 0$ in (6) is harmless: explain how it can be
+arranged by a judicious permutation of coordinates.)
+
+\begin{answer}
+We have seen in (6) that when $w_{0,3} \neq 0$ then
+$(w_{0,1}{:}w_{0,2}{:}w_{0,3}{:} \penalty0
+w_{1,2}{:}w_{1,3}{:}w_{2,3})$ are the Plücker coordinates of a line
+in $\mathbb{P}^3(k)$. But all $w_{i,j}$ cannot be zero (as they are
+given in $\mathbb{P}^5$), and we can always permute coordinates in
+such a way that any $w_{i,j} \neq 0$, which is sure to exist, becomes
+$w_{0,3}$, and the formula $w_{0,1} w_{2,3} - w_{0,2} w_{1,3} +
+w_{0,3} w_{1,2} = 0$ is invariant under any permutation of coordinates
+(for this is is enough to check a cyclic permutation and a
+transposition; keep in mind that $w_{j,i} = -w_{i,j}$ when rewriting
+so as $i<j$), so we have confirmed the result in all cases.
+\end{answer}
+
+\bigskip
+
+At this point, we have established a bijection between the set of
+lines $L$ in $\mathbb{P}^3(k)$ and the set of $k$-points in the
+Plücker quadric defined by ($\dagger$) in $\mathbb{P}^5$; we know how
+to compute Plücker coordinates from two distinct points lying on $L$
+(by definition). We now wish to compute Plücker coordinates for a
+line that is described as the the intersection of two planes.
+
+\textbf{(8)} Rephrase (4) to deduce that, if $L$ is a line with
+Plücker coordinates $(w_{0,1}:\cdots:w_{2,3})$, then the planes
+$[w_{1,2} : {-w_{0,2}} : w_{0,1} : 0]$ and $[0 : w_{2,3} : {-w_{1,3}}
+ : w_{1,2}]$ both contain $L$. Now consider these as points in the
+dual $\mathbb{P}^3$ and show that the Plücker coordinates of the line
+$L^*$ joining the two points in question are: $[w_{2,3} : {-w_{1,3}} :
+ w_{1,2} : w_{0,3} : {-w_{0,2}} : w_{0,1}]$, provided $w_{1,2} \neq
+0$.
+
+\begin{answer}
+The relation ($*$) of (4), namely $w_{1,2} z_0 - w_{0,2} z_1 + w_{0,1}
+z_2 = 0$, means precisely that $(z_0{:}z_1{:}z_2{:}z_3)$ is on the
+plane $[w_{1,2} : {-w_{0,2}} : w_{0,1} : 0]$. Shifting coordinates
+cyclically, it is also on the plane $[0 : w_{2,3} : {-w_{1,3}} :
+ w_{1,2}]$. Computing the Plücker coordinates as defined in
+questions (1) to (3) for the line through these two (dual) points
+gives $[w_{1,2} w_{2,3} : {-w_{1,2} w_{1,3}} : w_{1,2}^2 : {w_{0,2}
+ w_{1,3} - w_{0,1} w_{2,3}} : {-w_{0,2} w_{1,2}} : w_{0,1}
+ w_{1,2}]$ provided not all are zero. By Plücker's
+relation ($\dagger$), $w_{0,2} w_{1,3} - w_{0,1} w_{2,3} = w_{0,3}
+w_{1,2}$, and now we can divide all coordinates by $w_{1,2}$ if it is
+nonzero, giving $[w_{2,3} : {-w_{1,3}} : w_{1,2} : w_{0,3} :
+ {-w_{0,2}} : w_{0,1}]$.
+\end{answer}
+
+\textbf{(9)} Deduce from (8) that if $L$ is a line in
+$\mathbb{P}^3(k)$ with Plücker coordinates $(w_{0,1} : w_{0,2} :
+w_{0,3} : \penalty0 w_{1,2} : w_{1,3} : w_{2,3})$, and if $L^*$
+denotes the “dual” line in the dual $\mathbb{P}^3$, that is, the line
+consisting of all points corresponding to planes containing $L$, then
+$L^*$ has (dual) Plücker coordinates $[w_{2,3} : {-w_{1,3}} : w_{1,2}
+ : w_{0,3} : {-w_{0,2}} : w_{0,1}]$. (\emph{Hint:} the only thing
+that needs to be proved is that the assumption $w_{1,2} \neq 0$ in (8)
+is harmless: explain how it can be arranged by a judicious permutation
+of coordinates.)
+
+\begin{answer}
+We have seen in (8) that when $w_{1,2} \neq 0$ then the line $L^*$
+dual to $L$ is given by $[w_{2,3} : {-w_{1,3}} : w_{1,2} : w_{0,3} :
+ {-w_{0,2}} : w_{0,1}]$. But all $w_{i,j}$ cannot be zero
+(question (3)), and we can always permute coordinates in such a way
+that any $w_{i,j} \neq 0$, which is sure to exist, becomes $w_{1,2}$,
+and the formula $(w_{0,1} : w_{0,2} : w_{0,3} : \penalty0 w_{1,2} :
+w_{1,3} : w_{2,3}) \mapsto [w_{2,3} : {-w_{1,3}} : w_{1,2} : w_{0,3} :
+ {-w_{0,2}} : w_{0,1}]$ is covariant under any permutation of
+coordinates (for this is is enough to check a cyclic permutation and a
+transposition), so we have confirmed the result in all cases.
+\end{answer}
+
+\textbf{(10)} If $[u_0{:}u_1{:}u_2{:}u_3]$ and
+$[v_0{:}v_1{:}v_2{:}v_3]$ are distinct planes in $\mathbb{P}^3(k)$,
+how can we compute the Plücker coordinates of their line of
+intersection? (\emph{Hint:} first describe the Plücker coordinates of
+the line $L^*$ joining the corresponding points in the “dual”
+$\mathbb{P}^3$, and then apply the result of (9), together with
+projective duality.)
+
+\begin{answer}
+Le line $L^*$ joining the points $[u_0{:}u_1{:}u_2{:}u_3]$ and
+$[v_0{:}v_1{:}v_2{:}v_3]$ of the dual $\mathbb{P}^3$ is given by the
+Plücker coordinates $w_{i,j} = u_i v_j - u_j v_i$. We then obtain the
+Plücker coordinates of $L$ as $(w_{2,3} : {-w_{1,3}} : w_{1,2} :
+w_{0,3} : {-w_{0,2}} : w_{0,1})$ (the formula given in (9) for
+computing the Plücker coordinates of $L^*$ from those of $L$: it is
+involutive and projective duality ensures that it also computes the
+Plücker coordinates of $L$ from those of $L^*$), in other words $(u_2
+v_3 - u_3 v_2 : {-u_1 v_3 + u_3 v_1} : u_1 v_2 - u_2 v_1 : u_0 v_3 -
+u_3 v_0 : {-u_0 v_2 + u_2 v_0} : u_0 v_1 - u_1 v_0)$
+\end{answer}
+
+\bigskip
+
+\textbf{(11)} Explain how, by expanding a $4\times 4$ determinant
+expressing the fact that four points $(x_0{:}x_1{:}x_2{:}x_3)$,
+$(y_0{:}y_1{:}y_2{:}y_3)$, $(z_0{:}z_1{:}z_2{:}z_3)$ and
+$(p_0{:}p_1{:}p_2{:}p_3)$ in $\mathbb{P}^3$ are coplanar, we can
+obtain a formula for the plane through a line $L$ defined by its
+Plücker coordinates and a point $(z_0{:}z_1{:}z_2{:}z_3)$ not situated
+on $L$. (It is not required to go through the full computations: just
+explain how it would work.)
+
+\begin{answer}
+Consider the $4\times 4$ determinant
+\[
+\left|
+\begin{matrix}
+x_0&y_0&z_0&p_0\\
+x_1&y_1&z_1&p_1\\
+x_2&y_2&z_2&p_2\\
+x_3&y_3&z_3&p_3\\
+\end{matrix}
+\right|
+\]
+whose vanishing expresses the fact that $x,y,z,p$ are in a common
+hyperplane in $k^4$, i.e., that the points $\langle x\rangle$,
+$\langle y\rangle$, $\langle z\rangle$ and $\langle p\rangle$ are
+coplanar. Expanding it with respect to the final column $p$ gives a
+linear condition for $p$ to be in the plane $P$ spanned by $\langle
+x\rangle$, $\langle y\rangle$, $\langle z\rangle$, whose coefficients
+are $3\times 3$ determinants, which are the coordinates of the
+plane $P$ in the dual $\mathbb{P}^3$. Expanding those $3\times 3$
+determinants with respect to the final column $z$ writes them in terms
+of the Plücker coordinates of the line $L$ through $\langle x\rangle$,
+and $\langle y\rangle$, and the point $\langle z\rangle$.
+
+To be precise (although this was not asked), we get:
+\[
+\begin{aligned}
+\relax [\;
+& - w_{1,2} z_3 + w_{1,3} z_2 - w_{2,3} z_1 \\
+:\;
+& w_{2,3} z_0 + w_{0,2} z_3 - w_{0,3} z_2 \\
+:\;
+& w_{0,3} z_1 - w_{1,3} z_0 - w_{0,1} z_3 \\
+:\;
+& w_{0,1} z_2 - w_{0,2} z_1 + w_{1,2} z_0
+\;]
+\end{aligned}
+\]
+(the last coordinate being precisely given by ($*$)).
+\end{answer}
+
+For your additional information: if $L$ and $L'$ are two lines in
+$\mathbb{P}^3(k)$ with Plücker coordinates $(w_{0,1}:\cdots:w_{2,3})$
+and $(w'_{0,1}:\cdots:w'_{2,3})$ respectively, then $L$ and $L'$ meet
+in a common point (or equivalently, belong to a common plane)
+iff\footnote{This relation (the “polarization” of the quadratic
+ relation ($\dagger$)) can be interpreted by saying that the line
+ in $\mathbb{P}^5$ joining the two points $(w_{0,1}:\cdots:w_{2,3})$
+ and $(w'_{0,1}:\cdots:w'_{2,3})$ on the Plücker quadric is entirely
+ contained in said quadric.}
+\[
+w_{0,1} w'_{2,3} - w_{0,2} w'_{1,3} + w_{0,3} w'_{1,2}
++ w_{2,3} w'_{0,1} - w_{1,3} w'_{0,2} + w_{1,2} w'_{0,3} = 0
+\tag{$\ddagger$}
+\]
+(it is not required to prove this).
+
+\bigskip
+
+\textbf{(12)} Briefly summarize all of the above, emphasizing how we
+have obtained formulæ allowing algorithmic computation of all possible
+geometric constructions between points, lines and planes
+in $\mathbb{P}^3$.
+
+\begin{answer}
+For projective subspaces in $\mathbb{P}^3$ we can represent:
+\begin{itemize}
+\item \textbf{points} by their homogeneous coordinates
+ $(x_0{:}x_1{:}x_2{:}x_3)$ (which are arbitrary not all zero, defined
+ up to a common multiplicative constant),
+\item \textbf{lines} by their Plücker coordinates
+ $(w_{0,1} : w_{0,2} : w_{0,3} : \penalty0
+ w_{1,2} : w_{1,3} : w_{2,3})$ (which are not all zero, and subject
+ to the sole condition ($*$) of belonging to the Plücker quadric,
+ defined up to a common multiplicative constant), or equivalently by
+ their dual Plücker coordinates which are the same up to a
+ permutation and some changes of sign, $[w_{2,3} : {-w_{1,3}} :
+ w_{1,2} : w_{0,3} : {-w_{0,2}} : w_{0,1}]$,
+\item \textbf{planes} by their dual coordinates
+ $[u_0{:}u_1{:}u_2{:}u_3]$ (which are arbitrary not all zero, defined
+ up to a common multiplicative constant).
