summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid A. Madore <david+git@madore.org>2016-02-15 14:55:15 +0100
committerDavid A. Madore <david+git@madore.org>2016-02-15 14:55:15 +0100
commit3d961986140936dcbaf64d813907776bfd9a9123 (patch)
treedc255b3e431f17e56b48a6323ce8f6ac1bb1192e
parentcbcffb421086a6caebdd5b544e82d2f6b7cb8869 (diff)
downloadmdi349-3d961986140936dcbaf64d813907776bfd9a9123.tar.gz
mdi349-3d961986140936dcbaf64d813907776bfd9a9123.tar.bz2
mdi349-3d961986140936dcbaf64d813907776bfd9a9123.zip
Stupid typo.
-rw-r--r--notes-geoalg-2010.tex2
-rw-r--r--notes-geoalg-2012.tex2
2 files changed, 2 insertions, 2 deletions
diff --git a/notes-geoalg-2010.tex b/notes-geoalg-2010.tex
index 9890f52..db8e57f 100644
--- a/notes-geoalg-2010.tex
+++ b/notes-geoalg-2010.tex
@@ -335,7 +335,7 @@ $(x+y)^{2n}=0$ en développant. Il est inclus dans tout idéal radical,
et il est visiblement lui-même radical : c'est donc le plus petit
idéal radical. Étant inclus dans tout idéal radical, il est \textit{a
fortiori} inclus dans tout idéal premier. Reste à montrer que si
-$z$ est inclus dans tout idéal premier, alors $x$ est nilpotent.
+$z$ est inclus dans tout idéal premier, alors $z$ est nilpotent.
Supposons que $z$ n'est pas nilpotent. Considérons $\mathfrak{p}$ un
idéal maximal pour l'inclusion parmi les idéaux ne contenant aucun
diff --git a/notes-geoalg-2012.tex b/notes-geoalg-2012.tex
index eb8930e..f865eb6 100644
--- a/notes-geoalg-2012.tex
+++ b/notes-geoalg-2012.tex
@@ -355,7 +355,7 @@ $(x+y)^{2n}=0$ en développant. Il est inclus dans tout idéal radical,
et il est visiblement lui-même radical : c'est donc le plus petit
idéal radical. Étant inclus dans tout idéal radical, il est \textit{a
fortiori} inclus dans tout idéal premier. Reste à montrer que si
-$z$ est inclus dans tout idéal premier, alors $x$ est nilpotent.
+$z$ est inclus dans tout idéal premier, alors $z$ est nilpotent.
Supposons que $z$ n'est pas nilpotent. Considérons $\mathfrak{p}$ un
idéal maximal pour l'inclusion parmi les idéaux ne contenant aucun