+\end{itemize}
+
+We can then compute:
+\begin{itemize}
+\item whether a point lies on a line by checking the relation ($*$)
+ and all its permutations of coordinates (cyclic permutations
+ suffice),
+\item whether a point lies on a plane by the relation $u_0 x_0 +
+ \cdots + u_3 x_3 = 0$,
+\item whether a line lies in a plane by checking whether the dual
+ point of the plane lies on the dual line (this gives $w_{2,3} u_2 +
+ w_{1,3} u_1 + w_{0,3} u_0 = 0$ and cyclic permutations thereof),
+\item the line joining two distinct points by computing the Plücker
+ coordinates as $2\times 2$ determinants as defined in question (1),
+\item the plane though a line and a point not lying on it by the
+ formula found as explained in question (11),
+\item the intersection line of two distinct planes by computing dual
+ Plücker coordinates as explained in question (10),
+\item the point of intersection of a line and a plane by taking the
+ dual of the formula for the plane through a line and a point,
+\item a sample point on a line as $(w_{0,3} : w_{1,3} : w_{2,3} : 0)$
+ or some coordinate permutation thereof (as shown in question (6)),
+\item a sample plane through a line dually to the previous point,
+ namely $[w_{1,2} : {-w_{0,2}} : w_{0,1} : 0]$ (as shown in
+ question (8)),
+\item whether two lines meet, or equivalently, belong to a common
+ plane, by using the criterion stated before (12), in which case
+ their point of intersection can be computed by intersecting one of
+ the lines with a sample plane through the other (as explained in the
+ previous items), and their common plane can be computed dually.
+\end{itemize}
+\end{answer}
+
+\bigskip
+
+\centerline{\hbox to3truecm{\hrulefill}}
+
+\medskip
+
+\textbf{(13)} Independently of all of the above, compute the number of
+lines in $\mathbb{P}^3(\mathbb{F}_q)$ (for example by counting the
+number of pairs of distinct points in $\mathbb{P}^3(\mathbb{F}_q)$ and
+the number of pairs of distinct points in a given line
+$\mathbb{P}^1(\mathbb{F}_q)$), where $q$ is a prime power and
+$\mathbb{F}_q$ denotes the finite field with $q$ elements.
+
+\begin{answer}
+There are $\frac{q^4-1}{q-1} = q^3 + q^2 + q + 1$ points in
+$\mathbb{P}^3(\mathbb{F}_q)$. There are thus $(q^3 + q^2 + q + 1)(q^3
++ q^2 + q) = q (q^3 + q^2 + q + 1) (q^2 + q + 1)$ pairs of distinct
+points in $\mathbb{P}^3(\mathbb{F}_q)$, each defining a line. There
+are $\frac{q^2-1}{q-1} = q + 1$ points in
+$\mathbb{P}^2(\mathbb{F}_q)$. There are thus $q(q + 1)$ pairs of
+distinct points defining any given line. Thus, there are $(q (q^3 +
+q^2 + q + 1) (q^2 + q + 1)) / (q (q+1)) = (q^2 + q + 1)(q^2 + 1)$
+lines in $\mathbb{P}^3(\mathbb{F}_q)$ (that is, $q^4 + q^3 + 2q^2 + q
++ 1$).
+\end{answer}
+
+\textbf{(14)} Deduce from (13) and (1)–(7) the number of
+$\mathbb{F}_q$-points on the hypersurface of degree $2$ (“quadric”)
+$\{X_0 X_3 + X_1 X_4 + X_2 X_5 = 0\}$ in $\mathbb{P}^5(\mathbb{F}_q)$
+with coordinates $(X_0:\cdots:X_5)$. Assuming $q \equiv 1 \pmod{4}$,
+deduce the number of $\mathbb{F}_q$-points on the hypersurface of
+degree $2$ (“quadric”) $\{Z_0^2 + \cdots + Z_5^2 = 0\}$ in
+$\mathbb{P}^5(\mathbb{F}_q)$ with coordinates $(Z_0:\cdots:Z_5)$
+(\emph{hint:} $q \equiv 1 \pmod{4}$ means $-1$ is a square in
+$\mathbb{F}_q$, so we can factor $Z^2 + Z^{\prime2}$).
+
+\begin{answer}
+We have seen in (1)–(7) that $\mathbb{F}_q$-points on the Plücker
+quadric are in bijection with lines in $\mathbb{P}^3(\mathbb{F}_q)$,
+and in (13) that there are $(q^2 + q + 1)(q^2 + 1) = q^4 + q^3 + 2q^2
++ q + 1$ of them. Thus, there are that many points on the Plücker
+quadric. The equation of the latter can be written in the form $X_0
+X_3 + X_1 X_4 + X_2 X_5 = 0$ by a simple linear coordinate change,
+i.e., projective transformation ($X_0 = w_{0,1}$, $X_1 = w_{0,2}$,
+$X_2 = w_{0,3}$, $X_3 = w_{2,3}$, $X_4 = -w_{1,3}$ and $X_5 =
+w_{1,2}$) which certainly does not change the number of points.
+
+As for $Z_0^2 + \cdots + Z_5^2 = 0$, if we call $\sqrt{-1}$ some fixed
+square root of $-1$ (which exists when $q \equiv 1 \pmod{4}$ as this
+means that the Legendre symbol $(\frac{-1}{q})$ is $1$), we can write
+$Z_0^2 + Z_1^2 = (Z_0+\sqrt{-1}\,Z_1) (Z_0-\sqrt{-1}\,Z_1)$ and
+similarly for $Z_2^2 + Z_3^2$ and $Z_4^2 + Z_5^2$, and since the
+linear transformation $X_0 = Z_0+\sqrt{-1}\,Z_1$, $X_1 =
+Z_2+\sqrt{-1}\,Z_3$, $X_2 = Z_4+\sqrt{-1}\,Z_5$, $X_3 =
+Z_0-\sqrt{-1}\,Z_1$, $X_4 = Z_2-\sqrt{-1}\,Z_3$, $X_5 =
+Z_4-\sqrt{-1}\,Z_5$ is invertible, there are still the same number of
+points.
+\end{answer}
+
+\bigskip
+
+\centerline{\hbox to3truecm{\hrulefill}}
+
+\medskip
+
+(This question is more difficult; it is independent of (13)\&(14).)
+
+\textbf{(15)} Let $h \in k[t_0,t_1,t_2,t_3]$ be a homogeneous
+polynomial, so that it defines a Zariski closed set (hypersurface) $X
+:= \{h(x_0,x_1,x_2,x_3) = 0\}$ in $\mathbb{P}^3$. Show that the of
+lines contained in $X$ defines a Zariski closed subset $Y$ of the
+Plücker quadric in $\mathbb{P}^5$. (To be completely clear, this
+means\footnote{Here $k^{\alg}$ denotes the algebraic closure of $k$,
+ but feel free to assume that $k$ is algebraically closed ($k =
+ k^{\alg}$) in this question.}: there is a Zariski closed set $Y$ in
+$\mathbb{P}^5$, defined over $k$ and contained in the Plücker quadric
+$Q$ (defined by $\dagger$), such that, for $w \in Q(k^{\alg})$, we
+have $w \in Y(k^{\alg})$ if and only if $L_w \subseteq X(k^{\alg})$,
+where $L_w$ denotes the line in $\mathbb{P}^3(k^{\alg})$ having
+Plücker coordinates $w$.)
+
+The important part of this question is: how can we compute equations
+for $Y$ given the equation $h=0$ of $X$?
+
+\begin{answer}
+We have seen in question (6) that, so long as $w_{0,3} \neq 0$, the
+line $L_w$ defined by $(w_{0,1}{:}w_{0,2}{:}w_{0,3} {:} \penalty0
+w_{1,2}{:}w_{1,3}{:}w_{2,3})$ in $Q$ is the line through
+$(w_{0,3}{:}w_{1,3}{:}w_{2,3}{:}0)$ and
+$(0{:}w_{0,1}{:}w_{0,2}{:}w_{0,3})$. In other words, $\lambda,\mu$ it
+is the line consisting of points $(\lambda w_{0,3} : \lambda w_{1,3} +
+\mu w_{0,1} : \lambda w_{2,3} + \mu w_{0,2} : \mu w_{0,3})$. This
+line is included in $X$ iff $h(\lambda w_{0,3}, \lambda w_{1,3} + \mu
+w_{0,1}, \lambda w_{2,3} + \mu w_{0,2}, \mu w_{0,3}) = 0$ for all
+$\lambda,\mu$ in $k^{\alg}$, which just means that, seen as a
+polynomial in $\lambda,\mu$ now seen as two \emph{indeterminates},
+this is identically zero. But this is a homogeneous polynomial in
+$\lambda,\mu$ whose coefficients are homogeneous polynomials in the
+$w_{i,j}$, so equating all these coefficients to $0$ gives homogeneous
+equations in the $w_{i,j}$ (coordinates in $\mathbb{P}^5$) for $L_w$
+to be included in $X$. This only holds so long as $w_{0,3} \neq 0$
+(when it is zero, some of the resulting equation will be trivial);
+however, at least one $w_{i,j}$ must be zero in any case, so writing
+the corresponding equations for all permutations of coordinates,
+together with the equation ($\dagger$) of the Plücker quadric itself
+(to ensure that the $w_{i,j}$ do correspond to a line in
+$\mathbb{P}^3$) gives us the equations of the desired $Y$.
+
+To illustrate that this is actually algorithmic, the following Sage
+code computes the equations for the set $Y$ of lines inside the
+“diagonal cubic surface” $X := \{x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0\}$:
+{\fontsize{8}{10}\relax
+\begin{verbatim}
+sage: R.<x0,x1,x2,x3,w01,w02,w03,w12,w13,w23,u,v> = PolynomialRing(QQ,12)
+sage: xvars = [x0,x1,x2,x3]
+sage: wvars = [[0,w01,w02,w03],[-w01,0,w12,w13],[-w02,-w12,0,w23],[-w03,-w13,-w23,0]]
+sage: # Plücker equation:
+sage: plucker = w01*w23 - w02*w13 + w03*w12
+sage: # Equation of the surface X:
+sage: h = x0^3 + x1^3 + x2^3 + x3^3
+sage: deg = h.degree()
+sage: # All possible permutations of (0,1,2,3):
+sage: perm4 = [(j0,j1,j2,j3) for j0 in range(4) for j1 in range(4) for j2 in range(4)
+....: for j3 in range(4) if len(set([j0,j1,j2,j3]))==4]
+sage: # Generate the ideal I of the set Y of lines in X, as above:
+sage: I = R.ideal([plucker] + [h.subs(dict([(xvars[j0],wvars[j0][j3]*u), (xvars[j1],w
+....: vars[j1][j3]*u+wvars[j0][j1]*v), (xvars[j2],wvars[j2][j3]*u+wvars[j0][j2]*v), (
+....: xvars[j3],wvars[j0][j3]*v)])).coefficient({u:deg-k,v:k}) for k in range(deg) fo
+....: r (j0,j1,j2,j3) in perm4])
+sage: # Compute its radical:
+sage: I0 = I.radical()
+sage: # This really means Y is 0-dimensional in projective space:
+sage: I0.dimension()
+7
+sage: # This computes its number of geometric points (i.e., geometric lines on X):
+sage: hp = I0.hilbert_polynomial() ; hp.leading_coefficient()*factorial(hp.degree())
+27
+\end{verbatim}
+\par}\noindent (notation is as above except that $\lambda,\mu$ have
+been called \texttt{u},\texttt{v}); the above code proves that thare
+are $27$ geometric lines in the surface $\{x_0^3 + x_1^3 + x_2^3 +
+x_3^3 = 0\} \subseteq \mathbb{P}^3$ (over $\mathbb{Q}$).
+\end{answer}
+
+
+
+
+%
+%
+%
+\end{document}
diff --git a/controle-20240410.tex b/controle-20240410.tex
new file mode 100644
index 0000000..bce1015
--- /dev/null
+++ b/controle-20240410.tex
@@ -0,0 +1,767 @@
+%% This is a LaTeX document. Hey, Emacs, -*- latex -*- , get it?
+\documentclass[12pt,a4paper]{article}
+\usepackage[a4paper,margin=2.5cm]{geometry}
+\usepackage[english]{babel}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+%\usepackage{ucs}
+\usepackage{times}
+% A tribute to the worthy AMS:
+\usepackage{amsmath}
+\usepackage{amsfonts}
+\usepackage{amssymb}
+\usepackage{amsthm}
+%
+\usepackage{mathrsfs}
+\usepackage{wasysym}
+\usepackage{url}
+%
+\usepackage{graphics}
+\usepackage[usenames,dvipsnames]{xcolor}
+\usepackage{tikz}
+\usetikzlibrary{matrix,calc}
+\usepackage{hyperref}
+%
+%\externaldocument{notes-accq205}[notes-accq205.pdf]
+%
+\theoremstyle{definition}
+\newtheorem{comcnt}{Whatever}
+\newcommand\thingy{%
+\refstepcounter{comcnt}\smallskip\noindent\textbf{\thecomcnt.} }
+\newcommand\exercise{%
+\refstepcounter{comcnt}\bigskip\noindent\textbf{Exercise~\thecomcnt.}\par\nobreak}
+\renewcommand{\qedsymbol}{\smiley}
+\renewcommand{\thefootnote}{\fnsymbol{footnote}}
+%
+\newcommand{\id}{\operatorname{id}}
+\newcommand{\alg}{\operatorname{alg}}
+\newcommand{\ord}{\operatorname{ord}}
+\newcommand{\divis}{\operatorname{div}}
+%
+\DeclareUnicodeCharacter{00A0}{~}
+\DeclareUnicodeCharacter{A76B}{z}
+%
+\DeclareMathSymbol{\tiret}{\mathord}{operators}{"7C}
+\DeclareMathSymbol{\traitdunion}{\mathord}{operators}{"2D}
+%
+\DeclareFontFamily{U}{manual}{}
+\DeclareFontShape{U}{manual}{m}{n}{ <-> manfnt }{}
+\newcommand{\manfntsymbol}[1]{%
+ {\fontencoding{U}\fontfamily{manual}\selectfont\symbol{#1}}}
+\newcommand{\dbend}{\manfntsymbol{127}}% Z-shaped
+\newcommand{\danger}{\noindent\hangindent\parindent\hangafter=-2%
+ \hbox to0pt{\hskip-\hangindent\dbend\hfill}}
+%
+\newcommand{\spaceout}{\hskip1emplus2emminus.5em}
+\newif\ifcorrige
+\corrigetrue
+\newenvironment{answer}%
+{\ifcorrige\relax\else\setbox0=\vbox\bgroup\fi%
+\smallbreak\noindent{\underbar{\textit{Answer.}}\quad}}
+{{\hbox{}\nobreak\hfill\checkmark}%
+\ifcorrige\par\smallbreak\else\egroup\par\fi}
+%
+%
+%
+\begin{document}
+\ifcorrige
+\title{ACCQ205\\Final exam — answer key\\{\normalsize Algebraic curves}}
+\else
+\title{ACCQ205\\Final exam\\{\normalsize Algebraic curves}}
+\fi
+\author{}
+\date{2024-04-10}
+\maketitle
+
+\pretolerance=8000
+\tolerance=50000
+
+\vskip1truein\relax
+
+\noindent\textbf{Instructions.}
+
+This exam consists of three completely independent exercises. They
+can be tackled in any order, but students must clearly and readably
+indicate where each exercise starts and ends.
+
+\medbreak
+
+Answers can be written in English or French.
+
+\medbreak
+
+Use of written documents of any kind (such as handwritten or printed
+notes, exercise sheets or books) is authorized.
+
+Use of electronic devices of any kind is prohibited.
+
+\medbreak
+
+Duration: 2 hours
+
+\ifcorrige
+This answer key has 8 pages (this cover page included).
+\else
+This exam has 4 pages (this cover page included).
+\fi
+
+\vfill
+{\noindent\tiny
+\immediate\write18{sh ./vc > vcline.tex}
+Git: \input{vcline.tex}
+\immediate\write18{echo ' (stale)' >> vcline.tex}
+\par}
+
+\pagebreak
+
+
+%
+%
+%
+
+
+\exercise
+
+We say that a set of eight distinct points $p_0,\ldots,p_7$ in the
+projective plane $\mathbb{P}^2$ over a field $k$ is a
+\textbf{Möbius-Kantor configuration} when the points $p_0,p_1,p_3$ are
+aligned, as well as $p_1,p_2,p_4$ and $p_2,p_3,p_5$ and so on
+cyclically mod $8$, and no other set of three of the $p_i$ is aligned.
+In other words, this means that $p_i,p_j,p_k$ are aligned if and only
+if $\{i,j,k\} = \{\ell,\; \ell+1,\; \ell+3\}$ for some $\ell \in
+\mathbb{Z}/8\mathbb{Z}$, where the subscripts are understood to be
+mod $8$.
+
+The following figure (which is meant as a \emph{symbolic
+representation} of the configuration and not as an actual geometric
+figure!) illustrates the setup and can help keep track of which points
+are aligned with which:
+
+\begin{center}
+\vskip-7ex\leavevmode
+\begin{tikzpicture}
+\coordinate (P0) at (2cm,0);
+\coordinate (P1) at (1.414cm,1.414cm);
+\coordinate (P2) at (0,2cm);
+\coordinate (P3) at (-1.414cm,1.414cm);
+\coordinate (P4) at (-2cm,0);
+\coordinate (P5) at (-1.414cm,-1.414cm);
+\coordinate (P6) at (0,-2cm);
+\coordinate (P7) at (1.414cm,-1.414cm);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P0) -- (P1) .. controls ($2.5*(P1)-1.5*(P0)$) and ($2.5*(P2)-1.5*(P1)$) .. (P3);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P1) -- (P2) .. controls ($2.5*(P2)-1.5*(P1)$) and ($2.5*(P3)-1.5*(P2)$) .. (P4);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P2) -- (P3) .. controls ($2.5*(P3)-1.5*(P2)$) and ($2.5*(P4)-1.5*(P3)$) .. (P5);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P3) -- (P4) .. controls ($2.5*(P4)-1.5*(P3)$) and ($2.5*(P5)-1.5*(P4)$) .. (P6);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P4) -- (P5) .. controls ($2.5*(P5)-1.5*(P4)$) and ($2.5*(P6)-1.5*(P5)$) .. (P7);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P5) -- (P6) .. controls ($2.5*(P6)-1.5*(P5)$) and ($2.5*(P7)-1.5*(P6)$) .. (P0);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P6) -- (P7) .. controls ($2.5*(P7)-1.5*(P6)$) and ($2.5*(P0)-1.5*(P7)$) .. (P1);
+\draw[shorten <=-0.5cm, shorten >=-0.3cm] (P7) -- (P0) .. controls ($2.5*(P0)-1.5*(P7)$) and ($2.5*(P1)-1.5*(P0)$) .. (P2);
+\fill[black] (P0) circle (2.5pt);
+\fill[black] (P1) circle (2.5pt);
+\fill[black] (P2) circle (2.5pt);
+\fill[black] (P3) circle (2.5pt);
+\fill[black] (P4) circle (2.5pt);
+\fill[black] (P5) circle (2.5pt);
+\fill[black] (P6) circle (2.5pt);
+\fill[black] (P7) circle (2.5pt);
+\node[anchor=west] at (P0) {$p_0$};
+\node[anchor=south west] at (P1) {$p_1$};
+\node[anchor=south] at (P2) {$p_2$};
+\node[anchor=south east] at (P3) {$p_3$};
+\node[anchor=east] at (P4) {$p_4$};
+\node[anchor=north east] at (P5) {$p_5$};
+\node[anchor=north] at (P6) {$p_6$};
+\node[anchor=north west] at (P7) {$p_7$};
+\end{tikzpicture}
+\vskip-7ex\leavevmode
+\end{center}
+
+The goal of this exercise is to determine over which fields $k$ a
+Möbius-Kantor configuration exists, and compute the coordinates of its
+points.
+
+We fix a field $k$. The word “point”, in what follows, will refer
+to an element of $\mathbb{P}^2(k)$, in other words, a point with
+coordinates in $k$ (that is, a $k$-point).
+
+We shall write as $(x{:}y{:}z)$ the coordinates of a point, and as
+$[u{:}v{:}w]$ the line $\{ux+vy+wz = 0\}$. Recall that the line
+through $(x_1{:}y_1{:}z_1)$ and $(x_2{:}y_2{:}z_2)$ (assumed distinct)
+is given by the formula $[(y_1 z_2 - y_2 z_1) : (z_1 x_2 - z_2 x_1) :
+ (x_1 y_2 - x_2 y_1)]$, and that the same formula (exchanging
+parentheses and square brackets) can also be used to compute the
+intersection of two distinct lines. (This may not always be the best
+or simplest way\footnote{For example, one shouldn't need this formula
+ to notice that the line through $(42{:}0{:}0)$ and $(0{:}1729{:}0)$
+ is $[0{:}0{:}1]$.} to compute coordinates, however!)
+
+\emph{We assume for questions (1)–(5) below that $p_0,\ldots,p_7$ is a
+Möbius-Kantor configuration of points (over the given field $k$), and
+the questions will serve to compute the coordinates of the points.}
+We denote $\ell_{ijk}$ the line through $p_i,p_j,p_k$ when it exists.
+
+\textbf{(1)} Explain why we can assume, without loss of generality,
+that $p_0=(1{:}0{:}0)$ and $p_1=(0{:}1{:}0)$ and $p_2=(0{:}0{:}1)$ and
+$p_5=(1{:}1{:}1)$. \emph{We shall henceforth do so.}
+
+\begin{answer}
+No three of the four points $p_0,p_1,p_2,p_5$ are aligned, so they are
+a projective basis of $\mathbb{P}^2$: thus, there is a unique
+projective transformation of $\mathbb{P}^2$ mapping them to the
+standard basis $(1{:}0{:}0), \penalty-100 (0{:}1{:}0), \penalty-100
+(0{:}0{:}1), \penalty-100 (1{:}1{:}1)$. Since projective
+transformations preserve alignment, we can apply this projective
+transformation and assume that $p_0=(1{:}0{:}0)$ and $p_1=(0{:}1{:}0)$
+and $p_2=(0{:}0{:}1)$ and $p_5=(1{:}1{:}1)$.
+\end{answer}
+
+\textbf{(2)} Compute the coordinates of the lines $\ell_{013}$,
+$\ell_{124}$, $\ell_{235}$, $\ell_{560}$ and $\ell_{702}$, and of the
+point $p_3$.
+
+\begin{answer}
+Denoting $p\vee q$ the line through distinct points $p$ and $q$, we
+get $\ell_{013} = p_0 \vee p_1 = [0{:}0{:}1]$ and $\ell_{124} =
+p_1\vee p_2 = [1{:}0{:}0]$ and $\ell_{235} = p_5\vee p_2 =
+[1{:}{-1}{:}0]$ and $\ell_{560} = p_5\vee p_0 = [0{:}1{:}{-1}]$ and
+$\ell_{702} = p_2\vee p_0 = [0{:}1{:}0]$. Denoting by $\ell\wedge m$
+the point of intersection of distinct lines $\ell$ and $m$, we get
+$p_3 = \ell_{013} \wedge \ell_{235} = (1{:}1{:}0)$.
+\end{answer}
+
+\textbf{(3)} Explain why we can write, without loss of generality, the
+coordinates of $p_4$ in the form $(0{:}\xi{:}1)$ for some $\xi$
+(in $k$). (Note that two things need to be explained here: why the
+first coordinate is $0$ and why the last can be taken to be $1$.)
+
+\begin{answer}
+The point $p_4$ is on $\ell_{124} = [1{:}0{:}0]$, so it is of the form
+$(0{:}\tiret{:}\tiret)$ (its first coordinate is zero). On the other
+hand, it is \emph{not} on $\ell_{013} = [0{:}0{:}1]$, so it is
+\emph{not} of the form $(\tiret{:}\tiret{:}0)$ (its last coordinate is
+\emph{not} zero). Since homogeneous coordinates are defined up to
+multiplication by a common constant, we can divide them by this
+nonzero last coordinate, and we get $p_4$ of the form
+$(0{:}\tiret{:}1)$, as required.
+\end{answer}
+
+\textbf{(4)} Now compute the coordinates of the line $\ell_{346}$, of
+the point $p_6$, and of the lines $\ell_{457}$ and $\ell_{671}$.
+
+\begin{answer}
+We have $\ell_{346} = p_3\vee p_4 = [1{:}{-1}{:}\xi]$. Therefore $p_6
+= \ell_{346} \wedge \ell_{560} = (1-\xi : 1 : 1)$. Further,
+$\ell_{457} = p_4\vee p_5 = [\xi-1 : 1 : -\xi]$ and $\ell_{671} =
+p_1\wedge p_6 = [1{:}0{:}\xi-1]$.
+\end{answer}
+
+\textbf{(5)} Write the coordinates of the last remaining point $p_7$
+and using the fact that we now have three lines on which it lies,
+conclude that $\xi$ must satisfy $1-\xi+\xi^2 = 0$.
+
+\begin{answer}
+The point $p_7$ can be written as $\ell_{571} \wedge \ell_{702}$,
+giving coordinates $(1-\xi:0:1)$, or as $\ell_{457} \wedge
+\ell_{702}$, giving coordinates $(\xi:0:\xi-1)$. That they are equal
+gives the relation $\xi + (1-\xi)^2 = 0$ or $1-\xi+\xi^2 = 0$.
+Alternatively, we can write $p_7$ as $\ell_{671} \wedge \ell_{457}$
+with coordinates $(1-\xi : 1-\xi+\xi^2 : 1)$, and the fact that it
+lies on $\ell_{702}$. we get $1-\xi+\xi^2 = 0$.
+\end{answer}
+
+\textbf{(6)} Deduce from questions (1)–(5) above that, if a
+Möbius-Kantor configuration over $k$ exists, then there is $\xi\in k$
+such that $1-\xi+\xi^2 = 0$.
+
+\begin{answer}
+As explained in (1), we can find a projective transformation of
+$\mathbb{P}^2$ such giving $p_0,p_1,p_2,p_5$ the coordinates
+$(1{:}0{:}0), \penalty-100 (0{:}1{:}0), \penalty-100 (0{:}0{:}1),
+\penalty-100 (1{:}1{:}1)$, and as explained in (3) we then get $p_4$
+of the form $(0{:}\xi{:}1)$, and as explained in (5) this $\xi$ must
+satisfy $1-\xi+\xi^2 = 0$. So if there is Möbius-Kantor configuration
+over $k$ then there is such a $\xi$.
+\end{answer}
+
+\textbf{(7)} Conversely, using the coordinate computations performed
+in questions (2)–(5), explain why, if there is $\xi\in k$ such that
+$1-\xi+\xi^2 = 0$, then a Möbius-Kantor configuration over $k$ exists.
+(A long explanation is not required, but at least explain what checks
+need be done.)
+
+\begin{answer}
+Conversely, if a $\xi$ such that $1-\xi+\xi^2 = 0$ exists, then the
+coordinates we have computed, namely
+\[
+\arraycolsep=1em
+\begin{array}{cc}
+p_0 = (1 : 0 : 0) & \ell_{013} = [0 : 0 : 1]\\
+p_1 = (0 : 1 : 0) & \ell_{124} = [1 : 0 : 0]\\
+p_2 = (0 : 0 : 1) & \ell_{235} = [1 : {-1} : 0]\\
+p_3 = (1 : 1 : 0) & \ell_{346} = [1 : {-1} : \xi]\\
+p_4 = (0 : \xi : 1) & \ell_{457} = [-1+\xi : 1 : -\xi]\\
+p_5 = (1 : 1 : 1) & \ell_{560} = [0 : 1 : {-1}]\\
+p_6 = (1-\xi : 1 : 1) & \ell_{671} = [1 : 0 : \xi-1]\\
+p_7 = (1-\xi : 0 : 1) & \ell_{702} = [0 : 1 : 0]\\
+\end{array}
+\]
+define a Möbius-Kantor configuration. To check this, we need to check
+that $p_i,p_j,p_k$ lie on $\ell_{ijk}$: most of these checks are
+trivial, and the remaining few follow from $1-\xi+\xi^2=0$; but we
+also need to check that no other $p_r$ lies on $\ell_{ijk}$: for
+example, this requires checking that $\xi \neq 0$ (which follows from
+the fact that $0$ certainly does not satisfy $1-\xi+\xi^2=0$) and $\xi
+\neq 1$ (similarly).
+\end{answer}
+
+\textbf{(8)} Give examples of fields $k$, at least one infinite and
+one finite, over which a Möbius-Kantor configuration exists, and
+similarly examples over which it does not exist.
+
+\begin{answer}
+For fields of characteristic $\neq 2$, the usual formula for solving a
+quadratic equation shows that a Möbius-Kantor configuration exists
+precisely iff $-3$ is a square (since the discriminant of $1-t+t^2$
+is $-3$). This is obviously the case of fields of characteristic $3$
+(with $\xi = -1$).
+
+Some examples of fields with a Möbius-Kantor configuration are: any
+algebraically closed field (e.g., $\mathbb{C}$), the field
+$\mathbb{Q}(\sqrt{-3}) = \{u+v\sqrt{-3} : u,v\in\mathbb{Q}\}$, any
+field of characteristic $3$ (e.g., $\mathbb{F}_3$), the field
+$\mathbb{F}_4$ with $4$ elements (because it is
+$\mathbb{F}_2[t]/(1+t+t^2)$), or the field $\mathbb{F}_7$ (because
+$\xi = 3$ satisfies $1-\xi+\xi^2 = 0$).
+
+Some examples of fields without a Möbius-Kantor configuration are: any
+subfield of $\mathbb{R}$ (including $\mathbb{Q}$ or $\mathbb{R}$
+itself), since $-3$ is not a square in $\mathbb{R}$, the field
+$\mathbb{F}_2$ or the field $\mathbb{F}_5$ (checking for each element
+that it does not satisfy $1-\xi+\xi^2 = 0$).
+
+(In fact, for finite fields, the law of quadratic reciprocity gives us
+a complete answer of when a Möbius-Kantor configuration over
+$\mathbb{F}_q$ exists: if $q \equiv 1 \pmod{4}$ we have
+$\big(\frac{-3}{q}\big) = \big(\frac{-1}{q}\big) \,
+\big(\frac{3}{q}\big) = \big(\frac{3}{q}\big) =
+\big(\frac{q}{3}\big)$, while if $q \equiv 3 \pmod{4}$ we have
+$\big(\frac{-3}{q}\big) = \big(\frac{-1}{q}\big) \,
+\big(\frac{3}{q}\big) = -\big(\frac{3}{q}\big) =
+\big(\frac{q}{3}\big)$; so if $q$ is neither a power of $2$ nor of $3$
+this is $+1$ iff $q \equiv 1 \pmod{3}$. For $q$ a power of $3$, a
+Möbius-Kantor configuration always exists. For $q$ a power of $2$, it
+is not hard to check that it exists iff $q$ is an \emph{even} power
+of $2$. Putting all cases together, a Möbius-Kantor configuration
+exists over $\mathbb{F}_q$ iff either $q$ is a power of $3$ or $q
+\equiv 1 \pmod{3}$.)
+\end{answer}
+
+
+%
+%
+%
+
+
+\exercise
+
+The focus of this exercise is \textbf{Klein's quartic}, namely the
+projective algebraic variety $C$ defined by the equation
+\[
+x^3 y + y^3 z + z^3 x = 0
+\]
+in $\mathbb{P}^2$ with coordinates $(x{:}y{:}z)$. Note the symmetry
+of this equation under cyclic permutation of the
+coordinates\footnote{To dispel any possible confusion, this means
+simultaneously replacing $x$ by $y$, $y$ by $z$ and $z$ by $x$.},
+which will come in handy to simplify some computations. To refer to
+it more easily, we shall denote $f := x^3 y + y^3 z + z^3 x$ the
+polynomial defining the equation of $C$.
+
+We shall work over a field $k$ having characteristic $\not\in\{2,7\}$.
+For simplicity, we shall also assume $k$ to be algebraically closed
+(even though this won't matter at all).
+
+\textbf{(1)} The following relation holds (this is a straightforward
+computation, and it is not required to check it):
+\[
+-27xyz\,\frac{\partial f}{\partial x}
++(28x^3-3y^2 z)\,\frac{\partial f}{\partial y}
+-9yz^2\,\frac{\partial f}{\partial z}
+= 28x^6
+\tag{$*$}
+\]
+What does the relation ($*$), together with the other two obtained by
+cyclically permuting coordinates, tell us about the ideal generated by
+$\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and
+$\frac{\partial f}{\partial z}$ in $k[x,y,z]$? What does this imply
+on the set of points where $\frac{\partial f}{\partial x}$,
+$\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$
+all vanish?
+
+\begin{answer}
+The relation $*$ tells us that $28 x^6$, and consequently $x^6$ itself
+(since $k$ is of characteristic $\not\in\{2,7\}$), belongs to the
+ideal generated by $\frac{\partial f}{\partial x}$, $\frac{\partial
+ f}{\partial y}$ and $\frac{\partial f}{\partial z}$. By cyclic
+permutation of coordinates, this is also the case for $y^6$ and $z^6$:
+so this ideal is irrelevant: the set of points in $\mathbb{P}^2$ where
+$\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and
+$\frac{\partial f}{\partial z}$ all vanish is empty (because
+$x^6,y^6,z^6$ do not vanish simultaneously). This implies that $C$ is
+\emph{smooth}.
+\end{answer}
+
+\smallskip
+
+\emph{The previous question implies that $C$ is a (plane) curve. The
+following picture is a rough sketch of an affine part of $C$ over the
+real field.}
+
+\begin{center}
+\begin{tikzpicture}
+\begin{scope}[thick]
+\clip (-3,-3) -- (3,-3) -- (3,3) -- (-3,3) -- cycle;
+\draw (-3.000,5.251) .. controls (-2.667,4.397) and (-2.333,3.618) .. (-2.000,2.946) ;
+\draw (-2.000,2.946) .. controls (-1.833,2.610) and (-1.667,2.301) .. (-1.500,2.028);
+\draw (-1.500,2.028) .. controls (-1.333,1.755) and (-1.167,1.519) .. (-1.000,1.325) ;
+\draw (-1.000,1.325) .. controls (-0.833,1.130) and (-0.667,0.981) .. (-0.500,0.846) ;
+\draw (-0.500,0.846) .. controls (-0.417,0.779) and (-0.333,0.716) .. (-0.250,0.638) ;
+\draw (-0.250,0.638) .. controls (-0.208,0.600) and (-0.167,0.558) .. (-0.125,0.501) ;
+\draw (-0.125,0.501) .. controls (-0.104,0.473) and (-0.083,0.441) .. (-0.062,0.397) ;
+\draw (-0.062,0.397) .. controls (0,0.265) and (0,0.133) .. (0,0) ;
+\draw (0,0) .. controls (0,-0.133) and (0,-0.265) .. (0.062,-0.397) ;
+\draw (0.062,-0.397) .. controls (0.083,-0.441) and (0.104,-0.471) .. (0.125,-0.499) ;
+\draw (0.125,-0.499) .. controls (0.167,-0.553) and (0.208,-0.590) .. (0.250,-0.622) ;
+\draw (0.250,-0.622) .. controls (0.333,-0.684) and (0.417,-0.720) .. (0.500,-0.741) ;
+\draw (0.500,-0.741) .. controls (0.667,-0.783) and (0.833,-0.755) .. (1.000,-0.682) ;
+\draw (1.000,-0.682) .. controls (1.167,-0.610) and (1.333,-0.501) .. (1.500,-0.422) ;
+\draw (1.500,-0.422) .. controls (1.667,-0.343) and (1.833,-0.288) .. (2.000,-0.248) ;
+\draw (2.000,-0.248) .. controls (2.333,-0.168) and (2.667,-0.136) .. (3.000,-0.111) ;
+\draw (-3.000,-5.140) .. controls (-2.667,-4.261) and (-2.333,-3.452) .. (-2.000,-2.694) ;
+\draw (-2.000,-2.694) .. controls (-1.833,-2.315) and (-1.667,-1.962) .. (-1.500,-1.552) ;
+\draw (-1.500,-1.552) .. controls (-1.458,-1.449) and (-1.417,-1.346) .. (-1.375,-1.209) ;
+\draw (-1.375,-1.209) .. controls (-1.315,-1.013) and (-1.263,-0.817) .. (-1.375,-0.621) ;
+\draw (-1.375,-0.621) .. controls (-1.417,-0.548) and (-1.458,-0.511) .. (-1.500,-0.477) ;
+\draw (-1.500,-0.477) .. controls (-1.667,-0.339) and (-1.833,-0.295) .. (-2.000,-0.252) ;
+\draw (-2.000,-0.252) .. controls (-2.333,-0.166) and (-2.667,-0.136) .. (-3.000,-0.111) ;
+\end{scope}
+\draw[->, shorten <=-0.1cm, shorten >=-0.1cm, thin] (-3,0) -- (3,0);
+\draw[->, shorten <=-0.1cm, shorten >=-0.1cm, thin] (0,-3) -- (0,3);
+\node[anchor=west] at (3,0) {$\scriptstyle x/z \,=:\, u$};
+\node[anchor=south] at (0,3) {$\scriptstyle y/z \,=:\, v$};
+\end{tikzpicture}
+\end{center}
+
+We now define the three points $a := (1{:}0{:}0)$, $b := (0{:}1{:}0)$
+and $c := (0{:}0{:}1)$ (which obviously lie on $C$).
+
+\textbf{(2)} List all points of $C$ where $x$ vanishes. Do the same
+for $y$ and $z$.
+
+\begin{answer}
+If $x$ vanishes on $C$ then $y^3 z = 0$, so $y=0$ or $z=0$. So either
+$x=y=0$ and we are at $c$, or $x=z=0$ and we are at $b$; so the set of
+points where $x$ vanishes on $C$ is exactly $\{b,c\}$. By cyclic
+rotation of coordinates, the set of points of $C$ where $y$ vanishes
+is $\{c,a\}$ and the set of points of $C$ where $z$ vanishes is
+$\{a,b\}$.
+\end{answer}
+
+\textbf{(3)} Where do the points $a,b,c$ lie on the printed picture?
+(If they do not lie on the picture, show the direction in which they
+would be.) What is the equation of the affine part of $C$ drawn on
+the picture? What is the tangent line at the point $c$? What about
+$a$ and $b$?
+
+\begin{answer}
+The point $c$ is at affine coordinates $(u,v) = (0,0)$ where $u =
+\frac{x}{z}$ and $v = \frac{y}{z}$, that is, it is at the origin of
+the printed picture. The point $a$ is at infinity ($z=0$) on the axis
+$y=0$ (or $v=0$ if we prefer), so it is at infinity in the horizontal
+direction, whereas $b$ is at infinity on the axis $x=0$ (or $u=0$ if
+we prefer), so at infinity in the vertical direction.
+
+The equation of the affine part of $C$ is obtained by dehomogenizing
+$x^3 y + y^3 z + z^3 x = 0$ with respect to $z$, i.e., by dividing by
+$z^3$ and replacing $\frac{x}{z}$ by $u$ and $\frac{y}{z}$ by $v$,
+giving $u^3 v + v^3 + u = 0$.
+
+The tangent line at the origin $c$ of the affine part $\{z\neq 0\}$ is
+given by $\frac{\partial g}{\partial u}|_{(0,0)}\cdot u +
+\frac{\partial g}{\partial v}|_{(0,0)}\cdot v =0$ where $g := u^3 v +
+v^3 + u$. This simply gives $u=0$, so it is the vertical axis (as
+could be guessed from the figure); as a projective line, this is
+$x=0$. By cyclic permutation of coordinates, we get $y=0$ as tangent
+line at $a$ and $z=0$ as tangent line at $c$. (Of course, one might
+also compute these by taking affine charts around each one of the
+points, but this would be more tedious.)
+\end{answer}
+
+\textbf{(4)} Considering $v := \frac{y}{z}$ as a rational function
+on $C$, explain why it vanishes at order exactly $1$ at $c$, that
+is\footnote{We write $\ord_p(h)$ for the order at a point $p \in C$ of
+a rational function $h \in k(C)$. By the way, please note that
+$x,y,z$ themselves do not belong to $k(C)$ (they are not functions and
+have no value by themselves), so we cannot speak of $\ord_p(x)$.},
+$\ord_c(v) = 1$. Explain why $\ord_c(u) = \ord_c(u^3 v + v^3)$ where
+$u := \frac{x}{z}$ and deduce that $\ord_c(u) = 3$. Deduce the order
+at $c$ of $\frac{y}{x}$ (which is also $\frac{v}{u}$).
+
+\begin{answer}
+The coordinate $v$ vanishes with order exactly $1$ at the origin $c$
+of the tangent line $u=0$ to $C$ at $c$; therefore it also has order
+exactly $1$ at $c$ on $C$. In other words, $\ord_c(v) = 1$.
+
+Now $u^3 v + v^3 + u = 0$ on $C$, that is $u = -u^3 v - v^3$, so
+$\ord_c(u) = \ord_c(u^3 v + v^3)$. This shows that $\ord_c(u) =: k$,
+which is $\geq 1$ because $u$ vanishes at $c$, satisfies $k \geq
+\min(3k+1,3)$, so $k \geq 3$; but now $3k+1 \geq 10$, so $\ord_c(u^3
+v) = 3k+1 \neq 3 = \ord_c(v^3)$, so in fact $k = \min(3k+1,3) = 3$, as
+required.
+
+Consequently, $\frac{y}{x} = \frac{v}{u}$ has order $\ord_c(v) -
+\ord_c(u) = 1 - 3 = -2$ at $c$.
+\end{answer}
+
+\textbf{(5)} By using symmetry, compute the order at each one of the
+three points $a,b,c$ of each one of the three functions $\frac{x}{z}$,
+$\frac{y}{x}$ and $\frac{z}{y}$. Explain why there are no points
+(of $C$) other than $a,b,c$ where any of these functions (on $C$)
+vanishes or has a pole. Summarize this by writing the principal
+divisors $\divis(\frac{x}{z})$, $\divis(\frac{y}{x})$ and
+$\divis(\frac{z}{y})$ associated with these three functions.
+
+\begin{answer}
+We have seen that
+\[
+\arraycolsep=1em
+\begin{array}{ccc}
+\ord_c(\frac{x}{z}) = 3 &
+\ord_c(\frac{y}{x}) = -2 &
+\ord_c(\frac{z}{y}) = -1
+\end{array}
+\]
+so by cyclic permutation we get
+\[
+\arraycolsep=1em
+\begin{array}{ccc}
+\ord_a(\frac{x}{z}) = -1 &
+\ord_a(\frac{y}{x}) = 3 &
+\ord_a(\frac{z}{y}) = -2
+\\
+\ord_b(\frac{x}{z}) = -2 &
+\ord_b(\frac{y}{x}) = -1 &
+\ord_b(\frac{z}{y}) = 3
+\end{array}
+\]
+Now we have also pointed out earlier that none of $x,y,z$ vanishes on
+$C$ outside possibly of $\{a,b,c\}$: so
+$\frac{x}{z},\frac{y}{x},\frac{z}{y}$ have neither zero nor pole on
+$C\setminus\{a,b,c\}$, i.e., their order is $0$ everywhere on this
+open set. This shows that
+\[
+\begin{aligned}
+\divis(\frac{x}{z}) &= -[a] -2\,[b] + 3\,[c]\\
+\divis(\frac{y}{x}) &= \hphantom{+}3\,[a] - [b] - 2\,[c]\\
+\divis(\frac{z}{y}) &= -2\,[a] + 3\,[b] - [c]
+\end{aligned}
+\]
+Two sanity checks can be performed: the degree of each of these
+divisors (i.e., the sum of the coefficients) is zero, as befits a
+principal divisor; and the sum of these three divisors is also zero,
+as it should be because it is the divisor of the constant nonzero
+function $1$.
+\end{answer}
+
+
+%
+%
+%
+
+
+\exercise
+
+This exercise is about the \textbf{Segre embedding}\footnote{French:
+ “plongement de Segre”}, which is a way to map the product
+$\mathbb{P}^p \times \mathbb{P}^q$ of two projective spaces to a
+larger projective space $\mathbb{P}^n$ (with, as we shall see, $n =
+pq+p+q$).
+
+Assume $k$ is a field. To simplify presentation, assume $k$ is
+algebraically closed (even though this won't matter at all).
+
+Given $p,q\in\mathbb{N}$, the Segre embedding of $\mathbb{P}^p \times
+\mathbb{P}^q$ is the map $\psi$ given by:
+\[
+\begin{aligned}
+\psi\colon & \mathbb{P}^p \times \mathbb{P}^q \to \mathbb{P}^n\\
+&((x_0:\cdots:x_p),\, (y_0:\cdots:y_q)) \mapsto (x_0 y_0 : x_0 y_1 : \cdots
+: x_0 y_q : x_1 y_0 : \cdots : x_p y_q)\\
+\end{aligned}
+\]
+where $n = (p+1)(q+1)-1$ and the coordinates of the endpoint consist
+of every product $x_i y_j$ with $0\leq i\leq p$ and $0\leq j\leq q$
+(in some order which doesn't really matter: here we have chosen the
+lexicographic ordering).
+
+Note that with the definitions given in this course, we cannot state
+that $\psi$ is a morphism of algebraic varieties (although it
+certainly \emph{should} be one), because we did not define a “product
+variety”\footnote{In fact, the Segre embedding is one way of doing
+this.} $\mathbb{P}^p \times \mathbb{P}^q$. But we can still consider
+it as a function.
+
+Let us label $(z_{0,0} : z_{0,1} : \cdots : z_{p,q})$ the homogeneous
+coordinates in $\mathbb{P}^n$ (that is, $z_{i,j}$ with $0\leq i\leq p$
+and $0\leq j\leq q$), so that $\psi$ is given simply by “$z_{i,j} =
+x_i y_j$”.
+
+We finally consider the Zariski closed subset $S$ of $\mathbb{P}^n$,
+known as the \textbf{Segre variety}, defined in $\mathbb{P}^n$ by the
+equations $z_{i,j} z_{i',j'} = z_{i,j'} z_{i',j}$ for all $0\leq
+i,i'\leq p$ and $0\leq j,j'\leq q$.
+
+\medskip
+
+\textbf{(1)} Explain why the map $\psi$ is well-defined, i.e., the
+definition given above makes sense: carefully list the properties that
+need to be checked, and do so. Explain why $S$ is indeed a Zariski
+closed subset of $\mathbb{P}^n$: again, carefully state what needs to
+be checked before doing so.
+
+\begin{answer}
+For the point $(x_0 y_0 : \cdots : x_p y_q)$ to make sense, we need to
+check that not all its coordinates are zero. But we know that at
+least one of the $x_i$ is nonzero and at least one of the $y_j$ is
+nonzero, so (as we are working over a field) the product $x_i y_j$ is
+nonzero.
+
+For the map $((x_0:\cdots:x_p),\, (y_0:\cdots:y_q)) \mapsto (x_0 y_0 :
+\cdots : x_p y_q)$ to make sense, we need to check that $(x_0 y_0 :
+\cdots : x_p y_q)$ does not change if we replace the $x_i$ and the
+$y_j$ by different coordinates for the same point, in other words, if
+we multiply all the $x_i$ by a common nonzero constant, and all the
+$y_j$ by a (possibly different) common nonzero constant. This is
+indeed the case as $x_i y_j$ will be multiplied by the product of
+these two constants.
+
+Concerning $S$, we need to check that the equations $z_{i,j} z_{i',j'}
+= z_{i,j'} z_{i',j}$ are homogeneous: this is indeed the case (they
+are homogeneous of degree $2$).
+\end{answer}
+
+\textbf{(2)} Consider in this question the special case $p=q=1$ (so
+$n=3$). Simplify the definition of $S$ in this case down to a single
+equation. Taking $z_{0,0}=0$ as the plane at infinity in
+$\mathbb{P}^3$, give the equation of the affine part $S \cap
+\mathbb{A}^3$. Similarly taking $x_0=0$ (resp. $y_0=0$) as the point
+at infinity in $\mathbb{P}^1$, describe $\psi$ on $\mathbb{A}^1 \times
+\mathbb{A}^1$.
+
+\begin{answer}
+When $p=q=1$ the equations of $S$ are all trivial except $z_{0,0}
+z_{1,1} = z_{0,1} z_{1,0}$ (or equations trivially equivalent to
+this). Taking $z_{0,0} = 0$ as plane at infinity, we get the equation
+of the affine part by dehomogenizing $z_{0,0} z_{1,1} = z_{0,1}
+z_{1,0}$, which gives $w_{1,1} = w_{0,1} w_{1,0}$ where $w_{i,j}$
+denotes the affine coordinate $z_{i,j}/z_{0,0}$ in $\mathbb{A}^3$.
+
+Concerning $\psi$, if we call $u = x_1/x_0$ the affine coordinate on
+the first $\mathbb{A}^1$ and $v = y_1/y_0$ that on the second, it is
+given by taking $(u,v)$, i.e. $((1:u),\, (1:v))$ to $(1:v:u:uv)$, that
+is $(v,u,uv)$.
+\end{answer}
+
+\textbf{(3)} Returning to the case of general $p$ and $q$, show that
+the image of $\psi$ is contained in $S$, that is, $\psi(\mathbb{P}^p
+\times \mathbb{P}^q) \subseteq S$.
+
+\begin{answer}
+If $(z_{0,0} : \cdots : z_{p,q})$ is given by $z_{i,j} = x_i y_j$, we
+just need to check that $z_{i,j} z_{i',j'} = z_{i,j'} z_{i',j}$: but
+this just says that $x_i y_j x_{i'} y_{j'} = x_i y_{j'} x_{i'} y_j$,
+which is obvious by commutativity.
+\end{answer}
+
+\textbf{(4)} Conversely, explain why for each point $(z_{0,0} : \cdots
+: z_{p,q})$ in $S$ there is a unique pair of points $((x_0 : \cdots :
+x_p), (y_0 : \cdots : y_q))$ in $\mathbb{P}^p \times \mathbb{P}^q$
+which maps to the given point under $\psi$: in other words, show that
+$\psi$ is a bijection between $\mathbb{P}^p \times \mathbb{P}^q$
+and $S$.
+
+(\textit{Hint:} you may wish to observe that if $(z_{0,0} : \cdots :
+z_{p,q})$ is in $S$, the point $(z_{0,j_0} : \cdots : z_{p,j_0})$ in
+$\mathbb{P}^p$ does not depend on $j_0 \in \{0,\ldots,q\}$ such that
+$\exists i.(z_{i,j_0}\neq 0)$; and similarly for $(z_{i_0,0} : \cdots
+: z_{i_0,q})$ in $\mathbb{P}^q$.)
+
+\begin{answer}
+Assume $(z_{0,0} : \cdots : z_{p,q})$ is in $S$. By the definition of
+$\mathbb{P}^n$, at least one coordinate $z_{i_0,j_0}$ is nonzero.
+Define $x^*_i = z_{i,j_0}$ (note that $x^*_{i_0} \neq 0$) and $y^*_j =
+z_{i_0,j}$ (note that $y^*_{j_0} \neq 0$): then $x^*_i y^*_j =
+z_{i,j_0} z_{i_0,j}$, which, by the equations of $S$, is also
+$z_{i_0,j_0} z_{i,j}$: this shows that $((x^*_0 : \cdots : x^*_p),
+(y^*_0 : \cdots : y^*_q))$ maps to the given $(z_{0,0} : \cdots :
+z_{p,q})$ under $\psi$ (by dividing all coordinates by the nonzero
+value $z_{i_0,j_0}$). So $\psi$ surjects to $S$.
+
+But in fact, if $((x_0 : \cdots : x_p), (y_0 : \cdots : y_q))$ maps to
+$(z_{0,0} : \cdots : z_{p,q})$ under $\psi$, then we have $z_{i,j_0} =
+y_{j_0} x_i$ so that $(x_0 : \cdots : x_p) = (z_{0,j_0} : \cdots :
+z_{p,j_0})$ provided $y_{j_0} \neq 0$, which is tantamount to saying
+$z_{i_0,j_0}\neq 0$ for some $i_0$: so we had no other choice than to
+take the $(x^*_0 : \cdots : x^*_p)$ of the previous paragraph, and the
+same argument holds for $(y^*_0 : \cdots : y^*_q)$. This shows
+uniqueness of the points $((x_0 : \cdots : x_p), (y_0 : \cdots :
+y_q))$ mapping to $(z_{0,0} : \cdots : z_{p,q})$ under $\psi$.
+\end{answer}
+
+\textbf{(5)} Call $\pi\colon S\to \mathbb{P}^p\times\mathbb{P}^q$ the
+inverse bijection of $\psi$, and call $\pi',\pi''$ its two components.
+(In other words, if $s = (z_{0,0} : \cdots : z_{p,q})$ is in $S$ then
+$\pi'(s) = (x_0:\cdots:x_p) \in \mathbb{P}^p$ and $\pi''(s) =
+(y_0:\cdots:y_p) \in \mathbb{P}^q$ are the unique points such that
+$(\pi'(s),\pi''(s))$ maps to $s$ under $\psi$.) Show that the maps
+$\pi' \colon S \to \mathbb{P}^p$ and $\pi'' \colon S \to \mathbb{P}^q$
+are morphisms of algebraic varieties. (If this seems too difficult,
+consider the special case $p=q=1$, and at least try to explain what
+needs to be checked.)
+
+\begin{answer}
+Given $j_0 \in \{0,\ldots,q\}$, consider the map $(z_{0,0} : \cdots :
+z_{p,q}) \mapsto (z_{0,j_0} : \cdots : z_{p,j_0})$ which selects only
+the coordinates $z_{i,j_0}$. This is a partially defined map from
+$\mathbb{P}^n$ to $\mathbb{P}^p$, and the components are homogeneous
+polynomials of the same degree (here, $1$): the only thing that can go
+wrong is that all the $z_{i,j_0}$ are zero, so this is well-defined on
+the open set $\{z_{0,j_0}\neq 0\} \cup \cdots \cup \{z_{p,j_0}\neq
+0\}$. Now restrict this map to $S$: this gives us a morphism
+$\pi^{\prime(j_0)}$ from the open set $U^{(j_0)} := S \cap
+(\{z_{0,j_0}\neq 0\} \cup \cdots \cup \{z_{p,j_0}\neq 0\})$ of $S$
+to $\mathbb{P}^p$.
+
+Note that the union the union of $U^{0)},\ldots,U^{(q)}$ is all of $S$
+because there is always at least one coordinate nonzero.
+
+Furthermore, we have seen in (4) that if $s = (z_{0,0} : \cdots :
+z_{p,q})$ then $\pi'(s)$ is given by $\pi^{\prime(j_0)}(s) =
+(z_{0,j_0} : \cdots : z_{p,j_0})$ where $j_0$ is any element of
+$\{0,\ldots,q\}$ such that $z_{i_0,j_0} \neq 0$ for some $i_0$, i.e.,
+$s \in U^{(j_0)}$. This shows that $\pi'$ coincides with
+$\pi^{\prime(j_0)}$ on the open set $U^{(j_0)}$ where the latter is
+defined, so $\pi'$ is defined by “gluing” the various
+$\pi^{\prime(j_0)}$. So $\pi'$ is indeed a morphism (to be clear: it
+is simply defined by selecting the coordinates of the form $z_{i,j_0}$
+for any one $j_0$ such that not all of them vanish).
+
+The same argument, \textit{mutatis mutandis}, works for $\pi''$.
+\end{answer}
+
+
+
+%
+%
+%
+\end{document}
diff --git a/exercices.tex b/exercices.tex
index 6d8ff3e..ec90648 100644
--- a/exercices.tex
+++ b/exercices.tex
@@ -33,6 +33,9 @@
%
\newcommand{\id}{\operatorname{id}}
\newcommand{\alg}{\operatorname{alg}}
+\newcommand{\ord}{\operatorname{ord}}
+\newcommand{\val}{\operatorname{val}}
+\newcommand{\divis}{\operatorname{div}}
%
\DeclareUnicodeCharacter{00A0}{~}
%
@@ -751,4 +754,369 @@ $(A,B;C,D)$ (sur $m$).
%
%
%
+
+\exercice
+
+Dans cet exercice, on se place sur un corps $k$ de caractéristique
+différente de $2$ et $3$.
+
+Soit $C := \{ y^2 = x^3 - x \}$ la variété algébrique affine dans
+$\mathbb{A}^2$ définie par l'annulation du polynôme $h := y^2 - x^3 +
+x \in k[x,y]$.
+
+(1) Donner l'équation de la complétée projective $C^+$ de $C$
+dans $\mathbb{P}^2$ (c'est-à-dire, l'adhérence de Zariski de $C$
+dans $\mathbb{P}^2$) dont les coordonnées seront notées $(T{:}X{:}Y)$
+(en identifiant le point $(x,y)$ de $\mathbb{A}^2$ avec $(1{:}x{:}y)$
+de $\mathbb{P}^2$). Quels sont ses points « à l'infini »
+(c'est-à-dire situés sur $C^+$ mais non sur $C$) ?
+
+\begin{corrige}
+La complétée projective de $Z(h) \subseteq \mathbb{A}^2$ est donnée
+par l'équation $T^{\deg h}\, h(\frac{X}{T}, \frac{Y}{T})$,
+c'est-à-dire $T Y^2 = X^3 - T^2 X$. Les points à l'infini sont donnés
+en mettant $T=0$ (équation de la droite à l'infini) avec cette
+équation, ce qui donne $X^3=0$ soit $X=0$, si bien que le seul point
+est $(0{:}0{:}1)$ (point à l'infini dans la direction « verticale »).
+\end{corrige}
+
+(2) Montrer que $C^+$ est lisse.
+
+\begin{corrige}
+Si $h^+\in k[T,X,Z]$ est le polynôme homogène $T Y^2 - X^3 + T^2 X$,
+il s'agit de vérifier que $\frac{\partial h^+}{\partial T} = Y^2 + 2T
+X$ et $\frac{\partial h^+}{\partial X} = -3X^2 + T^2$ et
+$\frac{\partial h^+}{\partial Y} = 2 T Y$ n'ont pas de zéro commun
+(autre que $T=X=Y=0$ qui ne définit pas un point de $\mathbb{P}^2$)
+sur la clôture algébrique $k^{\alg}$ de $k$. Or $2TY=0$ implique soit
+$T=0$ soit $Y=0$ (car le corps est de caractéristique $\neq 2$), dans
+le premier cas les deux autres équations donnent $Y^2=0$ donc $Y=0$ et
+$-3X^2=0$ donc (comme le corps est de caractéristique $\neq 3$) que
+$X=0$ ; et dans le second cas, on a $2TX=0$, le cas $T=0$ a déjà été
+traité, reste à regarder $X=0$, mais on a alors $T^2=0$ par une autre
+équation, donc $T=0$ ; donc dans tous les cas $T=X=Y=0$.
+
+(On pouvait aussi trouver les relations $X^3 = \frac{1}{6} T \,
+\frac{\partial h^+}{\partial T} - \frac{1}{3} X \, \frac{\partial
+ h^+}{\partial X} - \frac{1}{12} Y \, \frac{\partial h^+}{\partial
+ Y}$ et $Y^3 = Y \, \frac{\partial h^+}{\partial T} - X \,
+\frac{\partial h^+}{\partial Y}$ et $T^4 = \frac{3}{2} T X \,
+\frac{\partial h^+}{\partial T} + T^2 \, \frac{\partial h^+}{\partial
+ X} - \frac{3}{4} X Y \, \frac{\partial h^+}{\partial Y}$ qui
+collectivement montrent que $\frac{\partial h^+}{\partial T}$ et
+$\frac{\partial h^+}{\partial X}$ et $\frac{\partial h^+}{\partial Y}$
+engendrent un idéal irrelevant puisque contenant $X^3,Y^3,T^4$ (donc
+ne peuvent pas toutes s'annuler simultanément dans $\mathbb{P}^2$).
+\end{corrige}
+
+(3) On considère maintenant $h := y^2 - x^3 + x$ comme élément de
+$k(x)[y]$, c'est-à-dire comme polynôme en l'indéterminée $y$ sur le
+corps $k(x)$ des fractions rationnelles en l'indéterminée $x$.
+Montrer qu'il est irréductible (on pourra pour cela vérifier que
+l'élément $x^3 - x$ de $k(x)$ n'est pas le carré d'un élément de
+$k[x]$ et en déduire qu'il n'est pas le carré d'un élément de $k(x)$).
+En déduire que le quotient $K := k(x)[y]/(h)$ est un corps. En
+déduire que $K := k(x)[y]/(h)$ est le corps des fonctions rationnelles
+aussi bien de $C$ que de $C^+$ (on pourra remarquer que $k(x)[y]/(y^2
+- x^3 + x)$ contient $k[x,y]/(y^2 - x^3 + x)$).
+
+\begin{corrige}
+Remarquons d'abord que $x^3 - x$ n'est pas le carré d'un élément
+de $k[x]$ : c'est clair car le carré d'un polynôme sur un corps est de
+degré pair. On en déduit que ce n'est pas non plus le carré d'un
+élément de $k(x)$, car si on écrivait un tel élément $u/v$ avec $u,v$
+polynômes sans facteur commun (ce qui a un sens car $k[x]$ est un
+anneau factoriel — c'est-à-dire qu'il admet une décomposition unique
+en éléments irréductibles), son carré serait $u^2/v^2$ avec $u^2,v^2$
+également sans facteur commun, donc on doit avoir $v$ constant pour ne
+pas avoir de dénominateur et finalement $u$ est un polynôme.
+
+Le fait que $x^3 - x$ ne soit pas un carré dans $k(x)$ signifie que $h
+:= y^2 - x^3 + x \in k(x)[y]$ n'a pas de racine. Mais il est de
+degré $2$, donc sa seule factorisation non-triviale possible serait en
+deux facteurs de degré $1$, ce qui implique qu'il aurait deux racines,
+et on vient de voir qu'il n'y en a pas. Ainsi, $h$ est irréductible
+(en tant qu'élément de $k(x)[y]$).
+
+Le quotient $K := k(x)[y]/(h)$ est donc un corps car il est de la
+forme $K = E[y]/(h)$ avec $E$ un corps et $h$ un polynôme irréductible
+en une seule variable sur $E$. (Rappels : $K$ est un anneau intègre
+puisque $uv=0$ dans $K$ signifie que $u,v$ relevés à $E[y]$, sont
+multiples de $h$, mais comme $h$ est irréductible, l'un des deux doit
+être multiple de $h$, donc nul dans $K$ ; et $K$ est alors un anneau
+intègre de dimension finie sur $E$, donc un corps car la
+multiplication $K \to K, z \mapsto az$ par un élément $a$ non nul est
+injective donc bijective car entre espaces vectoriels de même
+dimension finie.)
+
+Comme $C = Z(y^2 - x^3 + x)$ est affine, l'anneau $\mathcal{O}(C)$ des
+fonctions \emph{régulières} sur $C$ est $k[x,y] / (y^2 - x^3 + x)$.
+Cet anneau est contenu dans $K$ (au sens où le morphisme évident
+$\mathcal{O}(C) \to K$, défini en envoyant chacun de $x$ et $y$ sur
+l'élément du même nom, et qui passe au quotient par $y^2 - x^3 + x$,
+est injectif puisque tout multiple de $y^2 - x^3 + x$ dans $k(x)[y]$
+qui est dans $k[x,y]$ est déjà multiple de $y^2 - x^3 + x$ dans
+$k[x,y]$). Puisque le corps $K$ contient $\mathcal{O}(C)$, il
+contient son corps des fractions, qui est le corps $k(C)$ des
+fonctions rationnelles de $C$ ; mais réciproquement, comme $k(C)$, vu
+dans $K$, contient à la fois $x$ et $y$, il doit contenir d'abord le
+corps engendré par $x$, soit $k(x)$, et ensuite l'anneau engendré par
+$y$ au-dessus de ce corps, qui est justement $K$.
+
+Ceci montre que $K = k(C)$. Comme $C$ est un ouvert de Zariski (non
+vide, donc dense) de $C^+$ (précisément, c'est l'ouvert $T \neq 0$),
+ils ont le même corps des fonctions rationnelles, donc $K = k(C^+)$
+aussi.
+\end{corrige}
+
+(4) Expliquer pourquoi tout élément de $K := k(x)[y]/(h)$ possède une
+représentation unique sous la forme $g_0 + g_1\, y$ où $g_0$ et $g_1$
+sont des fractions rationnelles en l'indéterminée $x$ (et où on a noté
+abusivement $y$ pour la classe de $y$ modulo $h$). Expliquer comment
+on calcule les sommes et les produits dans $K$ sur cette écriture.
+Expliquer comment la connaissance d'une relation de Bézout $ug + vh =
+1 \in k(x)[y]$ permet de calculer l'inverse d'un élément $g = g_0 +
+g_1\, y$ de $K$. À titre d'exemple, calculer l'inverse de $y$
+dans $K$ (on pourra observer ce que vaut $y^2$ dans $K$).
+
+\begin{corrige}
+Par division euclidienne dans $E[y]$ où $E = k(x)$ (noter que $E$ est
+un corps), tout élément de $E[y]$ s'écrit de façon unique sous la
+forme $q h + g$ où $\deg g < \deg h = 2$. C'est-à-dire que tout
+élément de $E[y]$ est congru modulo $h$ à un unique élément $g \in
+E[y]$ de degré $<2$, qu'on peut alors écrire sous la forme $g_0 +
+g_1\, y$ où $g_0,g_1 \in E = k(x)$.
+
+Pour ajouter deux éléments écrits sous cette forme, on ajoute
+simplement les $g_0,g_1$ correspondants. Pour les multiplier, on
+effectue le produit dans $E[y]$ et on effectue une division
+euclidienne par $h$ pour se ramener à un degré $<2$, ce qui, en
+l'espèce, revient simplement à remplacer $y^2$ par $x^3 - x$.
+
+Une relation de Bézout $ug + vh = 1$ dans $E[y]$ se traduit en $ug =
+1$ dans $E[y]/(h) =: K$, ce qui signifie que $u$ est l'inverse de $g$.
+Or on sait qu'on peut (par l'algorithme d'Euclide étendu dans $E[y]$)
+calculer une telle relation de Bézout dès lors que $g$ et $h$ ont pour
+pgcd $1$ (c'est-à-dire que $g$ n'est pas multiple de $h$, i.e., pas
+nul dans $K$). À titre d'exemple, comme $y^2 = x^3 - x$ dans $K$, on
+a $\frac{1}{y} = \frac{y}{x^3-x}$.
+\end{corrige}
+
+On rappelle le fait suivant : pour chaque point $P$ de la courbe
+$C^+$, il existe une et une seule fonction $\ord_P\colon K\to
+\mathbb{Z}\cup\{\infty\}$ qui vérifie les propriétés suivantes :
+\textbf{(o)} $\ord_P(g) = \infty$ si et seulement si $g=0$,\quad
+\textbf{(k)} $\ord_P(c) = 0$ si $c\in k$,\quad
+\textbf{(i)} $\ord_P(g_1 + g_2) \geq \min(\ord_P(g_1), \ord_P(g_2))$
+(avec automatiquement l'égalité lorsque $\ord_P(g_1) \neq
+\ord_P(g_2)$),\quad \textbf{(ii)} $\ord_P(g_1 g_2) = \ord_P(g_1) +
+\ord_P(g_2)$,\quad \textbf{(n)} $1$ est atteint par $\ord_P$, et enfin
+\quad \textbf{(r)} $\ord_P(g) \geq 0$ si $g$ est définie en $P$ (avec
+automatiquement $\ord_P(g) > 0$ si $g$ s'annule en $P$).
+
+(5) On va chercher à mieux comprendre la fonction $\ord_O$ lorsque $O$
+est le point $(0,0)$ de la courbe $C$.\quad (a) Posons $e :=
+\ord_O(x)$ : pourquoi a-t-on $e \geq 1$ ?\quad (b) Cherchons à
+comprendre ce que vaut $\ord_O$ sur le sous-corps $k(x)$ de $K$ ne
+faisant pas intervenir $y$. Montrer que $\ord_O(g) = e\cdot
+\val_0(g)$ si $g \in k[x]$, où $\val_0(g)$ désigne l'ordre du zéro de
+$g$ à l'origine en tant que polynôme en une seule variable $x$
+(c'est-à-dire le plus grand $r$ tel que $x^r$ divise $g$). En déduire
+que $\ord_O(g) = e\cdot \val_0 (g)$ pour tout $g\in k(x)$, où
+$\val_0(g)$ désigne l'ordre du zéro de $g$ à l'origine en tant que
+fonction rationnelle en une seule variable $x$ (c'est-à-dire $\val_0$
+de son numérateur moins $\val_0$ de son dénominateur).\quad
+(c) Calculer $\ord_O(y^2)$ et en déduire $\ord_O(y)$ (en faisant
+intervenir le nombre $e$).\quad (d) En déduire comment calculer
+$\ord_O(g_0 + g_1\, y)$ pour $g_0,g_1\in k(x)$ (toujours en faisant
+intervenir le nombre $e$).\quad (e) En faisant intervenir la propriété
+(n) (de normalisation de $\ord_O$), en déduire la valeur de $e$ et
+finalement la valeur de $\ord_O(g_0 + g_1\, y)$ pour $g_0,g_1 \in
+k(x)$.
+
+\begin{corrige}
+(a) On a $e := \ord_O(x) \geq 1$ car $x$ s'annule en $O$ (par la
+ propriété (r)).
+
+(b) De $\ord_O(x) = e$ on déduit $\ord_O(x^i) = e\cdot i$ par la
+ propriété (ii), donc $\ord_O(c x^i) = e\cdot i$ si $c\in k^\times$
+ par la propriété (k), et donc, par la propriété (i), que $\ord_O(c_r
+ x^r + \cdots + c_n x^n) = e\cdot r$ si $r\leq n$ et $c_r,\ldots,c_n
+ \in k$ et $c_r \neq 0$, ce qui signifie précisément $\ord_O(g) =
+ e\cdot\val_0(g)$ si $g\in k[x]$. Si $g = u/v \in k(x)$ avec $u,v\in
+ k[x]$, on a $\val_0(g) = \val_0(u) - \val_0(v)$ et $\ord_O(g) =
+ \ord_O(u) - \ord_O(v)$ (par la propriété (ii)), donc toujours
+ $\ord_O(g) = e\cdot\val_0(g)$.
+
+(c) Comme $y^2 = x^3 - x$ dans $K$, on a $\ord_O(y^2) = e\cdot
+ \val_0(x^3 - x) = e$. On en déduit $\ord_O(y) = \frac{1}{2}e$
+ (propriété (ii)).
+
+(d) On a vu $\ord_O(g_0) = e\cdot\val_0(g_0)$ en (b), et $\ord_O(g_1\,
+ y) = e\cdot(\val_0(g_1)+\frac{1}{2})$ puisque $\ord_O(y) =
+ \frac{1}{2}e$. Comme $\val_0(g_0)$ et $\val_0(g_1)+\frac{1}{2}$ ne
+ peuvent pas être égaux, la propriété (i) donne $\ord_O(g_0 + g_1\,
+ y) = e\cdot\min(\val_0(g_0), \val_0(g_1)+\frac{1}{2})$ quels que
+ soient $g_0,g_1\in k(x)$.
+
+(e) On vient de voir $\ord_O(g_0 + g_1\, y) = e\cdot\min(\val_0(g_0),
+ \val_0(g_1)+\frac{1}{2})$ : pour que ceci ne prenne que des valeurs
+ entières, $e$ doit être pair ; mais pour que ceci puisse prendre la
+ valeur $1$ (donc tous les entiers), $e$ doit être exactement égal
+ à $2$. Finalement, on a donc $\ord_O(g_0 + g_1\, y) =
+ \min(2\val_0(g_0), 2\val_0(g_1)+1)$.
+\end{corrige}
+
+(6) En notant $(\infty)$ le point à l'infini de $C^+$, montrer que le
+diviseur $\divis(x)$ de $x$ (vu comme fonction rationnelle sur $C^+$)
+vaut $2[O] - 2[\infty]$. En déduire $\ord_\infty(y)$, et en déduire
+$\divis(y) = [O] + [P] + [Q] - 3[\infty]$ où $P=(1,0)$ et $Q=(-1,0)$.
+
+\begin{corrige}
+À la question (5), on a calculé $\ord_O(x) = 2$. En tout autre point
+de $C^+$ non situé à l'infini (c'est-à-dire, situé sur $C$), la
+fonction $x$ n'a ni zéro ni pôle (elle n'a pas de pôle car $x$ est une
+fonction régulière sur $\mathbb{A}^2$ et notamment sur $C$, et elle
+n'a pas de zéro car le seul point de $C$ où $x$ s'annule vérifie
+aussi $y=0$ d'après l'équation $y^2 = x^3 - x$, donc est $(0,0) =:
+O$). Comme le degré total du diviseur de $x$ doit être $0$, l'ordre
+en $\infty$ doit forcément être $-2$, autrement dit $\divis(x) = 2[O]
+- 2[\infty]$.
+
+Comme $\ord_\infty(x) = -2$, on a $\ord_\infty(x^3) = -6$ et
+$\ord_\infty(y^2) = \ord_\infty(x^3 - x) = -6$, donc $\ord_\infty(y) =
+-3$. Comme la fonction $y$ est régulière sur $\mathbb{A}^2$ et
+notamment sur $C$, elle n'a pas d'autre pôle que $\infty$, et elle
+s'annule en les points $(x,y)$ de $C$ où $y=0$ et $x^3-x=0$
+c'est-à-dire $x(x-1)(x+1)=0$, qui sont donc $O,P,Q$ (qui sont
+distincts car $k$ est de caractéristique $\neq 2$). Comme le degré
+total de $\divis(y)$ doit être $0$, l'ordre en chacun de $O,P,Q$ doit
+forcément être $1$ (puisque ce sont trois entiers strictement positifs
+de somme $3$), autrement dit $\divis(y) = [O] + [P] + [Q] -
+3[\infty]$.
+\end{corrige}
+
+(7) Toujours en notant $(\infty)$ le point à l'infini de $C^+$,
+montrer que $\ord_\infty(g_0 + g_1\, y) = \min(2\val_\infty(g_0),
+2\val_\infty(g_1)-3)$ pour $g_0,g_1 \in k(x)$, où $\val_\infty(g)$
+désigne la valuation usuelle de $g$ à l'infini en tant que fonction
+rationnelle en une seule variable $x$, c'est-à-dire le degré du
+dénominateur moins le degré du numérateur.
+
+\begin{corrige}
+On a vu $\ord_\infty(x) = -2 = 2\val_\infty(x)$ : on en déduit que
+$\ord_\infty(g) = 2\val_\infty(g)$ pour tout $g\in k[x]$ puis pour
+tout $g\in k(x)$ (comme en (5)(b)). Comme $\ord_\infty(y) = -3$, on a
+$\ord_\infty(g_0 + g_1\, y) = \min(2\val_\infty(g_0),
+2\val_\infty(g_1)-3)$ (en utilisant la propriété (i) et en remarquant
+que $2\val_\infty(g_0)$ et $2\val_\infty(g_1)-3$ ne peuvent pas être
+égaux).
+\end{corrige}
+
+(8) Pour $n\in \mathbb{N}$, soit $\mathscr{L}(n[\infty]) := \{0\} \cup
+\{f\in k(C)^\times : \divis(f) +n[\infty] \geq 0\}$ l'espace vectoriel
+sur $k$ des fonctions rationnelles sur $C^+$ ayant au pire un pôle
+d'ordre $n$ en $\infty$ (et aucun pôle ailleurs). Décrire
+explicitement $\mathscr{L}(n[\infty])$ comme l'ensemble des $g_0 +
+g_1\,y$ avec $g_0,g_1\in k[x]$ vérifiant certaines contraintes sur
+leur degré : en déduire la valeur de $\ell (n[\infty]) := \dim_k
+\mathscr{L}(n[\infty])$ et notamment le fait que $\ell (n[\infty]) =
+n$ si $n$ est assez grand.
+
+\begin{corrige}
+Dire que $g_0 + g_1\, y$ appartient à $\mathscr{L}(n[\infty])$
+signifie qu'elle est régulière partout sauf peut-être en $\infty$, et
+que par ailleurs $\ord_\infty(g_0 + g_1\, y) \geq -n$. La première
+condition signifie $g_0,g_1\in k[x]$ ; la seconde signifie
+$\min(2\val_\infty(g_0), 2\val_\infty(g_1)-3) \geq -n$, c'est-à-dire
+$\max(2\deg(g_0), 2\deg(g_1)+3) \leq n$, autrement dit,
+$\mathscr{L}(n[\infty])$ est l'ensemble des $g_0 + g_1\,y$ avec
+$g_0,g_1\in k[x]$ vérifiant $\deg(g_0) \leq \frac{1}{2}n$ et
+$\deg(g_1) \leq \frac{1}{2}(n-3)$. Comme la dimension de l'espace des
+polynômes vérifiant $\deg(g) \leq B$ pour $B\in \mathbb{R}$ vaut
+$\max(0,\lfloor B\rfloor + 1)$, on trouve finalement $\ell (n[\infty])
+= \max(0,\lfloor \frac{1}{2}n\rfloor + 1) + \max(0,\lfloor
+\frac{1}{2}(n-3)\rfloor + 1)$, ce qui, après examen des quelques
+premiers cas, donne
+\[
+\ell (n[\infty]) = \left\{
+\begin{array}{ll}
+0&\hbox{~si $n<0$}\\
+1&\hbox{~si $n=0$ (ou $n=1$)}\\
+n&\hbox{~si $n\geq 1$}\\
+\end{array}
+\right.
+\]
+pour dimension de l'espace des fonctions rationnelles sur $C^+$ ayant
+au pire un pôle d'ordre $n$ en $\infty$ (et aucun pôle ailleurs).
+\end{corrige}
+
+(9) En comparant la valeur trouvée pour $\ell (n[\infty])$ avec la
+formule de Riemann-Roch, calculer le genre de $C^+$.
+
+\begin{corrige}
+La formule de Riemann-Roch prédit $\ell(D) - \ell(K-D) = \deg(D) + 1 -
+g$ où $g$ est le genre de la courbe (à déterminer), et notamment
+$\ell(D) = \deg(D) + 1 - g$ si $\deg(D) > 2g-2$. Or on vient de voir
+que pour $D := n[\infty]$ avec $n$ assez grand (et notamment
+$\deg(n[\infty]) = n$ plus grand que ce qu'on voudra), on a
+$\ell(n[\infty]) = n = \deg(n[\infty])$. On en déduit $g = 1$.
+\end{corrige}
+
+(10) Montrer que $\omega := \frac{dx}{y} = \frac{2\,dy}{3x^2-1} \in
+\Omega^1(C)$ et montrer que cette différentielle est d'ordre $0$
+en $\infty$. Expliquer pourquoi $dx$ et $dy$ sont régulières (i.e.,
+d'ordre $\geq 0$) sur $C$ et ne peuvent pas s'annuler (i.e., avoir un
+ordre $>0$) simultanément en un point de $C$. (Pour la seconde
+affirmation, on pourra noter que si $f$ est régulière sur $C$ alors
+$df = f'_x\,dx + f'_y\,dy$ avec $f'_x,f'_y$ régulières sur $C$, et
+qu'il n'est pas possible que tous les $df$ s'annulent en $M$.) En
+remarquant que $y$ et $3x^2-1$ ne s'annulent jamais simultanément
+sur $C$, montrer que $\omega$ est d'ordre $0$ en tout point (elle n'a
+ni zéro ni pôle), i.e., $\divis(\omega) = 0$. En déduire un calcul du
+genre de $g$ indépendant des questions (8) et (9).
+
+\begin{corrige}
+En dérivant $y^2 = x^3 - x$ on trouve $2y\,dy = (3x^2-1)\,dx$ dans le
+$k(C)$-espace vectoriel $\Omega^1(C)$, d'où $\frac{dx}{y} =
+\frac{2\,dy}{3x^2-1}$ comme annoncé.
+
+En $\infty$, on a $\ord_\infty(dx) = \ord_\infty(x) - 1 = -3$ (car
+$\ord_\infty(x) = -2 \neq 0$), et $\ord_\infty(y) = -3$, donc
+$\ord_\infty(\omega) = 0$.
+
+En tout point (géométrique) $M$ de $C$ on a $\ord_M(x) \geq 0$ donc
+$\ord_M(dx) \geq 0$, et $\ord_M(y) \geq 0$ donc $\ord_M(dy) \geq 0$.
+Par ailleurs, si $f$ est une fonction rationnelle sur $C$, on a $df =
+f'_x\,dx + f'_y\,dy$ où $f'_x,f'_y$ sont les dérivées partielles (au
+sens usuel) de $f$ par rapport à $x,y$ respectivement (si $f$ est
+écrite, disons, de la forme $g_0 + g_1\,y$ avec $g_0,g_1\in k(x)$,
+alors $f'_x = g'_0 + g'_1\,y$ et $f'_y = g_1$) ; en choisissant une
+fonction régulière sur $C$ (donc dans $k[x,y]/(y^2-x^3+x)$) qui est
+une uniformisante en $M$, on a $f'_x,f'_y$ régulières et $\ord_M(df) =
+0$, ce qui interdit qu'on ait simultanément $\ord_M(dx) > 0$ et
+$\ord_M(dy) > 0$.
+
+En tout point (géométrique) $M$ de $C$ où $y$ ne s'annule pas, on a
+$\ord_M(\omega) \geq 0$ car $\ord_M(dx) \geq 0$ et $\ord_M(y) = 0$ ;
+de même, en tout point où $3x^2-1$ ne s'annule pas, on a
+$\ord_M(\omega) \geq 0$ car $\ord_M(dy) \geq 0$ et $\ord_M(3x^2-1) =
+0$. Comme $y$ et $3x^2-1$ ne s'annulent jamais simultanément sur $C$
+(car $y$ ne s'annule qu'en $O=(0,0)$, $P=(1,0)$ et $Q=(-1,0)$, et
+$3x^2-1$ n'est nul en aucun de ces points), ceci montre
+$\ord_M(\omega) \geq 0$ en tout $M$. Mais si on avait $\ord_M(\omega)
+> 0$ en un point $M$, les écritures $dx = y\,\omega$ et $dy =
+\frac{3x^2-1}{2}\,\omega$ montreraient que $dx,dy$ s'annulent toutes
+les deux en $M$, ce qui n'est pas possible. Donc $\ord_M(\omega) = 0$
+en tout $M$ de $C$, et on a déjà montré par ailleurs que
+$\ord_\infty(\omega) = 0$. Ceci prouve $\divis(\omega) = 0$.
+
+Comme $\deg(\divis(\omega)) = 2g-2$ pour n'importe quelle $\omega \in
+\Omega^1(C)$, ceci montre $2g-2 = 0$ soit $g=1$.
+\end{corrige}
+
+
+%
+%
+%
\end{document}